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OPTIMIZING GEOGRAPHIC ALLOTMENT OF PHOTOVOLTAIC CAPACITY IN A  
DISTRIBUTED GENERATION SETTING 

Bryan Urquhart1,2, Manajit Sengupta,1 and Jamie Keller1 
1National Renewable Energy Laboratory 

15013 Denver West Parkway, Golden, CO 80401, USA 
2University of California at San Diego 

9500 Gilman Drive, La Jolla, CA 92093, USA 

ABSTRACT: A multi-objective optimization was performed to allocate 2 MW of photovoltaic (PV) among four candidate sites 
on the island of Lanai, Hawaii, such that energy was maximized and variability in the form of ramp rates was minimized. This 
resulted in an optimal solution set that provides a range of geographic allotment alternatives for the fixed PV capacity. Within 
the optimal set, a trade-off between energy produced and variability experienced was found, whereby a decrease in variability 
always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study that 
decreased extreme ramp rates by more than 50% while decreasing annual energy generation by only 3% more than the 
maximum generation allocation. To quantify the allotment mix selected, a metric was developed—called the “ramp ratio”—
that compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a 
distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience 
over single site allotment and how much a single site is being underutilized for its ability to reduce aggregate variability. This 
paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high 
penetration of PV on the distribution grid. 

Keywords: distributed generation, optimization, geographic dispersion 

 
1 INTRODUCTION 

The variability of solar power provides integration 
challenges as a primary power source on the transmission 
system and poses potential power quality issues for 
distribution networks. A known level of fluctuation in solar 
power output will always exist because of natural variations in 
the solar position. Superimposed on the known fluctuations 
will exist additional variability in production from installed 
PV that depends primarily on weather conditions that 
influence clouds and solar radiation at the location. It is well 
studied that aggregation of sites produces a smoother output 
of power on a per capacity basis [1–6]. These studies 
primarily address smoothing through geographic dispersion, 
and attempts have been made to mathematically model this 
phenomenon. On the other hand, there has been an apparent 
dearth of work on how to select the best geographic allocation 
of PV among candidate sites. This study examines the trade-
off between energy maximization and variability 
minimization while selecting and allocating PV generation 
among multiple candidate sites. In this paper, the geographic 
separation of the sites is small enough that we can assume that 
the problem we address is limited to the distribution grid. A 
study looking at minimizing the levelized cost of energy of a 
set of 12 PV generators using daily energy as input was 
performed by Roy [7]. Collins and Crowther [8] performed a 
multi-objective optimization that maximizes daily energy 
while minimizing generation shortfall using hourly input data 
and sites distributed across the state of Virginia. The latter is 
similar to this study in that it evaluated the trade-off between 
energy maximization and variability minimization; however, 
the sites are far enough apart to be considered a transmission 
level problem. As previously mentioned, the scope of this 
study is restricted to geographic dispersion that can be 
assumed to not have the constraints imposed by balancing 
area coordination, line congestion, and other transmission 
issues. 

The Maui Electric Company (MECO) owns and operates 
the island of Lanai’s electric power system. By comparison to 
mainland grids, the electric power system is small. The 

system energy is produced by a set of diesel generators 
located at the main power plant, of which one or two 
(depending on system load requirements) provide system 
frequency regulation using isochronous frequency control. 
Currently on the island there are two large distributed 
generation systems in addition to the main power plant. A 
large central station (1.2-MW) PV installation owned and 
named La Ola by Castle & Cooke is installed near the main 
diesel power plant that provides power to the grid through a 
purchase power agreement (PPA). Only recently has the La 
Ola PV system begun to generate power at full capacity 
because the PPA required that the system incorporate a 
battery energy storage system. This was to help mitigate 
ramping rates associated with the La Ola PV system. There is 
a combined heat and power (CHP) generator located near the 
end of the distribution circuit as well. 

A team led by the U.S. Department of Energy’s National 
Renewable Energy Laboratory (NREL) and MECO are 
working with local developers on the island of Lanai to assess 
the economic and technical feasibility of increasing the 
contribution of renewable energy sources on the island, with a 
stated long-term goal of reaching 100% renewable energy as 
part of the Hawaii Clean Energy Initiative. For MECO, 
enabling the reliable installation (and determining the 
technical requirements associated with the reliable 
installation) of additional renewable resources such as PV 
systems onto the electric power system is one way to assist in 
increasing the renewable energy penetration on Lanai. 

The NREL team, with input from interested PV system 
installers, has been working to create and evaluate viable 
scenarios to assess the potential amount of PV systems that 
can be cost-effectively installed on Lanai. In support of this, 
NREL has installed equipment to measure the variability of 
the solar resource at several locations on the island. For more 
than one year, NREL has been capturing 3-sec time-
synchronized solar radiation data at four locations on Lanai 
that represent some of the possible locations for additional PV 
systems. Figure 1 shows the locations of the 3-sec solar 
irradiance data collection points, as well as some of the 
existing generation and load centers. This data is available to 
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help understand site resources and variability among sites; 
however, appropriate system simulation models and 
assumptions are still needed. 

This paper develops a design strategy for placement of PV 
generation by maximizing energy produced and minimizing 
variability and, more specifically, power ramp rates. To do 
this, the planned PV output was simulated from available 
solar measurements for one complete year from June 2010 to 
May 2011. A predetermined amount of PV (e.g., 2 MW) was 
geographically allocated among four locations with differing 
amounts at each site, and the impact on energy generation and 
variability was quantified. To formalize this process, a multi-
objective optimization scheme was employed to generate 
Pareto-optimality (named for the Italian economist Vilfredo 
Pareto) curves using several variability criteria. Pareto-
optimality curves provide information on the trade-offs 
between energy production and variability experienced. These 
curves are presented as a method for utilities to assess the 
trade-offs of maximizing energy production while minimizing 
system variability. The method presented provides a tool for 
selecting an acceptable level of ramping for an individual 
system. 

2 METHODOLOGY 

2.1 Experimental Setup 
The island of Lanai is located at a latitude of 20.8oN, 

where the Walker and Hadley circulations generate the 
northeasterly trade winds. Trade wind cumulus clouds are 
dominant and cause large and frequent ramps in the global 
horizontal irradiance (GHI) because of the highly variable 
nature of that cloud type (Fig 2). GHI was measured at four 
prospective PV deployment locations (Fig. 1, Table I) on the 
island using Licor LI 200 silicon pyranometers capturing data 
at a rate of 3 sec. The La Ola station also had regular 
meteorological measurements of temperature and wind data. 
Data was collected from April 2010 to September 2011; 
however, to ensure the summer half-year was not weighted 
more heavily in this study, only data from June 2010 to May 
2011 was used. 

The Castle & Cook site is located in the center of the 
island, close to the mountains; the other sites are located in the 
southern portion of the island surrounded by much flatter 

terrain. Terrain-induced orographic lifting at the Castle & 
Cook resulted in higher levels of cloud formation and thus a 
higher frequency of large ramp events at that location. The 
Waste Water and Challenge LP sites were close to each other 
and thus exhibited stronger correlation than the other two 
sites. Hereinafter, the four sites are referred to by their 
designations indicated in both Fig. 2 and Table I. 

Table I. Measurement site geographic position and designation 
Site Designation Lat. [°N] Lon. [°W] Alt. [m] 
Castle & Cook CC 20.81782 156.92107 464 
Waste Water WW 20.74844 156.89694 110 
Challenge LP CL 20.74102 156.90509 60 
La Ola LO 20.76685 156.92291 381 

2.2 Power Output Simulation 
Power output was simulated using irradiance to DC power 

and DC to AC power algorithms that are part of the PVForm 
performance model (version 3.3) [9, 10]. This model has been 
widely used since its development, including in the latest 
version of PVWatts [11], and has been shown to have a 5% 
positive bias and RMS errors of less than 12% [12]. The 
model incorporates a temperature correction for irradiance to 
DC conversion as well as an efficiency reduction for low 
irradiance levels. 

The transposition model used in PVForm, based on that of 
Perez et al. [13], to convert the horizontal irradiance 
measurements to plane-of-array (POA) irradiance was not 
used here. The goal of this study was to develop a 
methodology to optimize the benefits of geographic 
smoothing and did not aim to achieve high accuracy in the 
exact energy produced or ramp rates experienced. Both the 
energy output and ramp rates would increase if GHI was 
transposed to POA. Importantly, however, the trends would 
remain the same; that is the basis for the results presented 
here. An additional consideration is that the latitude was low; 
therefore, the tilt would be close to horizontal, so there was 
less error in making the horizontal simplification than would 
occur at higher latitudes. 

 
Figure 2. GHI on June 20, 2011, showing typical large, cumulus-
induced fluctuations on the island of Lanai, Hawaii. 

It should be mentioned that direct performance model 
conversion of irradiance to power output is somewhat 
misleading. Large PV plants exhibit intra-plant smoothing 
similar to a low pass filter [14, 15]. Both Marcos et al. [14] 
and Lave et al. [16] developed Fourier and wavelet-based 
methods, respectively, to smooth modeled intra-plant power 
output so that it better matches observed output. Intra-plant 
smoothing was not considered here. The aggregate capacity of 

 

Figure 1. Map of the island of Lanai with four sensor locations 
indicated. The Lanai City and airport load centers are indicated, along 
with the La Ola PV system, the main island power plant, and a 
combined heat and power plant located near the coast. 
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the four simulated sites was 2 MW, which is relatively small 
in total area, and it was assumed that direct use of a PV 
performance model does not impact the utility of the results 
presented. 

2.3 Multi-Objective Optimization: Maximizing Energy 
Generation While Minimizing Ramp Rate 

Using a predetermined installed capacity of PV to be 
allocated among the four candidate sites, an optimization was 
performed to determine which weighting (% of total) 
allocation at each site would provide the most energy while 
also having the lowest variability. To maximize only energy, 
one would simply place 100% capacity in the sunniest 
location. This would not provide the smoothest output in 
general, and if variability was a concern, utilities could take 
advantage of geographic dispersion and place some capacity 
in less sunny locations. This would result in a potential 
reduction in total energy produced but would also lead to 
reduction in the variability. To avoid defining a subjective 
cost penalty for each parameter being optimized, as is done in 
standard linear programming, the energy and variability 
criteria were treated as distinct objectives. This multi-
objective optimization problem does not have a single unique 
solution, but instead has a range of solutions, known as the 
Pareto-optimal set, which describe a range of non-inferior 
alternatives for maximizing energy while minimizing 
variability. Arbitrarily selecting how to allocate capacity may 
reduce energy while not decreasing the variability 
significantly. For the Pareto-optimal set, the maximum energy 
output is achieved for a given level of variability. 

Figure 3 shows an example of the Pareto-optimal set for 
minimizing the 99th percentile of ramp rates while maximizing 
energy. Moving along this curve (also called the Pareto-
optimal frontier), one must trade energy generated for a 
reduction in variability, characterized here by ramp rates. At 
any point, in the Pareto-inferior region one can increase 
energy or decrease ramp rate without sacrificing the other, and 
corresponds to an inefficient selection of geographic 
allocation. Points along the curve are Pareto-efficient in that, 
to change one quantity, one must sacrifice the other. A system 
designer can then select the maximum level of variability a 
given electrical system can handle, and the corresponding 
point on the Pareto-optimal frontier will yield the geographic 
allocation for maximum energy production. 

It should be noted that although we used ramp rates 
exclusively to quantify variability in this work, other 
metrics—such as ramp size, ramp frequency, or generation 
shortfall (if load information is available)—can be used and 
will be the subject of future study. Ramp rate rjሺt,∆tሻ at a time ݐ for an interval ∆t is defined as 

,ݐ௝ሺݎ ሻݐ∆ = ௣ೕሺ௧ା∆௧ሻି௣ೕሺ௧ሻ∆௧ 	,  (1) 

where pjሺtሻ is the power output at site j. The probability 

density of ramp rates over the one year studied (June 2010 to 
May 2011) for LO is given in Fig. 4 for different ∆ݐ. This 
shows the usual result that ramp rates are largest for the 
smallest ∆ݐ; thus, for the optimization, only ramp rates at the 
3-sec data capture rate are used. Minimization of 3-sec ramp 
rates ensures that ramp rates for all other ∆t will always be 
smaller. No ramp rates were excluded in any computation 
step, even if very small, to ensure illumination of the true 
probability of occurrence of large ramp events in all statistical 
results. The cumulative distribution function indicated that 

99% of 3-sec ramp rates were below 4% of capacity, and 
99.9% of ramp rates were below 10% of capacity for the La 
Ola site. 

The multi-objective optimization employs a genetic 
algorithm using a tournament selection scheme described in 
[17]. The genetic algorithm tries many successive 
combinations of weights, pushing the Pareto frontier outward 
until no other variation of weight allocation can extend the 
curve farther into the optimal territory. During this process, 
the solution set in each successive iteration is combined 
(crossover) and “mutated,” and less fit alternatives are 
removed in an emulation of genetic evolution. The objective 
functions to be minimized are: ݂ሺ࢝ሻ = െ∑ ௜ݐ∆௜ሻݐ௝ሺ݌௝ݓ ,  (2) 
  ݃௡ሺ࢝ሻ = ௡ܲ൫หݓ௝ݎ௝ሺݐ௜, ሻݐ∆ ห൯ ,   (3) 

where ݓ௝ is the component of weight vector ࢝ corresponding 
to the geographic allocation for site j, and Pnሺ∙ሻ is the nth 
percentile of the argument. Summation on j is implied for both 
equations (2) and (3). Equation (2) is the negative of total 
energy output by the aggregate system for configuration ࢝, 
and equation (3) is nth percentile of system aggregate ramp 
rate computed for the entire set of i ramp rates (i.e., ramp rates 
from the entire year data set). In equation (3), only the 
magnitude of the elements in the set are considered, denoted 
by the vertical bars. The constraints on the optimization are ∑ ௝௝ݓ = 1 ௝ݓ, ∈ ሾ0,1ሿ ,   

which requires that all weights sum to unity and that any 
given site can be weighted only from 0% to 100%. The 
notation used above contains a subtlety for computational 
purposes where both power and ramp rates used in equations 
(2) and (3) for individual sites are scaled so that each site is 
initially at 2 MW of capacity (8 MW total) so that when 
multiplied by the weights ࢝ the aggregate capacity is the 
desired 2 MW. This implementation and notation must be 
changed if intra-plant smoothing is considered. Power output 
and thus ramp rates are no longer independent of assigned 
capacity, and the power time series and thus ramp rates must 
be adjusted by means of a smoothing filter [14, 16]. 

 
 

Figure 3. The Pareto-optimal set for maximizing energy while 
minimizing the 99th percentile of ramp rates. The curve is shown to 
divide two regions: an unattainable set of energy, ramp rate 
combinations; and an inferior set where individually either energy can 
be increased or ramp rates decreased without compromising the other. 
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3 RESULTS 

To assess the trade-off between ramp rates and energy 
production, multiple ramp rate percentiles were used as 
minimization criteria. Figure 5 (a) shows the 97th, 98th, 99th, 
and 99.5th percentile Pareto-optimal curves, along with an 
interpolated color swath to indicate the spread in site 
weighting. The darker color indicates that the standard 
deviation of the four weight values was low. The upper bound 
of 8.26 MWh was the maximum production possible for a 2-
MW plant during the one year studied; thus, the allocation 
was 100% at the CL site, with corresponding high standard 
deviation of the four weights. The near verticality of the 97th 
percentile showed that by changing the weights, not much 
improvement was made in reducing the ramp rates. At higher 
percentiles, such as 99.5, significant gains could be seen by 
adjusting the weights, and ramp rates dropped by nearly 40% 
for a 3% reduction in energy generated. 

Taking a more expanded view of the high end of ramp 
rate space, Fig. 5 (b) shows ramp rate percentiles up to the 
99.999th percentile. The space between this percentile and the 
100th percentile is spanned by only 43 data points. More than 
one year of data is needed to provide statistical context for 
percentiles beyond the “five nines” level, and this was the 
maximum percentile considered here. At 99.999th percentile, a 
more than 50% reduction in the magnitude of extreme ramps 
can be achieved with only a 3% drop in energy produced 
when site allocations are properly selected. In Fig. 5 (b), the 
color shading indicates that for lower ramp rates, geographic 
allocation was more evenly distributed. As shown, for each 
energy level, the site weightings appeared somewhat 
independent of ramp rate percentile. This was a positive result 
because it implied that geographic dispersion lowers ramp 
rates at every level. The multi-objective optimization was run 
to simultaneously minimize two ramp rate percentiles (e.g., 
99th and 99.99th percentile) while maximizing energy, and the 
result indicated that the geographic allocation used to reduce 
ramp rates in one percentile was beneficial to the other. This 
means that optimal solutions at low ramp rates have similar 
site allocations, a fact not clear from looking at the standard 
deviation of weights alone. The three-dimensional plot is not 
shown because perspective effects make it difficult to 
interpret on the written page. The site weighting and ramp 
rates for a selection of points in Fig. 5 (b) are given in Table II 

as a function of energy and ramp rate percentile. 
A system designer is bound by economic constraints and 

cannot simply minimize ramp rate while disregarding a 
potentially significant drop in energy output. The exact 
requirements are of course system dependent, but here an 
example case was selected where energy was decreased from 
only the 8.26-MWh maximum to an 8-MWh design point 
(OPT). The site weights for this case are given in Table III, 
and the resulting ramp rate percentiles are given in Table IV. 
For comparison, Table IV also includes the ramp rates at 
different percentiles when all 2 MW was allocated to each site 
separately. As expected, the ramp rates of OPT were smaller 
at all percentiles, but the important result is that energy was 
not significantly reduced from the maximum achievable level. 
In fact, it was significantly higher than could be achieved with 
100% allocation at either CC or LO. Comparing OPT to the 
equal allocation case (EQ) shows that one can reduce ramps 
over OPT, but energy dropped by nearly 9% above the 
maximum and 6% above OPT. In the limit of zero correlation 
of ramp rates between sites, the EQ scenario would be the best 
geographic allocation for ramp rate minimization. Because 
there was a small degree of correlation, even at short time 
scales, a multi-objective optimization minimizing the 99th and 
99.99th percentile and ignoring energy output yielded the 
lowest overall ramp rates (MIN, Table IV). The MIN results 
marginally improved both ramp rate reduction and energy 
production over EQ. 

 
Figure 4. Probability distribution of ramp rates for several time 
steps at the La Ola site. Ramp rates are shown as a percentage of 
total power output capacity. Small or negligible ramp rates were 
included; thus, the curves indicate true probability of events. 

 

 
Figure 5. Pareto-optimal sets for (a) the 97th, 98th, 99th, and 99.5th 
percentile and (b) the 99th, 99.5th, 99.9th, 99.99th, and 99.999th 
percentile. The standard deviation of the geographic allocation (as a 
fraction of the total), is shown as a color swath where darker color 
indicates low deviation and lighter color indicates a single site that has 
a majority allocation. 
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Table II. Site allocation weight values on the Pareto-optimality curves for minimization of the 99th, 99.9th and 99.99th percentile of ramp rates, shown as a 
function of aggregate daily energy produced. Aggregate system ramp rates are also shown. 
 99th pctile 99.9th pctile 99.99th pctile 

Energy 
[MWh/day] 

Weights 
[%] 

Ramp 
Rate 

[kW/s] 

Weights 
[%] 

Ramp 
Rate 

[kW/s] 

Weights 
[%] 

Ramp Rate
[kW/s] 

CC WW CL LO CC WW CL LO CC WW CL LO 
7.55 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 22 23 29 26 93 
7.60 ‒ ‒ ‒ ‒ ‒ 21 27 30 22 64 20 24 32 24 96 
7.70 17 26 36 21 35 20 28 34 18 67 18 25 37 20 103 
7.80 13 27 43 17 36 16 27 42 15 73 14 29 41 16 112 
7.90 11 27 49 13 38 21 34 41 4 77 12 32 44 12 121 
8.00 8 23 60 9 42 16 33 50 1 86 8 34 50 8 135 
8.10 5 23 67 5 46 8 29 60 3 98 5 35 55 5 146 
8.20 2 19 78 1 52 3 15 81 1 128 2 32 65 1 168 
8.26 0 0 100 0 66 0 0 100 0 158 0 0 100 0 253 

Legend: Castle Cook (CC), Waste Water (WW), Challenge LP (CL), La Ola (LO) 

To quantify the level of geographic smoothing of ramp 
rates, a new metric termed the “ramp ratio” was introduced. 
The ramp ratio RRjn for the jth site at the nth percentile is 
defined as RRjn= Pn൫หrjሺti,∆tሻห൯Pn൫หwjrjሺti,∆tሻห൯ 	, (4) 

where summation over j is implied by repeated indices. 
Effectively, ramp ratio compares ramping magnitude when all 
capacity is allotted to a single location to the aggregate 
ramping magnitude in a distributed scenario with allocation 
weights wj. For a time period with no variability, such as on a 
clear day, and assuming all sites are proximal enough that the 
solar resource is nearly the same, the ramp rates of an 
individual site are a result of changes in solar geometry. In 
this case, the ramp ratio had a value close to one. This 
corresponded to a high correlation between sites because they 
increased and decreased in unison with the movement of the 
sun. When there was variability because of the presence of 
clouds, the correlation between sites began to decrease at 
short time scales. This resulted in compensating ramps when 
the plants were distributed, which ultimately resulted in 
smoothing. This characteristic showed up as ramp ratios that 
were greater than one, indicating that the total system output 
was smoother on a per capacity basis than the ݆th constituent 
site. The value of the ramp ratio quantified the level of 
increased geographic smoothing, e.g. RRj99=2 indicates that 
the aggregate system output was two times smoother than site 

j at the 99th percentile of ramp rates. It may so happen that the 
ramp ratio was less than one. This would imply that a 
particular site was actually less variable than the aggregate. In 
this case, the weights allotted to the sites were obviously not 
optimal, with greater weights having been allotted to sites 
with high variability at the expense of low variability sites. In 
such a scenario, reallocation of capacity would be beneficial. 

Several examples of the ramp ratio RRj99 are given in 
Figure 6 for different allocation scenarios across different 
months. The EQ case (Fig. 6 (a)) shows that smoothing was 
not uniform for all months and tended to be higher during the 
summer. Figure 6 (b) shows the OPT case. The island of 
Lanai currently has 1.2 MW of PV installed at the La Ola site, 
so it is of practical interest to look into the scenario where the 
remainder of the 2 MW is distributed equally among other 
sites. Figure 6 (c) shows the Lanai case study scenario (LAN, 
Table III). Overall, in comparison to Fig. 6 (b) and Fig. 6 (c), 
EQ had the highest and most consistent RRj99, which was to 
be expected for nearly uncorrelated signals. During the winter 
half-year, WW and CL, the sites near each other, had lower RRj99 in EQ and thus were less variable than CC and LO. This 
is one reason why the OPT case weighted WW and CL more 
heavily than the other sites. Figure 6 (b) reflects this increase 
in weighting because the ramp ratios of WW and CL were 
more uniform across the year. These two sites also produced 
more energy on average and therefore had a higher weighting 

Table III. Site geographic allocation percentage for seven scenarios: 
CC, WW, CL, and LO allocate all capacity at a single site; OPT uses 
weighting for the 8-MWh design point; EQ equally weights each site; 
MIN weighting mix shows results from minimization of the 99th and 
99.99th percentile ramp rates; and LAN is a Lanai case study. 
 Site Geographic Allocation [%] 

Site CC WW CL LO 

CC 100 0 0 0 
WW 0 100 0 0 
CL 0 0 100 0 
LO 0 0 0 100 
OPT 9 30 53 8 
EQ 25 25 25 25 
MIN 22 26 26 26 
LAN 13 13 13 61 

Legend: Castle Cook (CC), Waste Water (WW), Challenge LP (CL), 
La Ola (LO), Optimum Allocation (OPT), Equal Allocation (EQ), 
Minimum Ramp Allocation (MIN), Lanai case study (LAN) 

Table IV. Energy production and ramp rates at the 99th, 99.9th, 
99.99th, and 99.999th percentile for seven weighting scenarios: CC, 
WW, CL, and LO show results for single site allocation at each 
respective site; OPT shows results for the 8-MWh design point; the 
EQ case uses 25% weight at each site; MIN uses a site mix to 
minimize ramp rates irrespective of energy generation; and LAN is a 
Lanai case study scenario. 

Site 
Energy 

[MWh/day] 

Ramp Rate 
[kW/s] 

99th pct 99.9th 
pct 

99.99th 
pct 

99.999th 
pct 

CC 6.93 86 198 314 401 
WW 8.19 71 166 266 362 
CL 8.27 66 158 253 339 
LO 6.72 78 177 276 358 
OPT 8.00 41 89 140 189 
EQ 7.53 35 65 94 127 
MIN 7.55 35 64 93 126 
LAN 7.13 49 111 173 225 

Legend: Castle Cook (CC), Waste Water (WW), Challenge LP (CL), 
La Ola (LO), Optimum Allocation (OPT), Equal Allocation (EQ), 
Minimum Ramp Allocation (MIN) , Lanai case study (LAN) 
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in the optimization. The energy generation and ramp rates of 
the LAN scenario were well within the Pareto-inferior region 
(Table IV). Fig. 6 (c) shows the ramp ratio was lower than 
OPT or EQ, and in fact dipped below one in November. The 
ramp ratios below one means these sites were underutilized in 
this scenario for their ability to decrease ramping during the 
winter. 

The previous discussion for ramp ratio used the 99th 
percentile as the baseline for comparison of monthly and 
inter-site variability. Use of a different percentile, specifically 
higher percentiles, provided a different quantification for 
understanding variability. Extremely large ramp rates—
caused by the passage of an individual cumulus cloud with the 
direct solar beam along with greater than average cloud 
enhancement just beyond the leading or trailing edge—are 
infrequent and typically affect only a single site. These 
extreme ramp events at one site will generally not have any 
correlation to other locations. Aggregation of sites under these 
conditions will therefore invariably result in smoothing, which 
is reflected by higher ramp ratios. The larger the ramp event 
(and thus higher percentile), the larger the inter-site de-
correlation; therefore, the ramp ratio tends to increase as 
percentile considered increases. 

The probability distributions (PDFs) of large ramp events 
are shown in Fig. 7. Reviewing the design point case OPT, the 
ramp rates were reduced significantly over all four single site 
allocation scenarios. The EQ case had the lowest extreme 
ramp rates by a significant margin. The LAN case reduced the 
variability over the single site cases, but ramping was larger 
than OPT by almost an order of magnitude toward the upper 
tail of the distribution, and it generated more than 10% less 
energy per annum. The juxtaposition of the OPT case to that 
of LAN underscores the benefit of designing a system for 
optimal use of the available solar resource while taking 
maximum advantage of its spatial de-correlation at the time 
scale considered. 

4 CONCLUSIONS 

It is well known that geographic dispersion provides a 
smoother overall output on a per capacity basis than 
centralized generation, but the optimal allocation to generate 
the most energy output while minimizing the variability has 
not been widely studied. A multi-objective optimization 
scheme was employed to investigate if variability can be 
significantly minimized while maintaining high levels of 
energy production. It was shown that an optimal set of 
alternative geographic allocation exists to maximize energy 
production and minimize variability. With proper geographic 
allotment of generation, ramp rates were reduced by 50%; 

whereas energy was reduced by only 3% over the maximum 
production case. A useful result for system designers is that 
the exact level of variability can be tuned to an acceptable 
level, with the understanding that if the solution is optimal, 
then energy generation must be compromised as indicated by 
the shape of the Pareto-optimal set. 

In addition to showing that there exists a clear energy-
variability trade-off, a new metric was introduced, termed the 
ramp ratio, which can be used to assess multisite geographic 
allocations and their effect on variability. This ratio showed 
simultaneously how much smoothing the aggregate system 
experiences over any individual site, and also if any particular 
site has significantly less variability per unit capacity than the 
other sites in the mix. It is important to note that the ramp 
ratio was developed to assess optimality of capacity allocation 
among multiple sites; therefore, looking at a single site’s ramp 
ratio in isolation does not provide a complete set of 
information. The ramp ratio can be extended into a curve in 
the temporal dimension by segmenting the input data set (as 
done in this work) or into the magnitude dimension by 
looking at different percentiles of variability.  

The methods applied here will be extended to other 
variability criteria beyond ramp rates in future work. The 
metrics of energy and ramp rate are directly derived from 
resource data, but for power systems application at the 
distribution level, voltage fluctuations and cost will be the key 
metrics optimized in the kind of analysis presented here. 
Additional future work will involve implementing this multi-
objective optimization with a feeder simulation where 

   

Figure 6. Monthly ramp ratios at the 99th percentile for (a) the equal allocation scenario EQ, (b) the 8-MWh design point scenario OPT, and 
(c) a Lanai case study LAN reflecting currently installed capacity at La Ola. 

 
Figure 7. Probability distribution of ramp rates over the 99th 
percentile. The sign of the ramp was not considered. The distribution 
was scaled such that the probability of all ramps over the 99th 
percentile summed to unity. Allocating all capacity to four sites 
separately is shown (thin lines), along with three multisite allocation 
cases (thick lines). 
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economic benefit is maximized and voltage variations are 
minimized. In this study, no restriction was placed on the 
quanta of generation installed at any given site, and no site 
was given a minimum threshold to be considered active. For a 
realistic feeder simulation, generation siting will be practically 
limited by space constraints and by operations and 
maintenance constraints. These elements need to be included 
so their impact on the Pareto-optimal set of alternatives can be 
quantified. 

This paper in effect creates a framework that can be used 
by cities and municipal utilities that would like to see a high 
penetration of PV and would be interested in reducing the 
variability impacts on the distribution grid. The development 
that energy and variability have a clear trade-off, and that this 
trade-off can be optimized for unique scenarios, offers an 
opportunity to communities and utilities to leverage this to 
their advantage. The methods presented can be incorporated 
into power system design and simulation tools so that 
designers of future PV systems can assess geographical 
allocations that provide the maximum benefit. This work 
offers only a glimpse of what can be achieved in maximizing 
the utility of the solar resource through optimized geographic 
allotment. 

It is important to note that such studies are valuable before 
deployment of PV; however, to conduct such studies, there is 
a need to collect high-resolution time-synchronized solar 
radiation data sets for a reasonably extended period of time. 
Such deployments are relatively inexpensive but can provide a 
high level of benefit when planning high level penetration of 
PV on the distribution grid. 
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