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Abstract—Wind and solar generators differ from conventional 
generators in their generation characteristics. The variable 
output and imperfect predictability of these generators face a 
stochastic approach to plan and operate the power system 
without fundamentally changing the operation and planning 
problems. This paper overviews stochastic modeling challenges 
in operations, generation planning, and transmission planning 
with references to current industry and academic work. 
Different stochastic problem formulations, including 
approximations, are also discussed. 
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I.  INTRODUCTION 
Wind, solar, and other variable generators are 

fundamentally different than the thermal generators that 
dominate power systems today. The output of these 
generators is subject to natural phenomena that cannot be 
perfectly forecast. Although the characteristics of these 
generators are different, the problems a power system 
planner and operator must solve remain the same. Across 
timescales, the system must be balanced, operating in a 
reliable and efficient manner. Sufficient generation and 
transmission must be planned for and brought into service. 
However, by its variable and uncertain nature, wind and 
solar generation complicate the way the problems are 
solved. Unlike conventional thermal generators, where 
simplifying assumptions are easily made, using probabilistic 
methods is the only proper way to plan for the stochastic 
nature of variable generators. 

The tools required for power system operators and 
planners are not mature. Research-scale models are being 
developed in academia and other laboratories, but industrial 
tools are lacking. This paper first outlines several 
probabilistic operational and planning issues. It then 
discusses different framings for stochastic problems. 
Finally, an overview of possible approximations and 
simplifications is given for when a stochastic problem is too 
difficult to be solved using conventional methods. 

II. PROBABILISTIC PROBLEMS IN POWER SYSTEM 
OPERATION AND PLANNING 

The problems below are introduced from shortest to 
longest timescale. Although the list provides a 
representative sample of the types of probabilistic problems 
presented by the integration of variable generation, it is by 
no means exhaustive. Each problem is first described 
generally, followed by the stochastic variables, and finally a 
sample of research conducted on the specific problem. 

A. Operational Planning Issues 
Operational planning issues range on the timescale of 

seconds to days and focus on how to operate existing 
generation on the system to meet demand. It has long been 
recognized that meeting demand with existing generation is 
an inherently stochastic problem. Generators may fail to be 
available as predicted and load cannot be predicted 
perfectly. To hedge against these uncertainties, reserve 
generation is built into current system operations. 

Systems with high penetrations of solar and wind 
generation require the same hedging strategy using reserves. 
In these systems, however, determining the correct levels of 
reserves requires a more explicitly probabilistic approach 
because wind and solar generators rely on naturally 
occurring phenomena that are not perfectly predictable. This 
changes the probability of generator availability from a 
historic average to a forecasted capacity factor, which 
indicates if a wind/solar generator will be available and at 
what level of output. Two of the major problems are 
discussed below. 

1) Reserve Levels 
The shortest timescale problems involve setting reserve 

levels and dispatching reserves to meet load levels. Reserve 
levels in systems with high penetrations of solar/wind 
generation depend on the quantity of variable generation 
dispatched, forecasted, and the current load. The work in [1] 
is an overview of current practice in the United States and 
Europe (Union for the Coordination of the Transmission of 
Electricity). 
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2) Unit Commitment 
Large thermal generators cannot be dispatched without 

start-up times that range from several hours to a day or 
more. These plants may also have minimum run times 
before the generator can economically be turned off. The 
decision whether or not to turn plants on is the unit 
commitment problem. 

Significant academic work has been done on stochastic 
unit commitment. [2] developed a scenario tree and Monte 
Carlo forecast error approach with the WILMAR model as 
part of the Irish All Island Study. This approach was later 
used in [3], a follow-on to the Eastern Wind and Solar 
Integration and Transmission Study. 

B. Generation Capacity Planning 
Generation capacity planning problems focus on the 

addition of new generation capacity resources to the system 
rather than the operation of existing resources. New 
generation may be added to the system to meet increases in 
demand, meet reliability standards, or replace retiring 
generation. Planning the addition of new generation 
capacity is inherently a stochastic problem because of errors 
in demand prediction, retirement timelines for existing 
generators, and the introduction of new technology types. 

Traditionally, generation has been divided into three 
types—base load, intermediate, and peak—based on 
economic capacity factors and physical plant characteristics. 
In a gross manner, differences in generator types were 
accounted for using a capacity planning model based on a 
load block/load duration curve model. These models 
implicitly assume that inter-hour and intra-hour dynamics 
are not necessary for planning. This simplifying assumption 
clearly does not hold for wind/solar plants, where the output 
varies both intra- and inter-hourly and differs on an hourly 
basis each year. Although the two types of uncertainty in 
generation expansion planning—quantity of new generation 
and types of new generation—are interlinked, they are 
addressed individually below for clarity. 

1) Resource Adequacy 
Generation and demand-side resources must be able to 

meet a changing demand profile with reserve margins at all 
times. Over time, existing generators retire and new 
generation must be built to replace retiring generators and 
potentially meet rising demand. Unlike generation from 
fossil generators, the potential generation from wind and 
solar generators fluctuates from year to year and seasonally 
within each year [4]. Like systems with large hydropower 
penetrations, systems with high wind and solar penetration 
require a probabilistic approach to determine the appropriate 
quantity of backup thermal power. 

The effective load-carrying capability (ELCC) for these 
nature-driven generators can be determined using multiple 
years of weather data. [5] provided an overview of the 
ELCC calculation as well as approximations to the full 
ELCC calculation. 

2) Generation Mix 
In addition to planning for the gross quantity of 

generation required, the type of generation matters. 
Although thermal generators may be dispatched at output 

levels determined by the system operator, the potential 
output of wind/solar generators fluctuates on an inter- and 
intra-hour basis. When added to the time-varying changes in 
demand, wind and solar introduce additional variability in 
the net load that the dispatchable generators must be able to 
accommodate. In systems with high penetrations of 
prioritized wind and solar, the uncertainty with regard to 
wind/solar forecasts can also lead to violation of minimum-
load requirements for thermal generators. Accommodating 
the uncertainty with regard to wind/solar output and their 
inherent variation in output requires the  flexibility to ramp 
up and down across multiple timescales, including quick-
start capabilities. 

Including the intra- and inter-hour characteristics requires 
abandoning the conventional load duration curve models 
and integrating additional operating characteristics. [6] 
demonstrated the difference between generation portfolios 
with and without unit commitment in different carbon price 
scenarios and reduced computational time using clustering 
techniques. [7] demonstrated the difference in value 
between portfolios planned with unit commitment and those 
that used only dispatch across three different power systems. 

C. Transmission Planning 
Transmission planning is a decadal timescale problem to 

determine which new transmission lines should be added to 
the system. These lines may be added to reduce congestion, 
allow the dispatch of cheaper plants, interconnect new 
plants, or increase the reliability of the system. Because 
transmission lines are long-lived assets, investments should 
be robust to changes in the power system during a 40- to 50-
year time horizon. During that time horizon, demand 
patterns will change, new generation will be brought online, 
old generation will be retired, and new technologies will be 
introduced into the transmission system. These variables all 
affect the value of a transmission plan, but none may be 
accurately predicted on a 40- to 50-year time span. 

High penetrations of wind and solar increase the 
uncertainty regarding the location of generation. Unlike 
thermal generators—which to a first approximation may be 
located anywhere within the system—wind and solar 
generators are location-constrained. Economically, they can 
be located only where natural resources are the strongest, 
yet these locations are often remote from load. Installation 
of new wind/solar generators is also currently policy driven, 
leaving the quantity of new generators as a second 
uncertainty. Although the construction of a new 
transmission line takes place on a 5- to 15-year timescale, 
new generators can be added to the system in less than 3 
years. When not centrally coordinated, the disconnect in 
timescales forces a transmission planner to predict where 
new generation will be sited. Planning for wind/solar 
complicates transmission planning because these resources 
are often located remotely from load and high penetrations 
can dramatically change the network structure and flows on 
the existing network. 

Transmission planning has generally treated generation 
expansion as an exogenous factor because of the size of 
the transmission planning problem. [8] attempted to use 
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heuristic methods with a stochastic dynamic programming 
approach. [9] attempted to overcome this using Benders 
decomposition and parallelization to include many 
scenarios. 

III. ALTERNATIVE PROBLEM FORMULATIONS FOR 
UNCERTAINTY ANALYSIS 

All of the stochastic problems in the power system 
described above require probabilistic methods. The specific 
goal of the system operator for each problem, however, 
varies greatly. For example, the goal of setting reserves may 
be to manage tail events by minimizing the impact of the 
worst possible outcome; whereas the goal of a resource 
adequacy problem may be to achieve, on average, the best 
possible economic impact. The desired output may also be 
different. To set reserve levels, the system operator may 
want a probability distribution of outages for multiple 
dispatch orders. On the other hand, the transmission planner 
may want a single coherent plan to present to stakeholders. 

Common to all problems is the trade-off between 
reliability or adequacy and cost. In all cases, reliability 
issues can be mitigated through increased costs. This 
balance between cost and reliability or adequacy is unique 
to each power system entity; it is a subjective decision after 
all minimum required reliability standards have been met. 

It is important to note that many problems in power 
systems are stochastic, multi-period, mixed-integer, and 
nonlinear; these are some of the most challenging problems 
to optimize. Thus, even though it may be possible to 
formulate a problem, today’s state-of-the-art algorithms may 
not be able to solve the problem and approximations may be 
necessary. 

A. Characterization of Uncertainty 
Probability density functions and scenario techniques are 

the dominant representations of uncertainty. The selection 
of uncertainty representation should reflect the goal of the 
analysis, the level of underlying uncertainty and knowledge 
of the underlying uncertainty. 

Probability density functions (PDFs)—usually referred 
to more succinctly as probability distributions—are the most 
granular form of uncertainty representation. The use of 
PDFs generally implies a solution method focused on 
sampling, such as Monte Carlo techniques. PDFs allow the 
greatest search space because, as discussed below, artificial 
correlations between variables are not required. Because 
PDFs do not include artificial correlations, unintuitive 
combinations of decision variables can be explored that may 
produce new best- or worst-case outcomes. Although the 
large search space produced by PDFs provides the most 
neutral analysis of a problem, it also increases the size of the 
optimization problem, and not all problems may converge. 

Scenario analysis is the most common representation of 
uncertainty in stochastic power systems research. It is an 
intuitive way to reduce uncertainty and allows problems that 
may be otherwise untenable to be solved. It also allows 
bounding results by examining, for example, both the best 
and worst case. Reducing the uncertainty, however, implies 
correlations between variables that may be fictional. For 

example, a high coal price is not necessarily correlated with 
high natural gas price even though a “high fossil cost” case 
may be constructed. It also has the potential to bias results 
because the highest probability cases may not be those 
modeled. In addition, scenarios may be treated as weighted, 
equivalent to a discrete probability density function, or 
unweighted. An unweighted approach implies that all 
scenarios are equally likely or that the modeler has no 
knowledge of the underlying stochastic phenomena. The 
most simplistic approach is the deterministic approach, 
which is scenario analysis with an assumed probability of 
one. 

The use of scenarios and PDFs are not mutually 
exclusive. For example, it may be appropriate to have some 
variables with very low variability represented using 
scenarios and other variables with long-tailed distributions 
as PDFs. 

B. Framing Stochastic Models 
Stochastic models can be framed in a variety of different 

ways that produce distinct result types. The type of output—
single action, probability distribution, action policy—should 
drive the analysis. The discussion here does not focus on the 
solution methodology—for example, Benders 
decomposition versus branch-and-bound—but rather on 
ways to conceptualize the problem. Five different 
conceptualizations are discussed below. Many of the 
approaches discussed below are not unique to stochastic 
problems but are used in both deterministic and stochastic 
frameworks. 

1) Scenario Trees 
One of the most intuitive formulations is a multistage 

decision tree. Often, a predefined scenario tree is 
constructed with weighted probabilities for future states-of-
the-world. The result of solving such a typical scenario tree 
is a single action generally with the highest expected value. 
Other formulations—such as stochastic dual dynamic 
programming, which relies on cut-based solution methods—
produce a single action as the output of the optimization but 
also provide additional information in the form of an 
expected value function. This expected value function 
includes values for other solutions, including those near the 
optimum, as well as information about the sensitivity of the 
value to different inputs. If the value function is very flat, it 
indicates that the output solution is insensitive to inputs; 
whereas if the value function has steep curves, the output 
solution is sensitive to inputs. Depending on the solution 
methodology, this type of modeling goes by many names, 
including stochastic linear programming, stochastic 
dynamic programming, stochastic programming with 
recourse, and stochastic dual dynamic programming. All of 
these methods, however, are unified fundamentally as multi-
period models with recourse. 

2) Optimal Policies 
The optimal policy approach produces a general set of 

procedures rather than decisions for a single situation. For 
example, the decision tree approach above may produce a 
result that is to set reserves to 400 MW for a specific state of 
the power system and wind prediction. The optimal policy 
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approach, on the other hand, would produce a result such as 
to always set reserves to 20% of predicted wind power 
output. It is important to note that not all problems will have 
a stable policy solution. 

3) Chance-Constrained Programming 
The chance-constrained programming (CCP) formulation 

allows the decision maker to decide a specific risk level 
through probabilistic bounds. For example, a CCP 
formulation for reserves could specify that reserve amounts 
must be adequate so that load is met with a probability of 
95%. The output from a CCP formulation is a set of optimal 
actions; however, if the problem is executed for varying 
probability levels, trade-offs between meeting constraints 
and cost can be developed. 

4) Simulation with Sampling 
Decision trees, optimal policies and CCP approaches are 

explicitly optimization approaches with implicit risk 
valuations. Simulation and sampling approaches instead 
allow the modeler to build out risk and trade-off curves for 
either a single decision or multiple decisions. In the reserves 
problem, for example, a fixed level of reserves would be 
chosen and then multiple wind generation profiles would be 
sampled. For each sample, the non-served energy would 
then be calculated. The next level of reserves would be 
chosen and wind generation profiles would be sampled. In 
this way, it is possible to build a distribution that gives the 
probability of non-served energy based on the level of 
reserves set. This type of approach works well when the full 
optimization problem is difficult to solve but evaluation of a 
single solution is easy. This is true for problems such as 
transmission planning, where the full mixed-integer linear 
programming is computationally challenging to solve but an 
optimal power flow (OPF) for a given transmission 
configuration is computationally quick. Unlike the decision 
tree, policy, and CCP approaches, which give the decision 
maker a set of actions, the sampling and simulation 
approach simply provides information to the decision 
maker. 

5) Pareto Curves 
Pareto curves are constructed to demonstrate trade-offs in 

a multi-objective framework. Like the sample and simulate 
approaches, a Pareto curve does not give the decision maker 
a specific set of actions; instead, it provides the decision 
maker with additional information. In this case, it tells the 
decision maker the best solution that can be constructed for 
a set level of a single variable without sacrificing value from 
another variable. For example, a Pareto curve could be 
constructed from chance-constrained programming where 
cost is on one axis and probability of non-served energy is 
on the other. The curve would tell the decision maker the 
lowest possible cost for given reliability levels or, 
alternatively, what reliability level can be achieved for each 
cost point. 

This Pareto approach is used by Hydro Quebec to study 
balancing reserves with an additional 3,000 MW of wind 
power on the system. For this Hydro Quebec case, the trade-
off is between increased balancing reserves and decreased 
risk of non-served load [10].  As shown in Figure 1, at a 
nominal amount of balancing reserves (BRnom), the system 

exists at 17% risk level (Rd+u curve). When wind in a high 
generation scenario is added to the system, Rd+u+W, the same 
level of balancing reserves produces a 25% risk of non-
served energy. To return to the 17% risk rating, the 
balancing reserves must be increased by ∆BR to 650 MW. 
Both with and without wind generation, the system operator 
is able to trade-off increased balancing reserves and 
decreased risk. 

 
Figure 1 Balancing reserve and risk trade-off diagram from Hydro 
Quebec (adapted from [10]) 
 

IV. MODELS AS DECISION SUPPORT 
The fundamental goal of incorporating stochasticity into 
power system models is to improve the decision-making 
capacity of power system operators and planners. 
Considering the formulations above, two dominant areas of 
concern arise: risk metrics and model execution. 

A. Risk Formulation 
Stochastic model formulations produce two competing 

information problems for a system operator. In some cases, 
the model formulation may hide risk metrics from the 
system operator and provide a single deterministic action. In 
others, the model provides the operator with many varying 
actions for different risk profiles but no guidance on which 
to choose. 

The most common decision metric in the decision tree 
and optimal policy is expected value, which is inherently a 
risk-neutral decision metric. A high expected value may 
reflect a decision with heavy tail impacts: very high value in 
certain scenarios and very low values in others. An outcome 
of using the expected value decision metric is the possibility 
of high-impact low-probability (HILP) events. Other risk 
metrics may be used to negate HILP events, such as 
maximizing the minimum value (maxi-min) or least regret. 
These decision metrics are inherently more risk averse and 
may negate HILP outcomes but with additional cost. 

On the other hand, CCP, simulation and sampling, and 
Pareto formulations force operators and planners to make 
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explicit their risk preferences. Traditional deterministic 
approaches include risk levels that may not be explicitly 
defined. Although these risk preferences have always been 
embedded implicitly in the decisions made, they must be 
decided explicitly in the case where the reliability and cost 
trade-offs are presented. In the CCP formulation, a single 
risk level must be chosen as an input to the solution. A 
simulation and sampling or Pareto curve approach will 
provide the operator or planner with that explicit trade-off; 
the specific solution chosen will be a combination of a risk 
level and a cost level. 

B. Model Execution 
Once an operator/planner has decided on appropriate 

formulation and risk metric, the problem remains to be 
solved. As mentioned before, many of the problems in 
power systems represent the most difficult problems from 
an optimization perspective. These problems are multi-
period, stochastic, integer, and often nonlinear. Even if a 
problem may be formulated in a commercial solver, a 
solution may not be found on an appropriate timescale given 
the complexity and size of the problem. This is especially 
true when actual industrial, rather than academic-scale, 
problems are attempted. As laid out in Section II, stochastic 
problems in power systems concern decisions made on sub-
hourly to decadal scales. Thus, the weeklong solution time 
for transmission planning may be acceptable; whereas a 
weeklong solution time for a unit commitment problem is 
not useful for an operator. 

The fact that the full stochastic problem cannot be solved 
does not mean that stochastic formulations should be 
abandoned. There are a variety of simplifications and off-
line simulations that can be done beforehand to incorporate 
stochasticity without requiring the solution of the full 
problem. 

1) Off-Line Preprocessing 
The first option when there is a mismatch between 

solution time and real timescales is off-line preprocessing. 
Off-line preprocessing can take multiple forms. In the first, 
multiple possible scenarios are completed before the 
required time. When the decision must be made, the results 
from the scenario closest to existing conditions are selected. 
For example, multiple dispatch solutions with varying levels 
of wind generation may be constructed hours before the 
plants must be notified. At the time of dispatch, the scenario 
with the closest level of wind generation is selected and the 
results from that scenario are used. This technique does not 
reduce the computation time required for the problem, but 
allows the operator more time to perform the optimizations. 
The second use of off-line preprocessing is reducing the 
number of potential decision variables (plants that may be 
committed, potential capacity investments, potential 
transmission investments, etc). Models in increasing 
complexity can be employed to eliminate decision variables 
for the full model. For example, hierarchical decomposition 
(moving from the least complex to most complex) has been 
used in transmission planning by applying transportation 
and hybrid transportation–direct current (DC) OPF models 

as screening tools for the full transmission planning problem 
with DC load flow [10]. 

2) Simplifications 
Two main classes of simplifications are available: to 

reduce the size of the problem and to relax the constraints 
within the problem. Reducing the size of the problem can be 
achieved by switching from a full PDF representation of 
uncertainty to scenarios or reducing the number of scenarios 
considered. To relax the constraints within an optimization 
problem, the transmission network can be neglected in the 
unit commitment problem and integer investment variables 
can be relaxed to linear variables. 

In each case where simplifications are made, the solution 
to the relaxed problem must be simulated. This is because 
solutions to the relaxed problem may not be feasible for the 
fully constrained model. 

3) Meta-Heuristics 
Unlike traditional optimization techniques, meta-heuristic 

solution algorithms are neutral to the type of problem 
considered. This neutrality allows them to be applied to 
stochastic integer, non-linear, multi-period, and other 
traditionally difficult problems. Meta-heuristics include 
genetic algorithms, simulated annealing, Tabu search, ant 
colony, and many other biologically inspired search 
algorithms. The advantage of these algorithms is that they 
can produce solutions quickly and often provide solutions to 
problems where traditional solvers cannot. The inherent 
disadvantage, however, is that there is no guarantee to the 
quality of the solution produced. Convergence for meta-
heuristics is based on a set number of candidate solutions or 
reduction of difference in solution value of subsequent 
samples to a set level rather than provable characteristics. 

V. CONCLUSIONS 
Traditional power systems operational and planning 

models were designed for conventional thermal generators. 
With the introduction of large penetrations of stochastic 
wind and solar generation, deterministic models are no 
longer sufficient. With a move to probabilistic models, 
decisions regarding risk levels become an explicit decision 
rather than an implicit assumption. Because of the 
challenging nature of stochastic power system problems, 
provably optimal solutions may not be achievable. Instead, 
robust heuristics and approximations will need to be 
developed. 
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