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Abstract 

This computational work investigates planetary gear load sharing of three-mount suspension 
wind turbine gearboxes. A three-dimensional multibody dynamic model is established 
addressing gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and 
bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled 
using reduced degrees-of-freedom through modal condensation. This drivetrain model is 
validated against the experimental data of the Gearbox Reliability Collaborative for gearbox 
internal loads. 

Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and 
input torque. Influences of each of these parameters and their combined effects on the resulting 
planet load sharing are investigated. Bending moments and gravity induce fundamental 
excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb 
load sharing. Clearance in carrier bearings reduces the bearing stiffness, and thus the bending 
moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending 
moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced 
gearbox life. At low input torque, planet bearings are susceptible to skidding. At rated torque and 
beyond, planet bearings are at risk of fatigue. 

Key words: wind turbine, load sharing, planetary gear, gravity, bending moment, bearing 
clearance 

1 Introduction 

Wind turbines have frequently experienced premature gearbox failures [1]. The cost of gearbox 
rebuilds, as well as the down time associated with these failures, has elevated the cost of wind 
energy. The National Renewable Energy Laboratory Gearbox Reliability Collaborative (GRC) 
was established by the U.S. Department of Energy in 2006; its key goal is to understand the root 
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causes of premature gearbox failures and improve their reliability using a combined approach of 
dynamometer testing, field testing, and modeling [2]. A major modeling activity of the GRC is to 
evaluate assumptions and uncertainties in current design practices that could affect gearbox 
reliability. As a part of the GRC program, this paper investigates planetary gear load-sharing in 
three-mount suspension wind turbine drivetrains that affects the load path and gearbox 
component life. 

Compared to parallel axis gears, planetary gear systems provide high power density by splitting 
the input torque into multiple, parallel sun-planet and ring-planet load paths. Planetary gear 
systems are commonly used in wind turbine drivetrains and they use nearly or exactly equally-
spaced planet gears, theoretically leading to equally shared loads at each planet. However, in 
reality planet gear loads are not always equally shared among planets [3,4,5,6,7,8,9,10,11]. With 
unequally shared loads, planet bearing forces increase, leading to reduced bearing life and 
potential premature failure. Planetary gear load sharing is an important design parameter for 
drivetrain reliability. The degree of unequal load sharing has implications for tolerance schemes 
and gearbox loads. 

Early studies by Hidaka and Terauchi [3] investigated disturbed load sharing by manufacturing 
and assembly errors on a Stoekicht planetary gear. This unequal load sharing was not significant 
when the mesh frequency was lower than 1000 Hz. Hayashi et al. [5] developed a method to 
measure the planet gear shearing stress and studied the influences of gear tooth profile error and 
eccentricity on load sharing. Ligata el al. [6] investigated the effect of pin position error on 
planet load sharing and a method for computing the planet load sharing from root strain-time 
histories was proposed. Singh [12] found that the tangential pin position error has a greater effect 
on the load sharing compared to the radial error. It was also shown that the sensitivity to pin 
position error increases as the number of pinions in the planetary gear set increases [6,12]. Singh 
[13,14] developed a formulation to estimate load sharing considering the unequal planet spacing 
for three to seven planetary gears. The analytically predicted load sharing factor was compared 
against a finite element analysis using the program developed by Vijayakar [15]. 

Various techniques have been investigated to improve load sharing. Studies show using a 
flexible ring gear improved load sharing when a number of manufacturing and assembly errors 
were present [4,16]. Kahraman et al. investigated the effects of ring gear flexibility on planetary 
gear loads using a finite element model and experiments and found contradictory results [10,17]. 
They found that adding flexibility to the ring gear was not as effective as a floating sun in 
improving load sharing. Kahraman [9] developed a two-dimensional lumped-parameter model to 
calculate tooth and bearing loads of planetary gears. The study also investigated the effect of a 
floating sun on load sharing and found it did not improve disturbed load sharing due to pin 
position errors. Similar results were shown in the study by Singh [12]. 

This aforementioned research on load sharing is limited to unequally spaced planets due to 
manufacturing errors and eccentricity. Input torque is considered as the only applied load to 
these planetary gears in prior studies. Nearly all horizontal-axis wind turbine gearboxes carry 
various combinations of input torque and non-torque loads. The non-torque loads include 
bending moments caused by the rotor weight and tower shadow, wind induced moments, 
moments caused by the controller, thrust, etc. Three-mount suspension drivetrains studied by 
NREL GRC show significant bending moment on the main shaft, which is mainly caused by the 
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rotor weight and aerodynamic forces [2]. This bending moment has the same order of magnitude 
as input torque [2,18]. Other wind turbine designs adopt a two main bearing configuration to 
reduce the transmission of these non-torque loads into gearboxes. These turbines still have a 
small amount of bending moment present on the main shaft. 

The measured load spectrum of the GRC turbine considering various wind and weather 
conditions is shown in Figure 1. Over 90% of the time, the GRC wind turbine operates below 
rated torque. Within the entire load spectrum, the turbine operates below 10% of rated torque 
over 50% of testing period. Gearbox reliability at low input torque has received little attention in 
the past because prior research has mainly focused on the low bearing and tooth loads with low 
input torque. Influences of bending moment are not considered for the low load conditions. 

With the increasing size of wind turbines, gravity induced excitation in the rotating carrier frame 
becomes an important vibration source. Gravity led to tooth wedging, a potential source for 
premature planet bearing failure, in a wind turbine planetary gear investigated by Guo and Parker 
[19]. Clearance is introduced in rolling element bearings to account for thermal expansion, 
interference fit, and surface roughness during operation. Clearances in wind turbine bearings are 
large and can cause gear tooth misalignment, leading to uneven tooth and bearing load 
distribution and increased bearing vibration [19, 20, 21]. 

This study investigates the combined effects of gravity, bending moment, bearing clearance, and 
input torque on planetary load sharing of three-mount suspension wind turbine gearboxes. 
Gearbox internal loads at low input torque--a wind turbine operating condition that is rarely 
considered--are also studied under effects of bending moment. 

 

Figure 1: Torque distribution throughout measurement campaign on NEG Micon NM48/750 turbine 
[2,18]. 

2 GRC Wind Turbine Drivetrain Description 

This study investigates the 750 kW turbine drivetrain used by the NREL GRC. This drivetrain 
has a spherical roller main bearing that supports the main shaft and rotor weight, and two 
trunnion mounts that support the gearbox. The gearbox includes a helical planetary stage with 
three equally-spaced planets and two parallel stages, with stage ratios of 5.71, 3.57, and 4.00, 
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respectively. The rated input speed is 22.2 rpm. A cut-away view of the gearbox is shown in 
Figure 2. There are two parallel carrier bearings supporting the carrier. Each planet gear is 
supported by two identical cylindrical bearings. The sun shaft is connected to the intermediate 
shaft through a spline connection with 300 μm backlash to partially float the sun. The ring is 
bolted to the gearbox housing. This drivetrain configuration represents the majority of the 
existing three-mount suspension wind turbine drivetrains. Key parameters of the planetary 
section are listed in Table 1 and Table 2 (Appendix). Additional details of this gearbox are 
described in the literature [22]. 

 

Figure 2: Cut-view of the GRC gearbox configuration. 

3 Experimental Setup and Instrumentation 
The GRC project instrumented two identical 750 kW wind turbine gearboxes for dynamometer (Figure 3) 
and field testing. Internal measurements include gear tooth loads, main shaft torque and bending, internal 
component deflections and misalignments, and planet bearing loads. The full description of 
instrumentation is detailed in [2]. 

 

Figure 3: 750 kW wind turbine drivetrain of NREL GRC. 

Main shaft torque and bending were measured using three sets of strain gauges in full bridge 
arrangements. These measurements are taken near the center of the main shaft between the main 
bearing and gearbox [2]. The shaft torque and bending measurement serves as a reference for the 
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input load being applied to the gearbox from the rotor side, and can also be used as the time 
series input for dynamic simulations. The bending moments caused by the blades and hub weight 
and aerodynamic forces were measured in the field tests, and are 29.2% to 64.6% of rated input 
torque [2]. 

For each planet bearing, three axial slots were machined into the inner diameter of the inner ring 
and instrumented with strain and temperature gauges [2]. Two of the slots were located at 
different locations in the bearing load zone for each planet, and the third slot for every bearing 
was oriented 90° from the sun-planet axis, referred to here as top dead center (TDC). Two gauge 
sets in each TDC slot and two bearings on each planet provided an axial distribution of four 
radial loads along each planet pin. These gauges were calibrated to loads applied to the fully 
assembled planet pins and bearing pairs in a bench top test setup [23]. 

4 Dynamic Drivetrain Modeling 

The three-dimensional dynamic model of the wind turbine drivetrain is established in SIMPACK 
[24]. This model includes the main shaft, low speed planetary gear, planetary carrier, and 
housing as shown in Figure 4(a) and Figure 4(b). The parallel stages are not included in this 
study. 

Gears are modeled as rigid bodies with six degrees-of-freedom x, y, z, Θx, Θy and Θz . The gear 
contact analysis considers the time varying tooth meshing when the gears rotate by modeling the 
fluctuating mesh stiffness according to the AGMA 6006 standard [25]. The gears are modeled 
using a slicing approach to determine the load distribution across the gear tooth facewidth, which 
accounts for tooth profile and lead modification, tooth contact loss, and fluctuating mesh 
stiffness. The tooth load distribution of the sun gear teeth with tooth modifications is shown in 
Figure 5. This model also considers shuttling contact and sliding friction forces [26]. 

 
 

(a) (b) 

Figure 4 (a) Side view and (b) axial view of the multi-body model of the examined gearbox with 
flexible carrier and housing. 
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Bearings are modeled using diagonal stiffness matrices. Radial bearing clearance is included in 
the model as shown in Figure 6. Radial forces develop only when the relative displacement 
between the connected bodies exceeds a specified clearance. For instance, the radial forces of the 
carrier bearings are  

( , ,)j
c cj cj c h c j y zf k j jµ= − ∆ =−‖ ‖

 
(1) 

where , ,cjk j y z=  are the bearing stiffnesses. ,c hj j are the displacements of the carrier and 
housing. The variable , ,cj j y zµ =  tracks if the bearings are in contact according to  

1 if ( )
1 if ( )

0 if

c h c

cj c h c

c h c

j j
j j
j j

µ
− > ∆

= − − < −∆
 − < ∆ ‖ ‖

 (2) 

 

Figure 5: Tooth load distribution with profile and lead modification at the sun-planet 1 mesh 

 
Figure 6: Nonlinear bearing model. 
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The model includes the flexibilities of the main shaft, planet carrier, shafts, and gearbox housing, 
which are important structural components in the drivetrain that could affect gear dynamics. The 
gearbox front and rear housings and planet carrier are included as reduced finite element flexible 
bodies. Finite element models are created in Abaqus and reduced using the Craig-Bampton 
method [27]. Master degrees-of-freedom, referred to here as “nodes”, are selected at each 
interface point. For the planet carrier, nodes at the main shaft connection, upwind and downwind 
carrier bearing connections, the planet-pin upwind and downwind bores, and planet pins are 
retained for the drivetrain model. Housing nodes were retained at each bearing location, the ring 
gear interface center, and the yoke mount centers. All the eigenfrequencies below 1,000 Hz of 
the housing and carrier are included for the super element creation in Abaqus. This cut-off 
frequency (1,000 Hz) is selected to include higher than 25th harmonic of the planetary stage mesh 
frequency at rated speed. After creating the super elements and performing modal analyses on 
the reduced matrices, the flexible bodies are imported into the multibody drivetrain model. The 
ring is modeled as a rigid body due to software limitations. Shafts are modeled using beam 
elements. 

The sun spline connection is modeled using its diagonal stiffness matrix obtained through a finite 
element analysis in RomaxWIND [28] (Table 4 in the Appendix). Spline facewidth, crowning, 
applied load, and surface lubrication affect these stiffnesses. Trunnion mounts are modeled using 
diagonal stiffness matrices extracted from the measured load-displacement curve [2]. 

5 Model Validation by Experiments 

A steady state dynamic analysis is carried out on the established model using the Newmark 
method at the rated speed. A step size of 1 ms is selected to include the first 10 harmonics of 
planetary gear mesh frequency. All components are allowed to vibrate. An average of 5% modal 
damping is used. Applied torque to the main shaft ranges from 35 kNm to 350 kNm. The 
measured bending moment is applied to the carrier. 

The load sharing factor often refers to the ratio between the maximum and the average bearing 
force among planets [29]. 

( ) { } { }max ( ) ( ) , 1,...,i i
p pi i t

k t f t mean mean f t i Nγ  = =   
(3) 

 

where ( )i
pf t is the planet i bearing force that includes the upwind and downwind rows and N is 

the number of planets. 

This load sharing factor defined in Eq. (3) is a function of time. This study uses the maximum 
value of ( )k tγ  over time, defined as  

( )* max
t

k k tγ γ =    (4) 

The computational results are compared to the measured planetary load sharing in Figure 7(a) 
and Figure 7 (b). Results show the load sharing factor exceeds 1.1 with disrupted load sharing. 
The calculated load sharing among planets agrees with the measured data in general. The 
fluctuating amplitude of load sharing factor is slightly different between the computed results 
and measurements. The measured shaft moment is applied to the carrier in the drivetrain model. 
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Due to the main shaft weight, the shaft moment measured at the carrier during the experiment is 
about 15% lower than that at the measurement location. Different excitation sources during the 
measurement and simulation also contribute to this difference. Figure 8 shows the frequency 
spectrum of the measured planet bearing force. Measurement data is filtered with low sampling 
frequency that did not capture mesh frequency 36.7 Hz and its higher harmonics. The drivetrain 
model does not include the bearing excitation due to its stiffness variation with roller kinematic 
rotation that was observed during the experiments as shown in Figure 8. 

 

(a) 

 

(b) 

Figure 7: (a) Measured during the dynamometer testing; (b) calculated planetary load sharing at 
rated torque. 
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Figure 8: FFT spectrum of the measured planet 1 bearing force in the tangential direction. 

The maximum load of planet 2 over a carrier revolution is higher than the other planets due to 
the asymmetry of planet spacing during operation, which is seen in both measured and calculated 
results (Figure 7). This planet asymmetry is caused by planet bearing clearance and tangential 
pin position error. 

Tooth loads at the sun-planet and ring-planet meshes create significant tangential bearing forces 
under operating torques, which have the same order of magnitude as tooth loads. Planet bearings 
are in contact when gears are loaded under most operating conditions except at vibration 
resonances with tooth contact loss [21]. Planet bearing clearance, however, disturbs the planet 
symmetry by introducing tangential position error, leading to asymmetric shared loads among 
planets over time as shown in Figure 7 (a) and Figure 7 (b). With identical planet bearing 
clearance, planet bearing forces have identical shapes with only phase differences. The 
measurements in Figure 7 (a) are achieved by introducing planet bearing clearances in the 
drivetrain model (Figure 4). Bearing clearances in planets 1, 2, and 3 are 179 μm;  80 μm; and 
179 μm, respectively that are chosen based on the measured clearances by the GRC project [30]. 
Figure 7 (b) can be regenerated by disturbing the mounting angles of planets by i

i p cdα δ= , 
where cd is the center distance and i

pδ is planet bearing clearance. Having a planet bearing 
clearance different from other planet bearings has the same effects on load sharing as tangential 
pin position error. 

6 Results and Discussion 

6.1 Excitations Caused by Gravity and Bending Moment 
With a rotating planetary carrier, the gravity force on a planetary gear is periodic in the rotating 
carrier frame. The gravity force vector is 

[ ]( ) sin( ), ( )cos( ), cos( )cos s( )ing n n c n ct G G t G tγ γ γ= − Ω − Ωf  (5) 
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where , , , ,nG n c r s p= denote the gravity forces of the carrier, ring, sun, and planet,  respectively. 

cΩ is the carrier rotation frequency and γ  is the bedplate tilt angle. 

The bending moment vector in the rotating carrier frame is 

( ) 0, ( )sin co, )s(y c y ct M t M t = − Ω − Ω M  (6) 

The effects of gravity and bending moment on tooth loads are shown in Figure 9. Without 
considering gravity, tooth loads at different sun-planet meshes are nearly identical and time-
invariant. Gravity causes the fluctuation of tooth loads by disturbing the system symmetry. The 
tooth load at the , 2,...thl l N= sun-planet mesh has a phase difference of ( )2 1l Nπ − compared to that 
at the first sun-planet mesh. When the bending moment is considered, the tooth load fluctuation 
becomes significant and the maximum tooth load increases 11% compared to its nominal value. 
The high frequency content (99× cΩ and 198× cΩ ) of the tooth load with bending moment in 
Figure 9 is caused by fluctuating mesh stiffness that is the dominant internal excitation. 

Figure 10 shows the effects of gravity and bending moment on tooth load distribution. Without 
gravity and bending moment, tooth contact has a time-invariant, parabolic shape as shown in 
Figure 10(a). When gravity is included, the gear teeth carry the carrier weight, leading to a 
disturbed tooth load distribution. This tooth contact pattern changes periodically about carrier 
frequency. With bending moment, the load distribution is poor and the gear teeth have edge 
loading by carrying the bending moment and carrier weight. Excitations caused by gravity and 
bending moment in the rotating carrier frame are unavoidable for wind turbine gearboxes 
mounted in the horizontal axis. Bending moment plays an essential role in gearbox internal loads 
compared to gravity and the excitation from gear meshing. 

 

Figure 9: Dynamic tooth loads at the 1st sun-planet (−), 2nd sun-planet (−−), and 3rd sun-planet (⋯) 
meshes without gravity and bending moment (red), with gravity (blue), and with gravity and 
bending moment (black). Carrier bearing clearance is 275 µm. Planet bearing clearance is 0. 
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(a) (b) (c) 

Figure 10: Tooth load distribution on the 1st sun-planet mesh (a) without gravity and bending 
moment; (b) with carrier bearing clearance with gravity; (c) with clearance, gravity, and bending 
moment (10% of measured moment) at rated torque. Carrier bearing clearance is 275 µm. Planet 

bearing clearance is 0. 

6.2 Effect of Carrier Bearing Clearance on Load Transfer Path 
In three-mount suspension drivetrains, carrier bearings are designed with a high load capacity to 
reduce the gearbox load sensitivity to non-torque loads such that gears only carry torque loads. 
Carrier bearing forces are one order of magnitude smaller than planet bearing forces because 
they are nearly balanced by almost self-equilibrating tooth loads at the sun-planet and ring-planet 
meshes. When the bearing clearance is larger than the carrier motion, the carrier bearings are not 
in contact during operation. Consequently, the gear teeth carry the non-torque loads and the 
carrier weight instead of the carrier bearings, resulting in cyclic tooth loads similar to Figure 9, 
Figure 10(b), and Figure 10(c). Clearance in carrier bearings plays an important role in this load 
path. 

The variation of the load sharing factor (defined in Eq. (3))  with carrier bearing clearance is 
shown in Figure 11. The bearing clearance is nondimensionalized by dividing the motion 
amplitude of the carrier with infinite bearing clearance. When the bearing clearance is larger than 
the carrier motion, the load sharing factor converges to a constant, which indicates a limiting 
system with infinite bearing clearance. The load sharing factor increases 2% when carrier 
bearing clearance increases from 0 to 1 with gravity. With bending moment and gravity, the load 
sharing factor increases from 1.02 to 1.13 when bearing clearance increases. Without bearing 
clearance, the load sharing is nearly ideal. Reducing or eliminating this bearing clearance 
reduces gearbox load sensitivity to non-torque loads and improves load sharing. 

The recommended bearing clearance within C1-C4 range according to AGMA 6006 standard 
[31] is larger than the carrier motion for the pure torque case. With the recommended bearing 
clearance, carrier bearings are lightly loaded or can be entirely out of contact during operation, 
leading to a reduced load carrying capacity. Calculating the nondimensional bearing clearance 
helps design the appropriate radial clearance for increasing the load capacity during operation. 



12 

 

Figure 11: Load sharing factor sensitivity to carrier bearing clearance computed using the 
established model with gravity effect only (  ) and with gravity and bending moment (  ). Carrier 

bearing clearance is 275 µm. Planet bearing clearance is 0. 

6.3 Effects of Input Torque on Gearbox Internal Loading 
The highest torque measured during a braking event in the field testing of the GRC gearbox is 
189% of input torque [18]. Considering bending moment, results suggest that planet bearing 
loads at high input torque exceed the fatigue limit, which could lead to premature bearing failure. 

When input torque is low, bending moment plays a dominant role in gearbox internal loads. 
Planet bearing loads of upwind and downwind rows at 5% torque are shown in Figure 12. The 
upwind planet bearing is heavily loaded compared to the downwind bearing over 50% time 
within a carrier cycle. The upwind bearing load reaches a maximum of 9.7 times the average 
load of the downwind planet bearing when the planet gear aligns with –y direction (Figure 12 
(a)). At this instant, the upwind planet bearing carries the majority of the bending moments while 
the downwind planet bearing carries much less. When this planet is moving away from the –y 
axis and the next adjacent planet is moving towards -y, the load sharing of the prior planet at the 
upwind and downwind rows is nearly equal. This unequal load sharing between upwind and 
downwind rows of planet bearings was observed during the testing. Figure 12(b) shows the 
measured planet bearing loads and tilting angle (initially located at 210 degree counter-clockwise 
from -y) at rated torque. The upwind bearing load reaches the maximum when this planet aligns 
with -y, which agrees with the model prediction on the locations with highest upwind bearing 
loads as shown in Figure 12(a). This agreement qualitatively validates the model for capturing 
the load sharing between the upwind and downwind row bearings. 

As shown in Figure 12(a), planet bearing loads are lower than the required minimum load for 
preventing rolling element sliding. Planet bearings are susceptible to skidding that compromises 
the rolling integrity of the bearing, leading to a reduced bearing life. Typical planet bearing 
damage caused by skidding motion is shown in Figure 13. There is no skidding damage observed 
in the GRC gearbox because the gearbox was removed from service (due to other failure modes) 
long before skidding damage could develop. 
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(a) 

’  

(b) 

Figure 12: (a) Calculated upwind (−−) and downwind (−) planet bearing loads at 5% of rated 
torque; (b) measured planet tilting angle and bearing loads at rated torque. Carrier bearing 

clearance is 275 µm. Planet bearing clearance is 0. 

Under the same loading condition of Figure 12(a), the tooth load distribution of the first ring-
planet mesh is shown in Figure 14 When the upwind planet bearing carries majority of bending 
moments (carrier cycle from 7.5 to 8 in Figure 12 (a)), the gear tooth has edge contact towards 
upwind side and partial contact loss towards downwind side as shown in Figure 14. Unequal 
planet loads between upwind and downwind rows cause tooth edge loading. 
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Figure 13: A cylindrical planet bearing with 
sliding marks in the circumferential direction 

[32]. 

Figure 14: Tooth load distribution at the ring-
planet 1 mesh when input torque is 5% of the 

rated. Carrier bearing clearance is 275 µm. 
Planet bearing clearance is 0. 

6.4 Combined Effects on Load Sharing 
Planetary gear load sharing relies on gravity, bending moment, bearing clearance, and input 
torque. Among them, bending moment and input torque are decisive parameters. A 
nondimensional quantity M=My/Tin introduced here to consider the combined loading condition, 
where My is bending moment and Tin is input torque. Figure 15 shows the planetary gear load 
sharing with various values of M. Gravity and bearing clearances are included in the results. 
Load sharing is computed at 10% and rated torques. The load sharing-bending curve at 10% 
torque is higher than that with rated torque because the influence of gravity on load sharing 
factor is relatively higher at low input torque. Bending moment increases load sharing factor 
nearly linearly. A large bending moment induces nonlinear tooth contact, particularly at low 
input torque. At 10% torque, gear tooth load contact changes from slightly disturbed load 
distribution when the nondimensional bending moment is less than 0.02, to edge loading when it 
is larger than 0.02 and less than 2, and eventually reversing contact when it is larger than 2. With 
edge loading and reversing contact, gear teeth lose contact and reengage repeatedly over time. 
The time-varying tooth contact causes dynamic forces on planet bearings that could result in 
acceleration and deceleration of roller elements in entering and leaving the contact zone, thereby 
reducing bearing life. 

Gear tooth edge loading has been observed during the GRC experiments as shown in Figure 16. 
Micropitting induced by the edge contact was evident at the upwind side of on the ring gear 
teeth, which agrees with the model predictions in Figure 14 and Figure 15. As found in both 
simulation and experiment, it is clear that the shaft bending moment has been transmitted from 
the rotor to the gears, which suggests the design assumption that non-torque loads are uncoupled 
from gearboxes is not valid. 
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Figure 15: Load sharing factor sensitivity considering 
input torque, bending moment, gravity, and bearing 

clearance. Carrier bearing clearance is 275 µm. Planet 
bearing clearance is 0. 

Figure 16: Ring gear teeth with edge 
loading. 

7 Conclusions 
A multibody dynamic drivetrain model was established to investigate planetary gear loads in 
wind turbine drivetrains. This model includes gravity, bending moments, tooth modification, 
fluctuating mesh stiffness, tooth contact loss, and bearing clearance. Unequal load sharing 
among planets and between upwind and downwind rows of each pair of planet bearings 
predicted by the established model agrees with the GRC dynamometer measurements. Planetary 
gear load sharing in three-mount suspension drivetrains depends on gravity, bending moment, 
bearing clearance, and input torque: 

• Bending moments and gravity are fundamental external excitations for wind 
turbine planetary gears mounted in the horizontal-axis, leading to cyclical loading 
on gear teeth and planet bearings. They have stronger influences on planetary gear 
loads than fluctuating mesh stiffness. Bending moments cause unequal load 
sharing between upwind and downwind planet bearings, which can cause 
abnormal tooth contact consisting of tooth edge loading, partial contact loss, and 
reversing contact, resulting in tooth micropitting.  

• Clearance in carrier bearings affects the gearbox load sensitivity to non-torque 
loads. With carrier bearing clearance, bending moment can transmit into gear 
meshes and planet bearings, leading to a reduced gearbox life. Planet bearing 
clearance has a similar effect on load sharing as tangential pin position error. It 
disturbs the symmetry of planets, leading to asymmetric bearing loads. 

• At low input torque, the effects of bending moment on gearbox internal loads are 
dominant. Upwind planet bearing loads can be an order of magnitude higher than 
the downwind bearing loads. Planet bearings, in particular the downwind row, are 
at risk for skidding. 
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Appendix 
Table 1: Geometric Parameters of the Planetary Gear 

 Sun Planet Ring 

Number of Teeth 21 39 99 

Pitch Diameter (mm) 215.6 400.4 1016.4 

Root Diameter (mm) 186.0 372.9 - 

Base Diameter (mm) 198.8 369.3 937.4 

Whole Depth Constant 2.4 2.4 2.4 

Tooth Thickness (mm) 16.84 18.80 8.55 

Module (mm) 10.0 10.0 10.0 

Helix Angle (⁰) 7.4947 (right) 7.4947 (left) 7.4947 (left) 

Backlash (mm) 0.25/0.29 0.25/0.29 0.30/0.36 

Pressure Angle 20.0⁰ 

Center Distance (mm) 308.0 

Table 2: System Parameters of the Planetary Gear 

 Sun Carrier Planet Ring Housing 

Mass (kg) 181.6 756.9 104.0 480.0 1213.0 

2( ) xxI kg m⋅  1.26 59.1 3.20 144.2 340.0 

2( ) yyI kg m⋅  24.0 60.3 2.04 75.4 554.4 

2( ) zzI kg m⋅  24.0 60.3 2.04 74.4 424.8 

Table 3: Bearing Information 

 Carrier (Up) Carrier (Down) Planet Trunnion 

 ( )xk N m  1012 
1012 1012  

 ( )yk N m  1.8×109 1.4×109 3.4×109 0.1×109 

 ( )zk N m  1.8×109 1.4×109 3.4×109 0.1×109 

( / ) 
x

k Nm radθ  0 0 0 0 

( / ) 
y

k Nm radθ  55×103 27×103 0.53×106 0.54×106 

( / ) 
z

k Nm radθ  55×103 27×103 0.53×106 0.54×106 

Table 4: Sun Spline Stiffness 

Radial, N/m Axial, N/m Tilting, Nm/rad Rotational, Nm/rad 

20×109 0 3.5×106 10×109 
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