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Abstract--This paper introduces a method of short term wind 

power prediction for a wind power plant by training neural 
networks based on historical data of wind speed and wind 
direction.  There are two steps in the process of wind power 
prediction. In the first step, raw data collected by plant 
information system is filtered by probabilistic neural network. 
This step prepares valid data to be used for building a prediction 
model. In the second step, a complex-valued recurrent neural 
network is applied to build a model to predict wind power. The 
test results of the prediction model are presented and analyzed at 
the end of the paper. The model proposed is shown to achieve a 
high accuracy with respect to the measured data. 
 

Index Terms--wind power plant, wind power prediction, 
probabilistic neural network, complex-valued recurrent neural 
network. 

I.  INTRODUCTION 
IND plant has lower cost of energy compared to other 
renewable energy sources for large scale application. 

Due to the different geographical patterns, weather, and 
properties of the wind turbines, a wind turbine may have 
various performance given different situations. If the total 
output of a wind power plant (WPP) can be predicted with 
high accuracy, more useful information can be provided to the 
power companies to help in scheduling power generation. This 
information will allow a more flexible and intelligent control 
of a WPP (e.g., improve the working schedule of wind 
turbines, reactive power control, etc). Methods for predicting 
wind power generation can be categorized into physical 
methods, statistical methods, methods based on neural 
networks, and  hybrid  methods [1]. The physical methods rely 
heavily on numeric whether prediction, which is confined by 
the sensors and monitoring devices placed within the WPP. 
The quality of hardware chosen, the parameter settings, the 
computation time, the time delays, and the sampling rates 
influence the accuracy of data collected from the WPP.  It is 
easier to predict a single wind turbine's performance rather 
than a whole WPP's power generation. Statistical and neural 
network methods are based on the historical data and have a 
low prediction cost. The relationship between input data and 
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output data based on historical measured data is learned and 
then a nonlinear relationship model between them is built. But 
when new data not previously included in the training data set 
is used as input into this kind of model, the prediction error 
might be large, which is a disadvantage. Different prediction 
methods mentioned above can be combined as hybrid methods 
to achieve better prediction results. But this will increase the 
complexity of the model. In this paper, several neural network 
methods are applied to predict power generation of a WPP 
located in northeast Colorado. 

In this WPP, data of wind information, such as wind speed, 
wind direction, wind power generation, humidity and air 
pressure are collected by a Plant Information (PI) system, and 
the output of the entire WPP is monitored by the utility's 
supervisory control and data acquisition (SCADA) system. 
Raw data from the WPP is processed by a probabilistic neural 
network (PNN) and then a complex-valued recurrent neural 
network (CRNN) model is built to predict the total output of 
the WPP with the following considerations [3]: 
• The raw data set will be screened by probabilistic neural 

network to prepare high quality data for building neural 
network models; 

• The model's inputs do not rely on the data of wind speed 
and wind direction from all turbines; representative wind 
turbines can be found to compress the length of the input 
data; 

• The inputs are expressed as complex-valued data (vector 
representation) which combine wind speed and wind 
direction;  

• The complex-valued recurrent neural network model's 
time series inputs are generated based on the historical 
data values of the WPP rather than the predicted values by 
the model at the previous steps; 

• The result to be predicted is the total power generation of 
the whole WPP rather than outputs of some single wind 
turbines; 

• The models are trained based on the data collected within 
the year of 2010; the prediction accuracy of the model is 
tested by the data of 2011. 

The rest of the paper are arranged as follows. In section II, 
the data preparation process of wind power plant by using 
PNN is introduced. In section III, we show the process of wind 
power prediction model design by using complex-valued 
recurrent neural network. In section IV, prediction results 
using CRNN are discussed and analyzed. The conclusion of 
the paper is summarized in section V. 
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Networks 

Ziqiao Liu, Student Member, IEEE, Wenzhong Gao, Senior Member, IEEE, 
Yih-Huei Wan, Senior Member, IEEE, Eduard Muljadi, Fellow, IEEE 

W 

mailto:Ziqiao.Liu@du.edu
mailto:Wenzhong.Gao@du.edu
mailto:Yih-Huei.Wan@nrel.gov
mailto:Eduard.Muljadi@nrel.gov


 

2 

II.  DATA PREPARATION 
A data preparation process is a very important step in 

mathematical modeling, since the quality of raw data acquired 
by PI system may contain errors. 

A.  Raw Data Description and Analysis 
There are two kinds of wind turbines in this WPP. There are 

53 turbines in Group 1 with each turbine’s rated power at 1.5 
MW; there are 221 turbines in Group 2 with each rated at 
1MW. The rated power of the whole WPP is 300.5 MW. The 
layout of wind turbines and two meteorological towers 
(MET1&2) is shown in Fig. 1. 

 
Fig.1. Wind power plant distribution 

The data of wind speed (m/s), wind direction (degree, 
0o~360o), total metered plant-output power (MW), temperature 
(oC) and air pressure is monitored by the sensors installed at 
the two MET towers. From individual wind turbines, data of 
wind speed, wind direction and power output is also collected. 
The data of total metered WPP output power is recorded at the 
point of interconnection and is very useful to a utility 
company as a reference to compute power revenue.  Following 
the IEC standard, all the data acquired except the turbine 
status is averaged over a 10-minute period for turbine power 
curve measurement [1]. Fig. 2 shows a raw scatter plot of 
WPP output and wind speed data from MET 1. The raw data 
set (8486 dots) contains some invalid data which is not useful 
for power prediction and has a minor effect on the power grid. 
The raw data can be classified into five types as shown in 
Table I. 
 

TABLE I 
RAW DATA CLASSIFICATION 

Type Description 
1 data points following the main power stream 
2 data points in low wind speed period with high power generation 
3 data points with negative value wind speed 
4 data points with negative value power generation 
5 data points with low power generation at high wind speed period 
 

The existence of type 2 data might be due to some physical 
problems, disabled sensors or data distortion in 
communication channels. Type 3 data does not exist in reality 
and may be caused by anemometer that needs to be calibrated. 
Type 4 data is due to the fact that sometimes the wind turbine 

cannot generate enough power to offset the electrical 
consumption of the turbine itself and was drawing 
(consuming) power from the grid. The existence of type 5 data 
might be due to the fact that not all turbines are always online 
during high wind speed period (especially near cut-off wind 
speed) and some wind turbines maybe disabled during that 
period. Another reason can be derived from [4], because a 
strong wind from wrong direction can make a turbine work at 
low efficiency. In sum, all types of data except type 1 data 
should be filtered out. 

 
Fig.2. Scatter plot of total output of WPP and wind speed from MET1 (2010 
Jan-Mar) 

B.  Data  Selection  Process 
Probabilistic neural network (PNN) is a feed-forward neural 

network with supervised learning using Bayes decision rule 
and Parzen window [3]. PNN can be used for data 
classification. The structure of PNN is usually a two-layer 
model as shown in Fig. 3. In the pattern units, the distance 
between the input vector and the target vector will be 
calculated. A new vector will be generated to indicate how 
close the input is to the target vector. The summation units add 
these distances for each type of inputs to produce a vector of 
probabilities as the output of the network. The output unit 
generates a 1 for the target class and a 0 for the other classes 
with the use of a competing transfer function, which picks the 
maximum the vector of probabilities [4]. 

 
 

Fig.3. Structure of  PNN 
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In this paper, PNN was applied to filter out invalid data in 
the raw data set. For example, data points in Fig.2 were 
classified into five types and the portion for each type of data 
is different based on statistical analysis. The order of 
proportion from the largest to the smallest is type 1, type 4, 
type 5, type 2, type 3. In the process of building PNN model, 
about 20% of the data points in Fig. 2 (1700 data points) were 
selected as training data set. The PNN model was trained 
using the sampled data. 

Since only type 1 data is the useful information and should 
be kept, there are two strategies in training PNN model. 
Method 1 is simpler, for which the classification results of 
PNN are assumed to have only two types. PNN is trained 
based on two groups: the first group is type 1; the second 
group includes type 2-5. 1700 data points are selected, among 
which 1540 were randomly selected from type 1 data points, 
the rest 160 data points were from type 2-5. In the training 
data set, the input data vector includes data of wind speed and 
wind power generation, and the target vector has only two 
elements, which are 1 (group 1) and 2 (group 2). And then, the 
rest data points (about 80%) were used as testing data set as 
input to be classified by the PNN model already built. The 
number of neurons in the input layer is equal to that of the 
output layer, which is 2. The training results are shown in Fig. 
4 and Fig. 5. 

 
Fig.4. Classification results of data in Fig.2 by method 1 

 
Fig.5. Filtered scatter plot of Group 1 data points classified by method 1 (2010 
Jan-Mar) 

As shown in Fig. 5, the classification result using method 1 
is not ideal; PNN model could not succeed in diagnosing all 
the unwanted data. And the classification accuracy is 92.7%, 
which means the number of the correctly classified data points 
versus the number of type 1 data as shown in Fig. 2. 

In method 2, there are five classification results of PNN, 
which are type 1, type 2, type 3, type 4, type 5. PNN is trained 
based on five types of data points as shown in Table I. In the 
1700 selected data points, 1540 data points were sampled from 
type 1 data. For the rest 160 data points, according to the 
portion of each data type, number of data points sampled from 
type 2, 3, 4, 5 were 20, 10, 70 and 60 respectively. The 
number of neurons in the input layer is 2 and the number of 
neurons in the output layer is 5. And results done by testing 
the rest of the data set can be seen in Fig. 6 and Fig.7. 
 

 
Fig.6. Classification results of data in Fig.2 by method 2 

 
Fig.7. Filtered scatter plot of type 1 data points classified by method 2 (2010 
Jan-Mar) 

In Fig. 6, type 1 data can be separated from the testing data 
set as shown in the classification result and were plotted in Fig. 
7. And PNN model built by method 2 could succeed in 
screening the raw data even though the power curve is not 
totally smooth.  The classification accuracy is 96.5%, which is 
higher than that of method 1. The classification result using  
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method 2 has a better accuracy than the one performed using 
method 1, because simply combining type 2-5 data pints into a 
group will disturb the process of building PNN and it creates 
confusions in dividing the line between type 1 data and type 2-
5 data. 

Wrong classification data points will decrease the accuracy 
of the prediction model. In the data preparation process of the 
WPP power prediction model, we adopted method 2 to train 
PNN model and the problem of wrong classification can be 
solved by improving the PNN's training data set. For example, 
after the PNN is built, data points with wrong classification 
results from testing data set can be added into the training data 
set. And then PNN model should be trained again with the 
expanded training data set in order to have more accurate 
classification ability. 

C.  Data for Building Models 
In this paper, the power prediction result of the WPP is 

based on wind speed and wind direction. At first, wind speed 
factor is a key point in determining the available power 
generated from a single wind turbine with a certain cross-
sectional area [5]. The wind speed experienced by individual 
wind turbines is acquired by the anemometer and comes from 
the direction of horizontal axes of turbine’s hub. The hub is 
behind the blades, which has an effect of decreasing the 
natural wind speed. The wind speed acquired from the MET 
towers represents the natural wind speed at the location on the 
tower. Even though the height of the hub and MET tower are 
the same, they have different physical meanings. When we 
predict wind power generation, wind speed from turbine 
should be adopted as input information of the model. 
   Secondly, wind direction (direction from which the wind 
blows) is another kind of useful information to predict wind 
power based on previous research results [6]. Wind can come 
from every direction when the wind speed is low. The higher 
the wind speed, the more uniform and more focused the wind 
direction. So during the same wind speed period, wind 
turbines can have different efficiencies due to different wind 
directions. But it is not convenient to predict the total power 
generation of the whole WPP by processing data information 
from all the turbines. It is better to find wind turbines from 
which the wind speed and wind direction can be most 
representative of the WPP area's wind situation. The wind 
speed situation (after data selection process) of the whole year 
of 2010 is shown in Table II. The data from 2010 Apr-Jun 
covers a wide range and has the largest mean value of wind 
speed, which is suitable for training neural network model and 
was researched in this paper. 

TABLE II   
2010 WIND SPEED DATA ANALYSIS 

Wind Speed (m/s) Avg. Std. Maximum 

2010 Jan-Mar 6.945 3.919 21.362 

2010 Apr-Jun 8.812 3.927 22.635 

2010 Jul-Sep 6.371 3.212 19.552 

 2010 Oct-Dec 7.330 4.117 21.912 

 
Wind directions of the two groups of wind turbines at 

3/18/2010 10:00 pm and 4/10/2010 8:40 am are shown in Fig. 

8 and Fig. 9 respectively. The arrows indicate the direction of 
the wind. The wind directions of Group 2 turbines are focused 
on a certain direction. The reason of the messy direction of 
Group 1 turbine is likely to be the data distortion due to the 
data transmission channel or bad performance sensors. The 
total output of WPP can be predicted according to only one or 
two turbine’s information [1]. Based on the filtered data set, 
the average wind speed of all the wind turbines can be 
acquired. By correlation method, the wind turbine which has 
the highest correlation value with the average wind speed can 
be found (turbine A as indicated in Fig.1) and thus turbine A is 
the one which has the most representative wind speed. 
Following the same method, the turbine which has the most 
representative wind direction can also be found (turbine B as 
indicate in Fig.1). In this paper, data acquired from turbine A 
and B will be used to predict the total output of the WPP. 

 
Fig.8. Wind direction at 3/18/2010 10:00 pm 

 

 
Fig.9. Wind direction at 4/10/2010 8:40 am 

III.  MODEL DESIGN 

A.  Complex-valued Recurrent Neural Network Model 
Structure 

Data of wind speed and direction from turbine A and 
turbine B can be combined and expressed as a vector on a 
two-dimensional complex coordinates as shown in Fig. 10. 
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The wind vector can be expressed as equation (1). Paper [7] 
demonstrates that the prediction effect by using complex-
valued neural network outperforms that of using real-valued 
neural network. vሬԦ ൌ vcosθ ൅ i vsinθ (1) 
 

 
Fig.10. Wind vector 

Inputs of recurrent neural network can be either a series of 
historical measured data or simulated data generated by the 
model as shown in Fig. 11. The advantage of this kind of 
model is that the output signal does not just rely on the current 
input signals of the system but it also has an internal memory 
in its training process. The disadvantage is that the training 
time of the recurrent neural network is longer than that of the 
static neural network. In this paper, we built a complex-valued 
recurrent neural network (CRNN) to predict the WPP's power 
generation. The CRNN can be trained under two kinds of 
modes— Parallel (P) mode and Series-Parallel (SP) mode, as 
seen in Fig.11. In the former mode, the simulated outputs p෤ሺn െ 2ሻ, p෤ሺn െ 1ሻ, p෤ሺnሻ are fed back as input signals. In the 
SP mode, actual outputs in the previous time step pሺn െ2ሻ, pሺn െ 1ሻ, pሺnሻ  are used. Paper [8] demonstrates that 
prediction model with parallel mode inputs will result in 
accumulation of error if the previous prediction results are not 
accurate. 

 
Fig.11. Recurrent neural network training structure 

B.  Basic Algorithm 
In this paper, ݌  indicates the power readings from MET 

tower, which represents the value of the effective power 
amount of the whole WPP transmitted to the grid. The ݑ 
includes the wind speed vectors from representative wind 

turbines (turbine A and B).  And, ݊ indicates the time step of 
10 minutes period. Usually a two-layer NN model can 
reasonably approximate any nonlinear function [9]. In this 
paper, a single hidden layer NN with fifteen neurons and one 
output was used. A bias of 1 was set initially. The longer the 
length of delay, the heavier the load of the training process 
has, which will also inevitably increase the training time of the 
model. In this paper, we trained the complex-valued recurrent 
neural network in 10-min, 20-min, 30-min, 40-min, 50-min, 
60-min time delay modes. For the transfer function, log-
sigmoid function was selected to be the hidden layer’s transfer 
function due to its efficiency; linear transfer function was used 
in the output layer as a convention. Levenberg-Marquardt 
back propagation algorithm is used as the training function for 
the whole recurrent neural network model. This method is 
typically used in minimization problems because it appears to 
be the fastest method in terms of convergence. The weights of 
each connection between neurons are adjusted in the training 
process until the errors are within the pre-determined range. 
To compare the performance of the two modes of recurrent 
neural network, the accuracy of the model can be evaluated by 
mean absolute error (MAE), as shown in (2), root mean 
squared error (RMSE), as shown in (3) and mean absolute 
percentage error (MAPE), as shown in (4). In (2) (3) (4), xi 
and xన෥  are the ith component of the actual power and predicted 
wind power respectively. And, n is the length of the vector. 

 MAE ൌ 1n ෍ |x୧ െ xన෕|୬୧ୀଵ  (2) 

RMSE ൌ ඩ1n ෍ሺx୧ െ xన෥ሻଶ୬
୧ୀଵ  

(3) 

MAPE ൌ 1n ෍ ฬx୧ െ xన෥x୧ ฬ ൈ 100୬୧ୀଵ % 
(4) 

IV.  COMPARISON AND ANALYSIS OF PREDICTION RESULTS 

Based on section II, data as shown in Table III was selected 
to finish the WPP's power prediction model. Data of each 
group consists of wind speed, wind direction and wind power 
generation. 

TABLE III 
 DATA DESCRIPTION 

Data 
Group 

Start time End time No. of data 
points 

Description 

A 4/1/2010 0:00 5/8/2010 
23:50 

5474 Training 
data set 

B 4/1/2011 0:10 5/8/2011 
23:50 

5362 Testing data 
set 

In the modeling process, the Group A's data is used for 
training the model; the Group B's data is used for testing and 
validation of the model. In the training process of neural 
network, according to the principle of the neural network, 
training set data will be divided into two parts randomly, one 
part is for learning the relationship between input data and 
output data and building the model, which occupies 60% of 
the total data, the rest 40% data is reserved for validation of 
the model and for further adjusting value of its weights. So 
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models built by a same training data set could be different due 
to neural network's randomness in training. In order to get 
more accurate results, each model was built by Group A data 
repeatedly for three times and the prediction results were 
tested by Group B data repeatedly for three times and then 
average values are computed. Results from the proposed 
model were compared with the actual values of the historical 
data. The error statistics of the prediction results by different 
time series SP mode CRNN is shown in Table IV and Table 
V. Model 1 denotes SP mode CRNN with only wind speed as 
input, Model 2 denotes SP mode CRNN with wind vectors as 
inputs. Table VI shows the error analysis of prediction results 
by complex-valued neural network (CVNN) and real-valued 
neural network model (RVNN). 

TABLE IV 
 ERROR ANALYSIS I 

( MW) MAE RMSE  
Input type Model 1 Model 2 Model 1 Model2 

10min  9.901 7.874 13.613 9.408 
20min  10.156 8.635 14.067 9.677 
30min  11.205 9.258 16.268 10.502 
40min  13.371 9.422 16.331 10.845 
50min  13.931 9.423 18.256 11.111 
60min  14.691 9.58 18.584 11.374 

 

TABLE V 
ERROR ANALYSIS II 

 MAPE (%) Std. of Error (MW) 
Input type Model 1 Model 2 Model 1 Model2 

10min  12.163 11.204 10.722 9.408 
20min  14.549 12.091 11.801 11.221 
30min  18.149 12.753 13.834 11.474 
40min  22.777 13.872 15.362 12.385 
50min  24.448 17.772 17.255 12.722 
60min  29.192 18.091 19.522 13.044 

 
TABLE VI 

ERROR ANALYSIS OF CVNN 
 MAE RMSE Std. of Error MAPE 

CVNN 14.149 14.994 14.635 14.867% 
RVNN 16.210 17.086 30.672 22.535% 

 
From Table IV, V and VI above, the results show that the 

10-min delay mode of Model 2 has the best performance in the 
CRNN models and can be adopted to build power prediction 
models for WPP. The accuracy suggested by MAPE is 
11.204%, which also outperforms the prediction results of 
CVNN and RVNN as shown in Table VI. In the CRNN 
models, the accuracy of CRNN's prediction results decreases 
with the increasing of the delay length in the model training 
process. The reason is that the wind is changing rapidly, so it 
is better to predict the wind power by referring the wind status 
in the nearest previous time. Apparently, the accuracy of 
prediction results and its consistency for different delay length 
are improved when the direction of wind is combined into 
input signals of the neural network. The prediction results of 
CVNN and RVNN models, which do not include time delay in 
their training data set, have worse prediction results even 
compared to Model 2 with 40-min delay. Fig. 12 shows the 
prediction results from 4/1/2011 1:20 am to 4/2/201110:40 am, 
where the predicted power generation points are very close to 
theose actual ones. Additionally, there are always some 

prediction data points with large relative errors, which are 
larger than 100%. The characteristic of those data points are 
always generated during low wind speed period (below 4m/s) 
which is not important for wind power integration and can be 
ignored. 

The whole prediction is shown in Fig. 13.  Overall, most of 
the prediction values are smaller than the actual values. 
According to the errors of the prediction results, the power 
company can compensate the errors by allocating proper 
power reserve and make some adjustment in scheduling the 
wind power generation. 

 

 
Fig.12 Prediction results by 10-min time delay SP mode RNN 

 
Fig.13 Predicted wind power vs. actual wind power of 2011 

V.  CONCLUSION 
This paper describes a procedure of predicting total output 

of wind power plant (WPP) by neural networks. Probabilistic 
neural network (PNN) was applied to classify and screen the 
raw wind data for the training of neural network prediction 
models. And then certain representative wind turbines were 
selected as an input data source for modeling and to simplify 
the input signals to the model. In the last step, based on the 
previous wind power prediction experience [2-6], complex-
valued recurrent neural network (CRNN) model was chosen to 
predict the total output of WPP with high accuracy. 
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