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ABSTRACT 

The introduction of large amounts of variable and 
uncertain power sources, such as wind power, into the 
electricity grid presents a number of challenges for 
system operations.  One issue involves the uncertainty 
associated with scheduling power that wind will supply in 
future timeframes.  However, this is not an entirely new 
challenge; load is also variable and uncertain, and is 
strongly influenced by weather patterns.  In this work we 
make a comparison between the day-ahead forecasting 
errors encountered in wind power forecasting and load 
forecasting.  The study examines the distribution of errors 
from operational forecasting systems in two different 
Independent System Operator (ISO) regions for both 
wind power and load forecasts at the day-ahead 
timeframe.  The day-ahead timescale is critical in power 
system operations because it serves the unit commitment 
function for slow-starting conventional generators. 

1.  INTRODUCTION 

Increasing levels of power are being provided by variable 
and uncertain power sources, such as wind power, leading 
to concerns about the viability of current power system 
operations practices in future high-penetration scenarios.  
However, it is important to realize that power system 
operations have been developed to meet variable and 
uncertain   The variable and uncertain nature of load is 
one of the reasons  for the predominance of the day-ahead 
unit commitment followed by hourly (or sub-hourly) 

economic dispatch model of unit scheduling. An estimate of 
the power requirements must be made so that slow-starting 
thermal units are available to meet the anticipated load, but an 
update to the load forecast in the dispatch timeframe allows 
for more accurate scheduling, once some of the uncertainty 
has been resolved.  The same procedures may be utilized to 
aid in the scheduling of wind power output, and increasingly 
accurate wind power forecasts may be incorporated at shorter 
timescales, such as six and four hours ahead.  However, in 
order for these practices to incorporate increased amounts of 
wind power, the nature of the forecast error distribution 
should be well known, and accurately modeled.  Accurately 
representing the forecast error characteristics is especially 
important in wind integration studies, where an inaccurate 
modeling of the forecast errors may overestimate or 
underestimate the costs of system operations in scenarios with 
large amounts of wind. 

There have been a number of large-scale studies of wind 
power integration in the United States in the last ten years (1-
6).   These studies all recognize the capability of wind power 
forecasting to reduce the operating costs in systems with large 
wind penetration; however, they often make simplifying 
assumptions about the nature of wind power forecasting due 
to the unavailability of actual data on such large penetration 
systems.  Previous studies have often assumed that wind 
forecasting errors follow a Gaussian distribution (7, 8).  While 
most wind power integration studies assume that load is 
perfectly forecasted to isolate the costs of wind power 
forecasting, those that do include load forecasting may assume 
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that load forecast errors also follow a Gaussian 
distribution (7). 

In this work we examine the statistical nature of wind 
power and load forecasting error distributions from 
operational systems, to better inform wind integration 
studies.   The day-ahead forecast horizon will be the focus 
of this study due to its critical nature in the unit 
commitment process.  Because power systems operations 
are accustomed to dealing with load forecasting errors, 
we compare them with those seen in wind power 
forecasting to see if lessons may be learned that will help 
enable the economic incorporation of larger amounts of 
wind power. 

2.  METHODS AND DATA  

In this section we provide background on the statistical 
distributions discussed in the study.  In addition, we 
present the datasets that will be examined in further 
detail.  The analysis was performed using the R statistical 
software environment (9), using functions from the 
HyperbolicDist (10) and MASS (11) packages. 

2.1  STATISTICAL BACKGROUND 

Because we will be discussing statistical distributions 
from a perspective not normally utilized in the power 
systems community, we will provide some background 
and definitions of terminology that will appear in what 
follows.  The Gaussian distribution that is commonly 
assumed to model both load and wind forecast errors may 
be fully described by mean and standard deviation values.  
While this simplicity is useful, it masks instances where 
very dissimilar distributions may have similar means and 
standard deviations.  These two parameters correspond to 
the first two statistical moments; however, more 
information about the shape of the distribution can be 
extracted by examining the third and fourth moments, 
skewness and kurtosis, respectively.  Skewness can be 
thought of as the symmetry of the distribution, while 
kurtosis is a measure of the relative weighting of the peak 
and tails of the distribution.  A distribution with a large 
kurtosis value is known as leptokurtic, while one with a 
small kurtosis value is known as platykurtic.  In what 
follows, kurtosis will refer to excess kurtosis, i.e. the 
kurtosis above that of the Gaussian distribution. The 
examination of these two additional moments allows for a 
more accurate representation of the operational errors 
witnessed in the datasets described in the next section. 

2.2  DATASETS 

The load data and forecasts examined are from two 
different independent system operators (ISOs) in the 

United States, representing the states of California (CAISO) 
and New York (NYISO).  The CAISO day-ahead load 
forecasts and actuals were taken from the CAISO OASIS 
system (12).  The dataset used is hourly averaged load from 
2011.  The maximum load during the period is 45,569 MW, 
the minimum load 18,605 MW, and the mean load is 26,297 
MW.  The NYISO hourly load forecasts and actuals from 
2010 were obtained from the NYISO website (13).   The mean 
load in the period under consideration was 18,664 MW, with a 
maximum of 33,452 MW and a minimum of 11,859 MW. 

The wind forecasting data that was examined also comes from 
two different ISOs in the United States, California and Texas 
(ERCOT).  The ERCOT interconnection dataset covers a 13-
month period and represents the combined output of 
approximately 9,000 MW of installed wind power capacity.  
The day-ahead forecast is made at 16:00 the previous day.  
The CAISO data is the aggregated wind power output of 16 
different wind plants over a one year period, with a total 
capacity of approximately 940 MW.  These forecasts are 
produced at 05:30 the previous day for each hour of the next 
day. 

3.  DAY-AHEAD LOAD FORECASTS 

The process of scheduling generating units to meet expected 
demand is known as the Unit Commitment and Economic 
Dispatch (UCED) process.  Due to the fact that large thermal 
units often have long start-up times, the unit commitment 
decisions (i.e. whether a unit will be on or off during the 
specified period) have traditionally been performed in the day-
ahead timeframe.  Because load is variable and uncertain, day-
ahead forecasts are required to ensure that sufficient 
generating capacity is available to meet the expected load.  
This forecast can be a critical factor in ensuring near-optimal 
system operations.  For example, if the load forecast is 
significantly lower than the realized load, too little baseload 
capacity may be operational at the needed time, and fast-
starting, more expensive units will be required to fulfill the 
load.  The economic cost of this deviation from the optimal 
dispatch stack can be directly attributed to the inaccurate load 
forecast.  The main cause of additional costs in the day-ahead 
timeframe is the commitment or de-commitment of large 
thermal units.  This fact, along with the ability of the 
economic dispatch process to handle smaller forecast errors, 
means that large magnitude, but relatively rare, forecasting 
errors are the most important for system operations.  For this 
reason, accurately modeling the tails of the forecast error 
distribution is critical for understanding their impacts on 
system operations.  Therefore, an accurate comparison 
between the forecast error distributions observed in real 
system operations and those commonly assumed in power 
system operation studies has the potential to increase the 
fidelity of the study outcomes. 
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Load generally follows a familiar pattern, reaching its 
peak during the day and into the evening, with a 
nighttime nadir.  In most of the United States, 
temperatures tend to significantly influence the load 
shape, with hot summer days requiring more air 
conditioning during the day, and cold winter nights 
increasing the minimum load.  Figure 1 shows a week’s 
worth of hourly load requirements, plus the day-ahead 
load forecasts from the CAISO system.  Weekend days 
tend to have lower load than weekdays, as seen in the two 
lower peaks of the figure 1.  Because of the load 
forecast’s strong dependence on the temperature forecast, 
significant load forecast errors are often autocorrelated.  
As seen in the load shape, if the load is over-forecast for 
one hour during the morning ramp, the error tends to 
persist throughout the day. 

 

Fig. 1:  Hourly load and forecast load values for one week 
in the CAISO system. 

3.1  GAUSSIAN COMPARISON 

The Gaussian distribution is often assumed for 
distributions where many phenomena are at play, often 
with an invocation of the central limit theorem.  However, 
this assumption should be checked against real data 
before the results of models incorporating the assumption 
may be verified and validated. 

Figure 2 displays a histogram of the day-ahead load 
forecasting errors from the CAISO system, normalized by 
the yearly average load.  One important thing to notice is 
the long right tail of the distribution, highlighted by the 
numerous errors between 10% and 20% of the average 
load.  The distribution also shows a significant positive 
skewness and is leptokurtic (i.e. narrower, more 

prominent peak and fatter tails) when compared to a Gaussian 
distribution with the same mean and standard deviation as the 
observed errors.  While the assumed Gaussian distribution can 
match the mean and standard deviation of the observed errors, 
it does not represent the skewness and kurtosis observed, 
creating a significantly different distribution shape.  One 
implication of this is that the tails and the peak of the 
distribution are underrepresented. 

 
Fig. 2:  A histogram of the distribution of day-ahead load 
forecasting errors for the CAISO system, normalized by the 
yearly average load. μ = -0.002; σ = 0.026; γ = 0.715;  
κ = 4.725. 

While the histogram and the statistical moment calculations 
seem to indicate that the load forecast error distribution is 
poorly represented by the Gaussian distribution, additional 
assurance is provided by a normal quantile-quantile (Q-Q) 
plot.  Figure 3 shows a Q-Q plot of the CAISO day-ahead load 
forecast errors.  The line in the figure goes through the first 
and third quantiles, and should pass through most of the data 
points if the observed distribution is Gaussian.  However, we 
observe significant deviations, especially in the tails of the 
distribution. 
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Fig. 3:  A normal quantile-quantile plot of the distribution 
of day-ahead load forecasting errors for the CAISO 
system, normalized by the yearly average load.  The line 
runs through the first and third quantiles of the observed 
distribution. 

3.2  DISTRIBUTION MODELING 

Having established that the Gaussian distribution is a 
poor fit for the observed day-ahead load forecast errors, 
we now propose an alternative distribution.  The 
hyperbolic distribution is proposed to more accurately 
model the semi-heavy tails observed in the load forecast 
error distributions.  Essentially, the hyperbolic 
distribution is a Laplace, or double exponential, 
distribution that allows asymmetry to capture skewness.  
Figure 4 shows the normalized day-ahead load forecast 
errors for the NYISO system.  Also included are a 
Gaussian distribution with the same mean and standard 
deviation, and a hyperbolic distribution fit to the observed 
errors.  The distribution has a significant bias, larger 
standard deviation than the CAISO errors, positive skew, 
and is leptokurtic.  A comparison between the two model 
distributions shows that the hyperbolic distribution does a 
better job than the Gaussian distribution in representing 
the pronounced peak and slimmer shoulders of the 
observed distribution.  Additionally, the hyperbolic 
distribution does do a slightly better job than the Gaussian 
distribution in representing the semi-heavy tails; however, 
they are still underrepresented in the model distribution.  
This is also seen in figure 5 where the hyperbolic 
distribution covers the observed distribution for most of 
the plot, the only exceptions being small deviations in the 
tails, and a slight mismatch in the right shoulder of the 
distribution. 

 

Fig. 4:  A histogram of the distribution of day-ahead load 
forecasting errors for the NYISO system, normalized by the 
yearly average load. μ = -0.024; σ = 0.036; γ = 0.379;  
κ = 3.799.  A Gaussian distribution with the same mean and 
standard deviation is shown along with a hyperbolic 
distribution fit to the observed data. 

 

Fig. 5:  A cumulative distribution plot of the NYISO day-
ahead load forecast errors, along with the Gaussian and 
hyperbolic model distributions. 

4.  DAY-AHEAD WIND POWER FORECASTS 

In areas where wind power generators participate in the day-
ahead market, the forecasted wind power during the next day 
is an important variable in deciding what other generators 
need to be made available.  Because wind does not have any 
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fuel costs associated with its production, it tends to have a 
lower bid cost than most thermal generators.  Thus, the 
forecasted wind production reduces the amount of 
thermal generation that will be necessary to meet the 
forecasted load.  However, similar to load forecast errors, 
large errors in the day-ahead wind forecast can have 
economic consequences in the unit commitment process. 

Although wind power output may display some daily and 
seasonal characteristics, it follows much less regular 
patterns than does load.  Generally speaking, wind power 
output tends to be higher during nighttime periods, 
though times can be found when there is no output.  This, 
of course, makes wind power more difficult to forecast 
than load.  The greater range of variability experienced by 
even aggregations of wind power plants also adds to the 
difficulty of forecasting its output at the day-ahead 
timescale.  Figure 6 shows one week worth of wind 
power output and day-ahead wind power forecasts for the 
ERCOT system.  Over this short period the total wind 
output varies very significantly, from almost 8,000 MW 
to near zero output.  From a first glance at figure 6, the 
wind forecast does a fairly good job of anticipating large 
changes in wind power.  However, during a period of 
large variability, even slight errors like the slight forecast 
phase error during the large down ramp shown, can have 
large consequences on system operations.  This phase 
error creates an hourly forecast error of approximately 
2,000 MW that must be compensated for in system 
operations.  It is important to note that the error shown is 
at the day-ahead timescale, and so only impacts unit 
commitment decisions.  Updated forecasts may be 
incorporated into the economic dispatch process and 
could eliminate or reduce the error before the dispatch 
timeframe.  The only possible cost then associated with 
the error would be the difference between supplying that 
energy with a mid-merit unit that may need to be started 
and a baseload unit that might have otherwise supplied 
the required energy.  However, even this may not always 
be the case for large errors, and depends significantly on 
the current state of the system when the error occurs. 

 

Fig. 6:  Hourly wind power output and forecast wind power 
values for one week in the ERCOT system. 

4.1  GAUSSIAN COMPARISON 

Though the current level of wind energy penetration in the 
United States is fairly low, many studies have been performed 
on the impact of future high penetrations of wind energy on 
system operations.  Because wind is a much larger component 
of the generation fleet in these studies, the impact of wind 
forecasting errors is much greater.  For this reason it is critical 
that the distribution of wind power forecast errors is 
accurately represented in these studies.  Perhaps the most 
important component is correctly characterizing the tails of 
the distribution, as they represent the largest forecast errors 
that will be seen in the study. 

As with our examination of the load forecasting errors, normal 
Q-Q plots will provide a means by which the observed wind 
power forecast error distributions may be compared with the 
Gaussian distribution.  Figure 7 shows a normal Q-Q plot of 
the ERCOT day-ahead wind power forecasting errors, with 
significant deviations from normality in the tails of the 
distribution.  This is also the case, though to a slightly larger 
extent, for the CAISO day-ahead wind power forecasting 
errors, displayed in figure 8.  Previous work (14) seems to 
indicate that the larger the geographic diversity of the system 
under study, the more accurate the Gaussian representation 
will be, hence the larger deviations from the CAISO system, 
which is significantly smaller in terms of wind power 
capacity. 



6 

 

Fig. 7:  A normal quantile-quantile plot of the distribution 
of day-ahead wind power forecasting errors for the 
ERCOT system, normalized by the installed wind power 
capacity. 

 

Fig. 8:  A normal quantile-quantile plot of the distribution 
of day-ahead wind power forecasting errors for the 
CAISO system, normalized by the installed wind power 
capacity. 

4.2  DISTRIBUTION MODELING 

After demonstrating the poor representation that the 
Gaussian distribution provides for the day-ahead wind 
forecast errors distribution, we examine the applicability 
of the hyperbolic distribution.  Fig. 9 shows a histogram 
of the day-ahead wind power forecasting errors for the 

CAISO system, along with a Gaussian distribution with the 
same mean and standard deviation, as well as a hyperbolic 
distribution fit to the data.  The hyperbolic distribution more 
accurately represents the leptokurtic nature and skewness of 
the observed distribution, and provides a more accurate 
representation of the semi-heavy distribution tails, than does 
the Gaussian distribution. 

 

Fig. 9:  A histogram of the distribution of day-ahead wind 
power forecasting errors for the CAISO system, normalized 
by the installed wind capacity. μ = -0.004; σ = 0.130; γ = -
0.393; κ = 1.503.  A Gaussian distribution with the same mean 
and standard deviation is shown along with a hyperbolic 
distribution fit to the observed data. 

The superior representation of the hyperbolic distribution is 
also seen in the cumulative distribution plot, shown in figure 
10.  The hyperbolic distribution mirrors the observed errors 
very closely, with only small deviations in the left shoulder of 
the distribution.  On the other hand, the Gaussian distribution 
shows significant deviations, most clearly in the shoulders and 
tails of the distribution. 



7 

 

Fig. 10:  A cumulative distribution plot of the CAISO 
day-ahead wind power forecast errors, along with the 
Gaussian and hyperbolic model distributions. 

Fig. 11 shows a histogram of the day-ahead wind power 
forecasting errors for the ERCOT system, along with a 
Gaussian distribution with the same mean and standard 
deviation, and a hyperbolic distribution fit to the observed 
errors.  The hyperbolic distribution provides a better fit 
for the pronounced peak and slimmer shoulders seen in 
this leptokurtic distribution. 

 

Fig. 11:  A histogram of the distribution of day-ahead 
wind power forecasting errors for the ERCOT system, 
normalized by the installed wind capacity. μ = -0.012; σ = 
0.119; γ = -0.062; κ = 1.030.  A Gaussian distribution 

with the same mean and standard deviation is shown along 
with a hyperbolic distribution fit to the observed data. 

5.  COMPARISON 

After examining the day-ahead load and wind power 
forecasting error distributions, it is clear that there are some 
noticeable similarities, but also important differences.  
Perhaps the most important similarity between the wind power 
and load forecasting errors is that they are leptokurtic 
distributions at the geographic scales of a single ISO, and are 
thus poorly represented by the Gaussian distribution.  The 
load forecasting errors have larger kurtosis values, though 
kurtosis for wind power forecasting errors are very strongly 
dependent on the timescale of the forecast (15).  The 
pronounced peaks that are one feature of the leptokurtic 
distribution are the result of a large number of very small 
forecast errors, indicating some forecasting skill.  The regular 
daily pattern of load helps to explain the more leptokurtic 
distributions observed for load than for wind power 
forecasting.  Another similarity between the observed error 
distributions is the applicability of the hyperbolic distribution 
as a model distribution.  This distribution is able to more 
accurately capture the pronounced peak, slim shoulders, and 
semi-heavy tails seen in both wind power and load forecasting 
error distributions. 

An important difference between the load and wind power 
forecast error distributions is the range of observed values, in 
terms of their normalized value.  The load forecasting errors 
shown have a smaller range of values than the wind power 
forecasting errors; however, this is also a function of the 
values chosen for normalization.  Although the total wind 
power capacity seems a clear choice for normalizing the wind 
power forecasting error values, a number of different values 
may be used for the load errors.  In this work the average 
yearly load is used, though a case could also be made for the 
yearly maximum load, the yearly minimum load, or a number 
of other values.  In terms of power, the load forecast errors are 
much larger, but this is to be expected because the total 
installed wind capacity is much less than the maximum load in 
current systems.  It is also important to note that load follows 
more distinct daily patterns, and has a longer history of being 
forecast.  It is not unreasonable to think that wind power 
forecasting could improve significantly as its importance in 
power systems operations increases. 

Another difference between the two forecasting error 
distributions lies in the geographic diversity of the resource 
they are attempting to forecast.  Load is a function of the 
weather and usage patterns observed at millions of households 
and businesses, spread across wide geographic areas for all of 
the ISOs considered.  This dispersion creates a smoothing of 
the overall load profile that aids in its forecasting.  At current 
penetration levels, wind power forecasting at the ISO level is 
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the aggregation of tens of wind plants, or hundreds of 
individual turbines.  With larger penetrations, and more 
geographic diversity, the same smoothing trends will tend 
to decrease the total spread of forecasting errors, because 
there tends to be less correlation across larger geographic 
domains (16).  

6.  CONCLUSION 

In this work we have analyzed, modeled, and compared 
the error distributions that arise from operational day-
ahead wind power and load forecasting systems currently 
in use in three different ISOs in the United States.  
Although increasing amounts of wind generation 
incorporate additional variability and uncertainty into 
power system operations, systems without wind power 
already have large amounts of variability and uncertainty 
because of load.  The shape of day-ahead wind power 
forecasting errors is similar to those of day-ahead load 
forecasts, and the goal of both forecasts should be to limit 
the amount of large errors, so as to enable efficient 
system operations. 
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