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ABSTRACT 

Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) 
module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) 
caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during 
the “damp heat” IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details 
of the proposed test will be described, in addition to the preliminary results obtained using representative materials 
and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt 
adhesives used in conjunction with PET or glass module “substrates.” To be able to interpret the results, a set of 
material-level characterizations was performed, including thermogravimetric analysis, differential scanning 
calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed 
weight, and then placed inside an environmental chamber (at 85°C, 85% relative humidity). Some systems did not 
remain attached through the discovery experiments. Observed failure modes include delamination (at the j-
box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the 
application requirements, in addition to the plan for the formal experiment supporting the proposed modification to 
the qualification test. 
 
Keywords: reliability, accelerated stress testing, polymers 

1. INTRODUCTION 
Component adhesion relies on the system of attachment, which includes the component itself, the adhesive(s), the 
surface preparation, and the substrate. Historically, the system of adhesion for junction boxes (j-boxes) has proven 
an essential product development task for photovoltaic (PV) module manufacturers. The possible consequences of 
failure in the field for the j-box include electrical arcing and subsequent initiation of fire. The detachment of the j-
box (which interfaces between the module and outside world) also risks moisture ingress, subsequent corrosion, and 
the corresponding loss of performance. Possible failure mechanisms include: phase transformation, viscoelastic flow 
(“creep”), cohesive failure, and delamination [1]. Detachment of the j-box may also result from the degradation of 
the substrate (e.g., delamination [2] or hydrolysis [3] of the backsheet, with the same consequences from failure). 

The present module qualification tests [4],[5] only examine the adhesion of the j-box with the “robustness of 
termination” test [6]. In that test, a 40-newton load is applied for 10 seconds to the cables after the “ultraviolet (UV) 
preconditioning,” “thermal cycling,” and “humidity-freeze” sequence of tests. The robustness of termination test is 
performed with the cable in tension at room temperature. An additional test standard (Ref. [7], recently introduced to 
the International Electrotechnical Commission [IEC]) contains a section addressing retention of the j-box on the 
mounting surface. Here, a 40-N load is applied parallel to the module for 30 minutes (and then perpendicular to the 
module for 30 minutes) in a laboratory ambient environment. The retention test is performed after examining the 
mechanical strength of terminations and connections, knock-out inlets, cord anchoring, and j-box lid. 

The module temperature can be estimated from the combined temperature, irradiance, and wind-speed data for a site 
using simple empirical models of the cell temperature [8],[9]. From these models, the maximum temperatures of 
70°C and 90°C are expected for rack- and roof-mounted modules, respectively, each year based on the average 
weather conditions in the hottest desert locations in the world [10]. Furthermore, the temperatures of 85°C and 
105°C are predicted for rack- and roof-mounted modules, respectively, based on the 30-year record weather 
conditions in the same desert locations [10]. An even greater maximum temperature may be realized during the 
reverse-bias condition induced by partial shading, current mismatch, cracked cells, or interconnect failure. In this so-
called “hot-spot” condition, the localized module temperature may exceed 150°C [11],[12], with resulting activation 
of the by-pass diodes and high  temperature at the j-box. Other factors (e.g., absorbed moisture) may also be present 
at elevated temperature, based on the meteorological field history. 

To more vigorously interrogate the robustness of the j-box adhesion system, an amendment to the qualification test 
procedures has been proposed: hang a weight (vertically) from the junction box during the “damp-heat” test. The 
test would be performed at elevated temperature [85°C] for 1000 hours to emulate the real-world condition that may 
be encountered for some time over the expected module service life of 30 years. The test would be performed using 
an elevated moisture condition [85% relative humidity (RH)] at 85°C, a condition that is not expected to occur in a 
field-deployed module [13], but may be applied as an accelerated stress test to identify “infant mortality” failure 
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modes. The proposed amendment is cost-effective and time-effective, because it makes use of the existing 
qualification test protocol. 

The goal of the study here is to provide a demonstration supporting the proposed amendment. Representative test 
specimens (adhesives including foam tapes, silicones, and hot-melts) have been evaluated in terms of their material 
characteristics, using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic 
mechanical analysis (DMA). The proposed test procedure was performed using representative (polyethylene 
terepthalate [PET] or glass) substrates. The discovery experiments will be used to select the components (adhesives, 
substrates, and weights) that will be used in a formal demonstration, where specimens aged in a chamber will be 
compared to those aged in field locations. 

2. EXPERIMENTAL 
Images of the representative crystalline silicon (c-Si) and thin-film (TF) specimens are shown in Figure 1 and Figure 
2. The specimens are photographed in a test fixture constructed of slotted fiberglass-reinforced channel (McMaster-
Carr Supply Co.), used to hold them upright. The fixtures also include a deflector tray [labeled in Figure 1(b)], used 
to protect the second (lower) row of specimens in case specimens detach from the row above. TF (smaller and 
containing two rails to accommodate a single string of cells) and c-Si (larger and containing four rails to 
accommodate three cell strings) j-boxes were used in the separate experiments. J-boxes are typically constructed of 
Noryl (consisting of polyphenylene oxide and polystyrene) or Xyron (consisting of modified polyphenylene ether 
and polystyrene). The foam tapes examined (some obtained from different vendors) were made of acrylic, 
polyurethane (PU), or polyethylene (PE). A quick internet search identified PE tape as incompatible with PV 
substrate materials, making it an interesting candidate for evaluating the proposed test. All tapes had a closed cell 
construction, which limits moisture ingress. The foam tapes here are different from commercially available solid-
core tape products. Several condensation (moisture-facilitated) cured silicones were examined, including those cured 
with acetoxy, oxime, or alkoxy curing chemistry. Because the acetoxy silicone produces acetic acid during curing, it 
is not recommended for PV (or other electronics). The known limited adhesion of acetoxy-cured silicone to 
polyethylene makes it useful for evaluating the proposed test. Low cost oxime silicone may not be used in many 
Western countries based on the volatile by-products. The alkoxy silicones examined here included Sn, Ti, and two-
part-Sn catalyzed formulations. The hot-melts examined included ethylene-co-vinyl acetate (EVA), 
polyethylene/polyoctene copolymer (PO), and polyamide (PA). Although cross-linking hot-melts are available, the 
thermoplastic materials used here were intentionally chosen to validate the proposed test. A series of weights 
(obtained from JamFab Jigs and Custom Lures LLC, a fishing equipment manufacturer) was chosen for evaluation, 
including: 0, 0.5, 0.9, 1.4, 2.3, and 4.5 kg. Only one weight was attached to each j-box specimen. 

 
Figure 1: Representative (a) c-Si and (b) TF specimens, constructed for the discovery experiments. The deflector tray 
used to protect the second (lower) row of specimens is labeled in (b). 

Details of the attachment of the j-boxes and the weights are shown in Figure 2 for the (a) c-Si [11.5 x 11.0cm] and 
(b) TF [7.0 x 5.2cm] specimens. The weights were secured using knots tied at the ends of 0.81-mm-diameter 
stainless-steel wire. The c-Si j-boxes were weighted using the tabs at the corners of the j-box. The predominant 
loading mode for all j-boxes was shear; however, some torque is possible for the c-Si boxes because the wire 
wrapped around the cable vias. The adhered surfaces of the c-Si j-boxes were smooth, with no groove or standoff 
features. For the TF j-boxes, the wire was secured through the cable gland sites (with the cable removed). J-box 

10 cm

deflector tray

10 cm(b)(a)
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cable glands are typically not designed to support a substantial sustained load; this prohibits applied loads at the 
cable gland sites in the proposed test. The adhered surfaces of the TF j-boxes were smooth, with no standoff 
features, but they included a ~2-mm-wide groove around the periphery (as typically used with a silicone bead). The 
lid was removed from all specimens through the discovery tests; therefore, temperature, oxygen and moisture could 
readily permeate the specimens. 

 
Figure 2: Details of the attachment (using steel wire) for the weights in the (a) c-Si and (b) TF specimens. 

A series of material-level tests was performed on unaged adhesive specimens. The phase-transition temperatures 
were obtained using DSC (Q1000, TA Instruments – Waters LLC) and subsequently analyzed with the 
manufacturer’s Universal Analysis 2000 software. The 2-Hz data were taken from the second of two consecutive 
cycles conducted from -180⁰ to 200⁰C at 10⁰C•min-1 in a N2 environment (purged at 50 mL•min-1). TGA was 
performed using a Q500 (TA Instruments – Waters LLC). The instrument is capable of resolving mass loss to within 
0.1 µg and temperature to within 1°C. A standard temperature ramp from the laboratory ambient to 800°C was used 
at the rate of 20°C•min-1, with a data sampling rate of 0.5 Hz. The specimen chamber was continuously purged with 
reconstituted air (including both O2 and N2 gas) at 90 mL•min-1. The mass loss and its derivatives {%, g•°C-1, g•°C-

2} were calculated from the recorded data. DMA was performed using an Ares LS rheometer (TA Instruments – 
Waters LLC). Using nominally 12.6 mm x 30.5 mm (width x length) specimens, torsional data were obtained while 
heating from -65° to 150°C in a 1°C increment (step and hold). Specimen thickness varied from 1.0 to 3.0 mm, 
depending on the form factor, e.g., molded or sheet material. A 2% oscillatory strain was applied (at the rates of 
0.063, 0.63, 6.3, 63 Hz) along with a 20-g tensile load (to prevent specimen buckling) during DMA characterization. 

Component-level specimens were assembled according to the manufacturer’s guidelines. This included a cleaning of 
the glass substrate for TF, e.g., buffing the tin-rich side of glass with pumice powder; followed by a detergent 
(Billco, Billco Manufacturing Inc.) rinse; followed by rinsing with deionized water (DI); followed by rinsing with 
isopropyl alcohol; followed by forced drying using clean dry air; followed by a site-specific silane primer (AP115, 
3M Company). For c-Si, the PET backsheet was adhered to glass to mechanically support the c-Si specimens. A 
different primer (4298UV, 3M Company) was used on the PET and j-box to promote adhesion for all the tapes, 
which could be pressed in place (for ~5 seconds) using a 9.1 or 27.2 kg weight to ensure good wet-out. Because of 
their compliant and dissipative nature, a dwell time (on the order of 48 hours) may also improve the adhesion of 
foam tapes beyond their initial handling strength. The tape was cut out from the interior of the c-Si j-boxes (where 
the interconnects would feed through from the module interior). The tape was left in place for the TF j-boxes (which 
did not demonstrate good wet-out at the feed-through regions). A bead of adhesive was dispensed at the j-box 
periphery using a gun for the silicone and hot-melt specimens, e.g., the inset of Figure 7 (b). Excess material was 
then squeezed underneath and to the sides of the j-boxes, when they were manually pressed into place, Figure 2(b). 
A larger bead (~4 mm) was used for the silicone (because of the geometry of the cartridges) than for the melts (~2 
mm, because of the diameter of the heated nozzle of the Mini Squirt III gun [Nordson Benelux B.V.]). Additional 
details of the specimen attachment (including photographs of the compressed silicone or hot-melt bead obtained 
through the glass substrate) are provided in Ref. [14]. Specimens were photographed (40D, Canon Inc.), loaded into 
the “WITR” test chamber [SPX Corp. (Thermal Product Solutions Division)], exposed to 85°C/85% RH, and 
inspected periodically. The chamber had to be ramped down to the laboratory ambient condition from its operation 
at 85°C/85% RH. 

20 mm 10 mm(a) (b)
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3. RESULTS AND DISCUSSION 
3.1 Material-level characterization (TGA and DSC) 

The TGA results summarized in Table 1 include those of the material used for the body of the j-box. Representative 
data profiles are provided in Ref. [14]. The table includes the temperature at a specified mass loss (0.5, 5, or 50%) 
and the inflection-point temperature(s) (Ti, where d2m/dT2 = 0). In Table 1, m represents the specimen mass {g}, and 
T the temperature {°C}. In the table, no significant mass loss occurs below 200°C. The thermal decomposition 
characteristics of the tapes and melts are similar, with the silicones requiring an additional 100°C to decompose. The 
hydrocarbon materials (tapes and melts) typically demonstrated complete mass loss [14]; a significant weight (and 
corresponding char) remained for the silicones. The thermogravimetry of the condensation-cured silicones in Table 
1 demonstrated similarities to the addition-cured silicones examined in Ref. [15], including: limited repeatability for 
specimens of the same formulation; irregular profiles (including instantaneous changes suggesting specimen 
motion); and the morphology and color of the remaining specimen char. 

Table 1: Summary of the mass-loss characteristics for representative specimens, including the temperature at a specified mass 
loss (0.5, 5, or 50%) and the inflection-point temperature(s), i.e., where d2m/dT2= 0. 

MATERIAL 
DESCRIPTION 

or 
CURE SCHEME 

T0.5% 
 mass 
loss 
{°C} 

T5% 
 mass 
loss 
{°C} 

T50% 
 mass 
loss 
{°C} 

Ti1, 
max[dm/dT] 

{°C} 

Ti2, 
max[dm/dT] 

{°C} 

Ti3, 
max[dm/dT] 

{°C} 

acrylic 1 foam tape 227 298 372 350 499   
acrylic 2 foam tape 220 314 379 379 533   

PE foam tape 220 298 407 356 408 460 
PU foam tape 132 292 399 401 547 591 
PA thermoplastic hot melt 253 351 418 419 555   
PO thermoplastic hot melt 228 289 367 380 537   

EVA thermoplastic hot melt 190 261 385 415 547   
silicone acetoxy (Sn catalyst) 220 421 505 510     
silicone oxime (Sn) 241 390 520 527     
silicone alkoxy (Ti) 133 387 718 411 564 749 
silicone alkoxy (2 part, Sn) 208 408 536 531 680   
Noryl j-box body 293 429 468 454 614   

Regarding the interpretation of the TGA results, Table 1 is encouraging because it suggests that all of the adhesives 
can withstand temperatures (T5%) on the order of 150°C. (Consider that the decomposition temperature [at least 
200°C in Table 1] may be decreased by ~50° when thermogravimetry is performed at slower rates than in Table 1.) 
The temperature of 150°C (or even somewhat hotter) is achievable locally at the cell and also at operating by-pass 
diode(s) in the j-box in a sustained hot-spot condition [11],[12]. Certain specimens (PU tape, EVA hot-melt, and 
alkoxy silicone) approach the suggested hot-spot temperature guideline for material decomposition (T5%). The minor 
mass loss at low temperatures for the silicone may come from the loss of a residual component, e.g., curing agent, 
and not decomposition. For these materials, a more rigorous verification—prolonged characterization at high 
temperature to verify integrity—makes sense. The j-box body is itself among the most thermally robust materials in 
Table 1 and Ref. [14]. 

The phase-transition temperatures are summarized in Table 2, which includes glass-transition temperature (Tα or Tg), 
melt-transition temperature(s) (Tm), and freeze-transition temperature(s) (Tf). Representative DSC data profiles are 
provided in Ref. [14]. The silicones are distinguished from the other materials because their phase transitions occur 
at temperatures significantly less than those typically encountered by fielded PV modules. All of the tapes have a Tg 
less than that typically encountered by fielded PV modules; the PE tape has melt transitions affecting a significant 
portion of the material, occurring at temperatures encountered in desert-deployed modules. All of the hot-melts have 
melt transitions at temperatures encountered in desert-deployed modules; the data for EVA identify that it has two 
such crystalline components. 

A glass transition may signify propensity for creep, whereas a melt transition would be even more likely to indicate 
the onset of viscoelastic flow. The silicones would then readily creep, if they were not cross-linked by a curing 
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agent. A proper (and complete) cure is required to render the silicones as thermosets, preventing creep. The PE tape 
might creep in fielded modules, particularly in a prolonged hot-spot condition exceeding Tm. Table 2 suggests that 
all of the hot-melts might creep, because they have melt transitions occurring within the temperature range expected 
in desert-deployed modules. More extensive investigation would be advised for these latter materials, such as the 
proposed weighted j-box test. The j-box body material is verified using DSC (but not reported in Table 2) to have a 
glass transition at ~185 °C. 

Table 2: Summary of the DSC results, including the glass-transition temperature (Tα or Tg), melt-transition temperature(s) (Tm), 
and freeze-transition temperature(s) (Tf). 

TYPE 
DESCRIPTION or 
CURING SCHEME 

Tα=Tg 
{°C} 

Tf1 
{°C} 

Tm1 
{°C} 

Tf2 
{°C} 

Tm2 
{°C} 

Tf3 
{°C} 

Tm3 
{°C} 

foam tape acrylic 1 -43             
foam tape acrylic 2 -56 86 99         
foam tape polyethylene -33 58 53 99 108     
foam tape polyurethane -26             
hot-melt polyamide -57 88 68         
hot-melt polyolefin -19 55 81   97   155 
hot-melt EVA -3 20 75 65 99 87   
silicone acetoxy (Sn catalyst) -157 -69 -40         
silicone oxime (Sn) -155 -72 -40         
silicone alkoxy (Ti) -156 -78 -41         
silicone alkoxy (2 part, Sn) -149 -70 -42         

3.2 Results of “crystalline silicon” component-level specimens 

The c-Si discovery experiment was conducted prior to the TF discovery experiment. Seven out of thirty-six c-Si j-
box specimens failed the 1000 hour weight test in damp-heat. The first c-Si results concerned the PE tape, where all 
of the weighted specimens detached within 24 hours at 85°C/85% RH. The PE tape specimen with no weight 
attached remained adhered throughout the 1000 hour test. Representative images are shown in Figure 3, where 
cohesive failure of the tape’s topmost adhesive layer is evident on the j-box [Figure 3 (bottom)]; the tape’s core 
remained attached to the PET substrate [Figure 3 (top)]. The 2.3- and 4.5-kg weighted specimens demonstrated a 
tearing of the tape core [Figure 3 (top right)], whereas the lesser weighted specimens remained evenly adhered to the 
backsheet [Figure 3 (top left)]. 

 
Figure 3: Images of detached PE tape specimens (where all weighted specimens detached within 24 hours at 85°C/85%RH). The 
tape remained adhered to the PET substrate (image top) and not the j-box (image bottom). 
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The two acrylic tapes lost adhesion for the 4.5 kg weight between 6 and 7 days or between 7 and 14 days 
(respectively) at 85°C/85% RH when weighted with 4.5 kg. Images of the substrate and detached specimens are 
shown in Figure 4. In both cases, most of the tape remains adhered to the j-box [Figure 4 (bottom)] and not to the 
PET substrate [Figure 4 (top)]. For both tapes, the 4.5 kg weight is the only weight exceeding the manufacturer’s 
design guideline [16]. 

 
Figure 4: Images of the detached acrylic tape specimens (acrylic 1 and 2, occurring only when the applied load exceeded the 
manufacturer’s design guideline). The tape remained adhered to the j-box (image bottom) and not to the PET substrate (image 
top). 

The second acrylic tape deformed between 7 and 14 days or 14 and 21 days at 85°C/85% RH for the 2.3- and 1.4-kg 
weights, respectively. A representative image of these specimens is shown in Figure 5, where an irregular-shaped 
deformed region is circled at the top of the figure. These j-boxes remained adhered through the test and moved less 
than a millimeter relative to the location marked on the substrate prior to damp-heat exposure. The elongation in 
Figure 5 is therefore consistent with the manufacturer’s intended dissipative behavior for the material. The behavior 
observed here during the c-Si test was not observed during the TF test for the same material. This implies that 
features of the “crystalline silicon” j-box design (e.g., the asymmetric geometry with the tape cutout at the top) may 
be specifically affecting the result. The first acrylic tape did not demonstrate the elongation shown in Figure 5. 

 
Figure 5: Representative image of the deformed second acrylic tape, where one of the tape formulations was deformed for the 
1.4- and 2.3-kg weights. These specimens did not elongate more than 1 mm and remained adhered through the damp-heat test. 
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None the tapes in the c-Si tests demonstrated evidence of creep. The torn appearance of the specimens in Figure 3 
(top right) and Figure 4 (bottom left) may indicate a mixed-mode failure (where shear and bending were both 
present during the detachment). The materials examined are therefore limited by their adhesive characteristics. This 
implies the criticality of surface preparation for these materials, including proper cleaning, use of a primer, or 
plasma surface modification [17]. In the latter case, some removal of organic contamination is achieved in addition 
to carboxyl and carbonyl surface functionalization [17]. 

The potential issue of detachment identifies the need to use a system of compatible materials, including the j-box, 
adhesive, and substrate. Ultimately, there will be some upper limit to the adhesion (or cohesion of an adhesive layer 
as in Figure 3) that may be achieved with the tapes (an upper limit is also inherent to the silicones and hot-melts). 
The concept of compatibility also implies that the components are designed for each other, e.g., a flat back surface 
on the j-box for tapes versus standoffs and a groove used to aid the application of silicone—which would hinder 
attachment and aid moisture ingress for tapes. The local topography of the module (including wires, surface 
roughness, and extra thickness near the j-box) may also affect adhesion. 

The c-Si results also identified the dissipative behavior inherent to the foam tapes. The behavior allows the material 
to adjust to achieve a more stable mechanical support. In particular, this provides robustness against suddenly 
applied loads. The moisture present in the damp-heat test may act as a plasticizer for polymers, facilitating 
elongation. Also, the assembler must be careful not to stretch foam tape during its application, which may also 
facilitate elongation. The second acrylic tape (shown in Figure 5) is distinguished from the first acrylic tape (shown 
in Figure 4), which is the manufacturer’s next-generation material for the j-box application. 

3.3 Results of “thin film” component-level specimens 

Seventeen out of forty-two c-Si j-box specimens failed the 1000 hour weight test in damp-heat. The displacement of 
the 4.5 kg weighted alkoxy (Ti catalyst) silicone specimen was identified between 5 and 7 days into the TF test. A 
representative image of the specimen is shown in Figure 6, where the displacement is identified with an arrow in the 
inset of the figure. No other silicone specimens demonstrated a similar appearance in the discovery experiments. 
From the photodocumentation of the test, it was determined that the displacement actually occurred prior to damp-
heat exposure. None of the silicone specimens detached in the c-Si or TF tests (acetoxy-, alkoxy-, and oxime-cured 
formulations were examined in both discovery tests). The acetoxy silicone, however, did become delaminated from 
a glass substrate when the same set of silicones was examined in a longer-duration damp-heat test used in support of 
a separate project. 

 
Figure 6: Images of an alkoxy (Ti catalyst) silicone (4.5 kg weight) that appeared to creep early in the test. The displacement 
(shown in the inset) was actually identified to have occurred before the test was started (during curing). 

The displacement specimen in Figure 6 identifies the importance of the curing procedure for the silicones. The water 
consumed by condensation-cured silicones during curing is not abundant in steppe climate locations such as 
Colorado. Therefore, the manufacturer recommends a 21-day period prior to performing adhesion characterization in 
dry climates (whereas an adequate surface skin should be developed for use in module products within 2 days). All 
testing here was performed after the specimens had been allowed to cure for 21 days. The specimen in Figure 6 was 
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disturbed during handling after the assembly of the j-box to the substrate. Even though a cured skin had formed at 
the surface of the silicone, the specimen in Figure 6 was bumped prior to the 21 day storage period for curing. 

The PU foam tape specimens weighted with > 0.5 kg detached within 24 hours at 85°C/85% RH. In most cases, the 
detachment occurred through cohesive failure of the tape’s surface interface, i.e., the core tape remained on the j-box 
while much of the surface adhesive remained on the glass. Cohesive failure of the core layer was observed for the 
4.5 kg weighted specimen. The 0- and 0.5-kg weighted PU tapes remained adhered throughout the test. The 0.5 kg 
PU tape specimen, however, demonstrated creep of the surface adhesive layer at the adhesive/glass interface, Ref. 
[14]. The displaced appearance of the PU tape implies difficulty with the adhesive at the surface of the tape and not 
the bulk PU material. The 2.3- and 4.5-kg weighted specimens of the second acrylic tape detached within 24 hours 
at 85°C/85% RH. Delamination of the second acrylic tape occurred at the tape/j-box interface, i.e., the tape remained 
on the glass. The detached acrylic tape specimens were as expected, based on the manufacturer’s design guideline 
(maximum shear load of 1.7 kPa ) [16]. 

The hot-melts (including the PO and PA materials) were first examined in the TF test. Representative images shown 
in Figure 7 depict the: (a) PO melt, (b) PA melt, and (c) PO melt. The same specimens are shown in Figure 7 (a) 
after 24 hours and Figure 7 (c) after 28 days. The weighted hot-melt specimens all detached within 24 hours at 
85°C/85% RH. The 4.5 kg weighted PA specimen detached prior to the test. As shown in Figure 7(a), the PO 
specimens delaminated at the adhesive/j-box interface, i.e., the melt remained on the glass. As shown in Figure 7(b), 
the PA specimens delaminated at the glass/adhesive interface, i.e., the melt remained on the j-box. The unweighted 
hot-melt specimens demonstrated creep during the experiment. As shown on the right of Figure 7(c), the unweighted 
PO specimen displaced (until blocked by the deflector tray) relative to its original location (where the reference line 
scribed with a marker prior to assembly is indicated with a dashed line in the figure). Furthermore, the unweighted 
melt material (with no j-box attached) displaced with time [also indicated with an arrow, in the middle of Figure 7 
(c), relative to the dashed line indicating the bottom edge of the j-box specimens]. Even the hot-melt lettering 
applied to the glass to label the specimens also demonstrated creep (translation and rotation of the asymmetric 
characters), indicated with an arc at the top right of Figure 7(c). 

The results in Figure 7 suggest creep-facilitated detachment of the monolithic adhesive. Creep is consistent with the 
DSC characterization (Table 2), where melt transitions were identified to occur at temperatures less than the 85°C 
test temperature. The hot-melts used here were identified as potential junction box adhesives by the vendor. The 
results in Figure 7 are a reminder that understanding product (field) requirements (where the temperature of a 
module may exceed 105°C) can be critical. It should be reiterated that commercially available cross-linking hot-melt 
products are not expected to creep. The hot-melts examined here were used because they provided the opportunity to 
validate the test itself. 

 
Figure 7: Images of the (a) PO and (b) PA hot-melt specimens, where detachment of the weighted specimens was observed 
within 24 hours at 85°C/85%RH. The details of the formerly adhered bottom-surface of the TF j-box specimens are shown in the 
insets. The creep of an unweighted j-box as well as the hot-melt itself are indicated in (c). 

3.4 Comparison of component-level test results against material-level DMA test results 

The results of DMA characterization are summarized in Figure 8 for representative materials including alkoxy (Ti 
catalyst) silicone, the first acrylic tape, and the PA hot-melt. The figure examines the material stiffness (shear 
storage modulus) and mechanical dissipation (tan [δ]) as a function of temperature. Figure 8 (conducted at 63 Hz) 
may be compared to a similar characterization (performed at 63 mHz) in Ref. [14]. In Figure 8, the silicone 
suddenly decreases in stiffness by two orders of magnitude at -34°C; however, the shear modulus remains almost 
unchanged above that temperature. The melt transition for the silicone is suggested from the inflection at -34°C 
(indicated at the bottom of Figure 8), within the relatively stable tan [δ] profile. The Tm for the silicone was -41°C in 

(b)  PA melt
20 mm

50 mm(a)   PO melt 20 mm (c) PO
20 mm

tape

20 mm
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the DSC characterization (Table 2, indicated at the top of Figure 8). The shear modulus for the acrylic tape steadily 
decreases by four orders of magnitude with temperature in Figure 8. (The transition in stiffness occurs over a more 
narrow temperature range at a slower test rate [14]). The significant mechanical damping provided by the first 
acrylic tape is evident in its tan [δ] profile, which is two orders of magnitude greater than that of the other materials. 
The maximum δ of 41.5, 33.5, 16.8, and 38.8° was observed at 63 Hz for the 1st acrylic, 2nd acrylic, PE, and PU 
tapes, respectively. The breadth of the tan [δ] profile for the acrylic tape is reduced with the test rate [14]. A 
substantial difference in the Tg for the tape occurs between the DSC characterization (at -43°C, top of Figure 8) and 
the DMA characterization (at 13°C, determined from the peak in the tan [δ] profile and indicated at the bottom of 
Figure 8). A substantial difference in the Tg for the tape occurs between the DMA conducted at 63 Hz (at 13°C, 
Figure 8) and the DMA conducted at 63 mHz (at -19°C, Ref. [14]). The shear modulus of the PA melt steadily 
decreases with temperature in Figure 8, up to 62°C. At this temperature, the test was automatically terminated when 
the specimen elongated by the tension supplied to the specimen to prevent it from buckling in the instrument. The 
Tm for the PA melt is evident in the inflection in the tan [δ] profile at 62°C. The Tg for the PA melt occurs at -57°C 
in DSC (Table 2), or at -2°C in DMA conducted at 63 Hz (Figure 8), or at -21°C in DMA conducted at 63 mHz [14]. 
The Tm for the PA melt occurs at 68°C in DSC (Table 2), or at 62°C in DMA conducted at 63 Hz (Figure 8), or at 
60°C in DMA conducted at 63 mHz [14]. 

 
Figure 8: Summary of the torsional DMA characterization at 63 Hz for representative specimens. The phase-transitions 
determined from DSC are compared (figure top) to those determined using DMA (figure bottom). 

Many of the results for the component-level tests can be understood from Figure 8. Furthermore, the various types 
of materials can be compared and contrasted using the DMA results. The sudden drop in shear modulus for the 
silicone at -34°C would be catastrophic if the silicone was not cross-linked (as evidenced by the stable shear 
modulus above that temperature). Otherwise, the silicone would be expected to demonstrate significant viscoelastic 
flow, as in the uncured specimen in Figure 6. The acrylic tape becomes even more compliant than the silicone at 
high temperature. J-boxes are, however, unlikely to be handled (e.g., installed) by persons at such temperatures. 
Furthermore, the cables connecting a module would not ordinarily become disturbed at such temperatures in 
properly installed systems. All the tapes can provide significant mechanical dissipation in dynamic events such as 
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vibration or “impact” from wind load, which can occur at a rate on the order of tens of Hz [18]. Less dissipation is 
manifest in gradual loading, e.g., thermal expansion (occurring at a rate on the order of 10-3 Hz [10], similar to Ref. 
[14]), or moisture swell (where strain occurs on the order of 10-5 to 10-8 Hz [19]). The minor elongation of the tape 
in Figure 5 over a prolonged time period may therefore be understood from its behavior at 63 mHz in Ref. [14]. It is 
not surprising then that the PE tape (Figure 3) and most heavily weighted PU and acrylic tapes (Figure 4) 
demonstrated cohesive failure (tearing often with mixed-mode failure); most tape specimens, however, did not tear 
but rather lost cohesion within their surface-adhesive layer. Note that some tapes have an adhesive nature throughout 
their thickness. The detachment and creep of the hot-melts in Figure 7 follow from their behavior shown in Figure 8. 
The molten thermoplastics are not able to sustain adhesion when a load (weight) is present. The molten 
thermoplastics creep under their own weight. Other melt products (either cross-linked or with a higher melting 
temperature) might work in the place of the thermoplastic hot-melts examined in Table 2. 

Regarding the melt transitions, their values proved reasonably consistent with the technique (DSC vs. DMA) and the 
characterization rate (Figure 8 vs. Ref. [14]). That is, Tm varied less than 10°C between the DSC and DMA 
characterizations for the silicones and hot-melts. The glass transitions, however, were readily subject to both the 
technique and the characterization rate, i.e., sometimes differing by more than 50°C. The Tg for the acrylic tape was 
the most sensitive to its rate of characterization. Although Tg, Tm, or Tf may vary by tens of degrees depending on 
the material composition and/or measurement technique, the values in Table 2 are generally representative for the 
different types of adhesives. However, a mechanical characterization at a rate of known interest (as in Figure 8) may 
prove a much more appropriate characterization method. 

4. FUTURE WORK 
The component-level discovery tests reported in this paper were preliminary to a formal component-level test. The 
formal test is meant to examine the proposed amendment using a representative set of known-good, known-
incompatible, and intermediate (“unknown”) systems. Key details of the formal test include the following: 

The weights will include 0, 0.5, and 1 kg. The weights were chosen based on the multiplier (4x) recommended 
within the IEC working group 2. That is, the weight of 0.17 kg was obtained for two representative 1.5-m-long PV 
cables (with the connectors). The weight of 0.69 follows from the 4x multiplier, assuming that the self-weight of the 
cables constitutes the static load on a field-deployed j-box. The 0.5- and 1-kg weights bound the anticipated 0.69 kg 
weight; the 0 kg weight is included for reference. The formal test therefore aims to recommend either a 0.5- or 1-kg 
weight for the qualification tests. 

Thirteen adhesives have been examined in the discovery experiments. These candidate materials have been down-
selected to nine, including: the two acrylic tapes, PE tape, PU tape, acetoxy-cured silicone (Sn catalyst), oxime-
cured silicone (Sn catalyst), alkoxy-cured silicone (Ti catalyst), alkoxy-cured silicone (Ti catalyst, with high green 
strength), and the PO hot-melt. Two types of acrylic tape will be examined to further compare the materials against 
the differences in Table 1 and Table 2. The adhesives for the formal test were chosen to include some known 
incompatible systems (prone to detaching), with many systems likely to remain attached. 

The same type of junction boxes used in the discovery tests will be used in the formal test, i.e., the c-Si and TF 
components. Four types of substrate will be used in the formal test, including: TPE [a laminate of polyvinyl fluoride 
(PVF), polyester, and EVA (where the PVF faces the environment)], THV [a laminate of tetrafluoroethylene, 
hexafluoropropylene, and vinylidene fluoride [THV], PET, and EVA (where the THV faces the environment)], KPK 
[a laminate of polyvinylidene fluoride [PVDF], PET, and PVDF (also Kynar, which faces the environment)], and 
glass (simulating a glass-glass TF module). The PVF used in backsheets typically consists of DuPont Tedlar. The 
backsheets to be examined, which will be adhered to a glass substrate, include the most popular types presently used 
in c-Si modules, which currently dominate the PV market. 

The test sites for the formal test will include a subtropical location (Miami, FL), desert location (Phoenix, AZ), 
continental steppe climate (Golden, CO), and an indoor test chamber (the proposed damp-heat test condition). The 
formal test intends to verify the indoor test condition against real-world (field) environments. The weights deployed 
outdoors will be hung at 45° (where they will equally generate shear and tensile loads). The proposed amendment to 
the module qualification tests has the specimens oriented at 0° (mounted vertically; therefore, subject to a shear load 
only). The duration of the outdoor tests will be at least a year, whereas the indoor test is defined to last for 1000 
hours. 
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Comparison between the outdoor and indoor results will provide important feedback. For example, the effects of 
cold temperature will be encountered in Golden in addition to the hot, humid environment in Miami and hot, dry 
environment in Phoenix. If cold weather proves significant, then a weight may be applied during the “humidity-
freeze” or “thermal cycle” tests of the module qualification procedures, perhaps in addition to the damp-heat test. 
The comparison between specimens mounted at 45° (sometimes utilized in outdoor PV test standards) and 0° (most 
easily implemented in a densely packed environmental chamber) may also provide insight. The final 
recommendation for modification of the module qualification tests, for example, may be affected by these factors. 

5. CONCLUSIONS 
The early experimental work supporting a proposed amendment to the photovoltaic (PV) module qualification test 
standards has been described. The amendment (where a weight is added to the junction box during the damp-heat 
test) is intended to examine the adhesion system for the junction box (j-box). The goal of the amendment is to ensure 
safe and durable attachment within the early period (infant life) of field-deployed PV modules. Key results include 
the following: 

Several key issues were identified, either from the results or based on consideration during specimen preparation. 
These issues include the need to: 
•allow adequate time for the curing of silicone adhesives 
•consider the manufacturer’s design guidelines for maximum applied load (e.g., the acrylic tapes) 
•carefully handle foam-tape adhesives (preventing inadvertent deformation during assembly possibly enabling 
subsequent elongation during damp-heat) 
•perform surface treatment/functionalization for some adhesives to improve interfacial attachment 
 
Some incompatible systems were identified through the discovery tests including: acetoxy silicone/glass; 
polyethylene (PE) tape/polyethylene terepthalate (PET) or PE tape/glass [based on weak attachment for the adhesive 
layer(s)]; polyurethane (PU) tape/PET or PU tape/glass [based on weak attachment or melting of the adhesive 
layer(s)]; polyethylene/polyoctene copolymer (PO) or polyamide (PA) melts (and PET or glass substrates, based on 
creep of the adhesive). 
The discovery tests also identified the usefulness of material-level characterization including thermogravimetry 
(TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). For example, DSC and 
DMA identified the melt transition of the PO and PA thermoplastics prior to their failure in component-level testing. 
DMA (which may be preferred over DSC because it more directly examines mechanical behavior) also readily 
identified the dissipative behavior typical of the foam tapes. Comparison of the material-level and component-level 
tests identifies the need to understand product requirements, including the maximum operating temperature of 
105°C for PV modules deployed in a desert location and the maximum local temperature during a hot-spot 
condition, which may exceed 150°C. 

A larger formal test will follow the discovery tests described here. The formal test is intended to validate the 
proposed amendment using a representative set of specimens, including some known-incompatible systems and 
some systems expected to remain adhered. That is, the formal test will validate indoor results (the damp-heat test 
condition applied in a chamber) using outdoor deployed (Arizona, Colorado, Florida) specimens. Weights of 0.5 and 
1 kg will be examined in the formal test, so that a final weight may be recommended for use in the qualification 
tests. 
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