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Abstract  —  The researchers extensively studied the 

effects of annealing or thermal history of cell process on the 
minority carrier lifetimes of FZ n-type c-Si wafers with 
various i-layer thicknesses from 5 to 60 nm, substrate 
temperatures from 100 to 350°C, doped layers both p- and 
n-types, and transparent conducting oxide (TCO). Hot-Wire 
Chemical Vapor Deposition (HW-CVD) was used to achieve 
high lifetime, high open circuit voltage (Voc), and high 
efficiency in crystalline silicon (c-Si) heterojunction (HJ) 
solar cells. The minority carrier lifetime with i-layer 
passivation in as-grown state was found to peak at 200°C 
substrate temperature. Annealing c-Si with as-grown layers 
affects the lifetime significantly. The optimized annealing 
temperature is from 250-350°C. It was also found that the 
lifetime of c-Si wafers with a very thin i/p passivation 
decreases significantly when annealed at temperatures 
higher than 250°C. However, the lifetime of the i/p 
passivated c-Si wafers is not affected by the p-layer even 
when the i-layer is as thin as 10 nm. Fourier Transform 
Infrared Spectroscopy (FTIR) was used to understand the 
annealing effect. For the c-Si wafers with i/n passivation, the 
minority carrier lifetime is usually longer than 2 ms and 
slightly improved by annealing. Minority carrier lifetime 
greater than 1 ms in a double side HJ structure with i/n and 
i/p layers can be achieved by controlling thermal history of 
the cell process. HJ cells were fabricated with an efficiency 
>18% on n-type wafers without texturing, and an efficiency 
of 19.2% with texturing.  

Index Terms — passivation, c-Si, heterojunction a-Si:H, 
carrier lifetime 

 
INTRODUCTION 
 
Good surface passivation of crystal silicon wafer by 

using amorphous silicon (a-Si) thin layers is critical to 
achieving high open circuit voltage (Voc) and high 
efficiency in heterojunction silicon solar cells [1-2]. 
Researchers at the National Renewable Energy 
Laboratory (NREL) found a very long minority carrier 
lifetime can be obtained by annealing plasma enhanced 
chemical vapor deposition (PECVD) and intrinsic a-Si:H 
(i-layer, ~ 50 nm thick) as the passivation layers at low 
temperatures (100°C ~ 155°C) [3]. However, the 
passivation quality is usually degraded by annealing at 
200°C ~ 250 °C when the boron doped a-Si:H layer (p-

layer) and a thin i-layer were used as the passivation layer 
for c-Si [4]. Hydrogen effusion was considered to cause 
the passivation quality degradation of i/p layers [4]. 
Therefore, it is important to understand the annealing 
effect of intrinsic and doped a-Si layers in order to obtain 
good passivation quality by controlling the process 
temperatures and sequence in the solar cell fabrication 
process. The annealing effect of a-Si passivation layers 
deposited by HWCVD is reported in this paper. Minority 
carrier lifetime >1 ms in a heterojunction structure was 
achieved by controlling the thermal history of the 
processes. A heterojunction cell efficiency as high as 
19.2% was achieved on N-type textured Czochralski (CZ) 
wafers. 

I. EXPERIMENT 

Double side polished (100) N-type FZ wafers 300 µm 
thick with resistivity of 1 ~ 3 Ω-cm were used for the 
minority carrier lifetime study. The wafers were cleaned 
by using Piranha solution (H2SO4:H2O2, 4:1) for 10 
minutes or a GEN-4 surface cleaning method (RCA 
cleaning and aggressive acid etching) [5]. The oxide layer 
on the wafer surface was removed by a 4% HF solution 
for 30 seconds before a-Si thin film deposition. The a-
Si:H thin films were deposited in an HWCVD system 
using Ta wires. The intrinsic a-Si:H layers were deposited 
from SiH4 gas at different temperatures, while the p-layer 
and n-layer were deposited from B2H6/SiH4/H2 and 
PH3/SiH4/H2 gas mixtures at 250°C and 200°C 
respectively. The a-Si passivated c-Si wafers were then 
annealed in oven at different temperatures. The minority 
carrier lifetimes were measured by using a Sinton 
Consulting WCT-120 system. All reported values were 
measured at a carrier injection density of 1 × 1015 /cm3 in 
the generalized mode. The passivated c-Si wafers were 
characterized using FTIR in transmission mode by 
subtracting c-Si signal as the background. The polished 
N-type FZ wafers mentioned above were used for 
heterojunction cell fabrication. N-type CZ wafers were 
textured using 3% KOH solution with IPA at 80°C 
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followed by RCA1 and RCA2 cleaning. Thin i/n and i/p 
layers were deposited by HWCVD as the base and the 
emitter of the heterojunction solar cell. Indium tin oxide 
(ITO) layers were deposited on both base and emitter as 
anti-reflecting coating using evaporation. Ti/Ag/Pd metal 
layers were deposited by using e-beam evaporation to 
form a front-side finger and back-side contact. The cell 
efficiencies were measured by the NREL XT-10 solar cell 
characterization system. 

II. RESULTS AND DISCUSSION 

A 20 nm a-Si:H i-layer was deposited on both sides of 
the N-type FZ wafers at temperatures ranging from 100°C 
to 275°C, and annealed at temperatures ranging from 
150°C to 400°C for 30 minutes. Fig. 1 below shows that 
the optimized i-layer deposition temperature is 200°C 
with a minority carrier lifetime ~ 1.3 ms after annealing at 
temperatures of 250 ~ 350°C, while a low deposition 
temperature <150°C is usually preferred for PECVD [3]. 
 

 
 
Fig. 1. Minority carrier lifetimes of c-Si wafers passivated 
with a 20 nm i-layer on both sides as a function of i-layer 
deposition temperatures and post-deposition annealing 
temperatures. 
 
Fig. 2 shows little difference between FTIR results before 
and after annealing, suggesting that i-layer is stable at 
temperatures up to 300°C. 

 
 
Fig. 2. Absorbance spectra of (100) N-FZ wafers passivated 
with 20 nm i-layer deposited at 200°C before and annealing 
annealing at temperatures up to 300°C. 
 

As 20 nm i-layers deposited at 200°C show good 
passivation quality, another side of the c-Si wafers were 
replaced by i/p layers with i-layer thicknesses of 0 nm, 3 
nm, 5 nm, 10 nm, and 20 nm. These samples were 
annealed at temperatures of 200°C, 250°C and 300°C for 
30 minutes each. Fig. 3 shows that when the i-layer 
thickness is ≥ 10 nm, the minority carrier lifetime seems 
unaffected by the above p-layer. When the i-layer 
thickness is < 10 nm, the minority carrier lifetime drops 
significantly after annealing at 300°C. The minority 
carrier lifetime is relatively long (~ 1ms) after annealing 
at temperatures ≤ 250°C. This suggests that the i-layers 
deposited at 200°C using HWCVD are possibly more 
robust and can go through higher processing 
temperatures, compared to the reported PECVD i-layer 
[4]. 
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Fig. 3. Minority carrier lifetime of (100) N-FZ wafers with a 
20 nm 200°C i-layer on one side and i/p layers on the other side 
as a function of annealing temperature, compared to a sample 
with a 20 nm 200°C i-layer on both sides. 
 

FTIR spectra (Figs. 4 and 5) of the sample with 3 nm i-
layer and p-layer passivation after annealing at 300°C 
shows significantly lower absorbance at 2080 cm-1, 
compared to the spectra of the sample before annealing. 
This suggests that the minority carrier lifetime 
degradation of the HWCVD i-p passivation is likely due 
to hydrogen effusion as well. More specifically, the 
hydrogen effusion led to lower di-hydride (SiH2) bonding 
concentration, but very little change to monohydride 
(SiH, 2000 cm-1 [1]). 

 

 
 
Fig. 4. Absorbance spectra before and after annealing of a 
(100) N-FZ wafer with a 20 nm i-layer on one side and 3 nm i-
layer + p-layer on the other side at 300°C, compared to the 
curves from peak fitting. 
 

 
 
Fig. 5. Curve fitting of the absorbance spectra described in 
Fig. 4. Peaks at 2000 cm-1 and 2080 cm-1 are correlated to 
monohydride and di-hydride respectively [1]. 
 

It was found that good passivation quality can be 
obtained with an i-layer as thin as 3 nm for the i/n 
passivation, as shown in Fig. 6. The sample with i/n 
passivation shows longer minority carrier lifetime (> 2 
ms) than that with a 20 nm i-layer on both sides, most 
likely due to the help of the electrical field. The sample 
with n-layer only passivation showed a relatively long 
minority carrier lifetime ~ 200 µs, compared to that with 
p-layer passivation but not higher than 1 ms. The n-layer 
is stable after annealing at temperatures up to 250°C. 
 

 
 
Fig. 6. Minority carrier lifetime of (100) N-FZ wafers with 20 
nm 200°C i-layer on one side and n, i/n layer on the other side as 
a function of annealing temperature, compared to a sample with 
20 nm 200°C i-layer on both sides. 
 

By optimizing the HWCVD process and annealing 
temperatures, heterojunction solar cells have been 
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fabricated on polished FZ wafers with Voc of 703 mV, Jsc 
of 33.1 mA/cm2, FF of 77.4%, and an efficiency of 
18.0%. Such cells have also been fabricated with textured 
CZ wafers with Voc ~ 690 mV and an independently 
confirmed efficiency of 19.2%, as shown in Fig. 7. We 
plan to further study the surface cleaning chemistry after 
KOH texturing, so that higher Voc and efficiency can be 
achieved. 
 

 
 
Fig. 7. Independently confirmed J-V characteristics of 
heterojunction solar cells (1cm×1cm size) on textured CZ wafers 
by using HWCVD. 

III.ACKNOWLEDGEMENT 

This work was supported by the U.S. Department of 
Energy under contract DE-AC36-08-GO28308. 

V. REFERENCES 
[1] A. Descoeudres et al., “Improved amorphous/crystalline 

silicon interface passivation by hydrogen plasma 
treatment,” Appl. Phys. Lett. 99, 2011, pp. 123506. 

[2] Qi Wang et al., “Efficient heterojunction solar cells on p-
type crystal silicon wafers,” Appl. Phys. Lett. 96, 2010, pp. 
013507. 

[3] Stefaan De Wolf et al., “Abruptness of a-Si:H/c-Si interface 
revealed by carrier lifetime measurements,” Appl. Phys. 
Lett. 90, 2007, pp. 042111. 

[4] Stefaan De Wolf et al., “Boron-doped a-Si:H/c-Si interface 
passivation: Degradation mechanism,” Appl. Phys. Lett. 91, 
2007, pp. 112109. 

[5] Matthew Page et al., “Well Passivated a-Si:H Back 
Contacts for Double-Heterojunction Silicon Solar Cells,” 
Fourth IEEE World Conference on PhotoVoltaic Energy 
Conversion, 2006. 

rweisbru
Typewritten Text

rweisbru
Rectangle

rweisbru
Typewritten Text

rweisbru
Typewritten Text
N-type CZ wafer

rweisbru
Typewritten Text

rweisbru
Typewritten Text

rweisbru
Typewritten Text

rweisbru
Typewritten Text

rweisbru
Typewritten Text

rweisbru
Typewritten Text


	54099 web.pdf
	Index Terms — passivation, c-Si, heterojunction a-Si:H, carrier lifetime
	Introduction
	I.  Experiment
	II.  Results and Discussion




