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Executive Summary 
The National Renewable Energy Laboratory (NREL) conducted a series of assessments of the 
U.S. Department of Energy’s (DOE) proposed Home Energy Scoring Tool (HEST). The primary 
objective of this work was to assess the accuracy of HEST as it was being developed and to 
provide information useful to DOE program managers and HEST development team at Lawrence 
Berkeley National Laboratory.  

NREL assessed the accuracy of HEST from the version used for the Home Energy Score pilot, 
released January 26, 2011, through the April 27, 2012 release. With the exception of Appendix 
A, Historical Progression of HEST Accuracy, this report reflects assessment of the April 27, 
2012 release of HEST. 

Comparison of Predicted Energy Uses to Measured Energy Uses 
Predictions of electricity and natural gas (NG) consumption were compared with weather-
normalized utility billing data for a mixture of newer and older homes located in Oregon, 
Wisconsin, Minnesota, North Carolina, and Texas.2 The 859 electricity comparisons and 500 NG 
comparisons yielded the following: 

• HEST underpredicted electricity use by a median of 1%. 

• HEST underpredicted NG use by a median of 10%. 

The primary objective of the Home Energy Score program is to issue a score to the homeowner. 
The Score ranges from 1 to 10, where a home scoring a 1 uses the most energy and a home 
scoring a 10 uses the least. For 52% of the homes in this sample, the predicted Home Energy 
Score is within ±1 point of a score calculated from measured energy use.3 

Comparison of Predicted Energy Uses to Predictions From Other Tools 
Similar comparisons were made between predictions from two other commonly used residential 
energy analysis software tools, REM/Rate and SIMPLE, and weather-normalized utility billing 
data for the same set of homes. The results of the comparisons are presented along with those 
from HEST in Table ES–1 and Table ES–2. 

HEST energy use predictions compare well with the other two energy analysis software tools. 

                                                            
2 A limitation of this approach is that the Home Energy Scoring Tool assesses the performance of the energy-related 
assets of a home under typical operating conditions, while utility billing data reflect the performance of the energy-
related assets of a home under actual operating conditions. The uncertainty associated with this limitation is 
addressed in later sections of the report.  
3 The scores were determined using source energy bin definitions released by DOE on May 19, 2012. 
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Table ES–1. Statistical Summary of Differences Between  
Predicted and Measured Electric Energy Use  

(Predicted kWh—Measured kWh) 

 HEST SIMPLE REM/Rate 
Number of Observations 859 859 859 

Mean Measured 10,945 10,945 10,945 
Mean Predicted 10,309 8,800 11,361 
Mean Difference –636 –2,144 416 

Median Difference –115 –1,514 835 
Median Absolute Difference 2,424 2,393 2,386 

Median Absolute Percent Difference 24% 25% 23% 
Percent of Homes < ± 25% Different 54% 49% 52% 
Percent of Homes < ± 50% Different 81% 86% 79% 

 

Table ES–2. Statistical Summary of Differences Between  
Predicted and Measured NG Use  

(Predicted Therms—Measured Therms) 

 HEST SIMPLE REM/Rate 
Number of Observations 500 500 500 

Mean Measured 871 871 871 
Mean Predicted 787 688 1,186 
Mean Difference –84 –183 315 

Median Difference –76 –177 256 
Median Absolute Difference 193 205 293 

Median Absolute Percent Difference 24% 27% 37% 
Percent of Homes < ± 25% Different 51% 45% 38% 
Percent of Homes < ± 50% Different 83% 89% 60% 

 

Statistical Modeling 
To help identify potential issues driving differences between HEST-predicted energy uses and 
measured energy uses, multiple linear regression analysis was employed to develop empirical 
models using energy use differences as the dependent variable. The floor area and number of 
bedrooms were significant contributors to the difference between predicted and actual electric 
energy consumption of the homes. This may be due in part to assumptions about occupancy, 
base loads, and lighting in HEST. Contributors to the difference between predicted and measured 
NG use include the number of heating degree days, window area, and heating system efficiency. 
The statistical model indicates that HEST is over- or under-responsive to these features to some 
degree. It is important to note that the statistical model applies only to the current dataset.  

Operational Uncertainty Analysis 
HEST assesses the performance of the energy-related assets of a home under typical operating 
conditions (standard occupants). However, utility billing data reflect the performance of the 
energy-related assets of a home under actual operating conditions, which can vary greatly. 
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Therefore, when assuming standard occupancy, there is considerable uncertainty that predictions 
will agree with utility billing data because actual occupant behavior is not considered. The goal 
of this portion of the analysis was to estimate the effect of operational input uncertainty on the 
uncertainty in energy use predictions. 

Key conclusions from the analysis are: 

• Even if all other inaccuracies could be eliminated in an asset analysis, differences 
between software predictions and measured source energy would be significant because 
occupant behavior is variable relative to standard assumptions. For example, simulations 
showed total source energy use differences of up to 36%;4 the largest percent differences 
occurred in climates with low space conditioning loads (climates where occupant-driven 
plug loads dominate). 

• Although occupant behavior variability is a significant source of inaccuracy, it does not 
explain all of the differences observed in the NREL Field Data Repository comparisons. 
The remaining sources of uncertainty could be targeted to improve HEST. For example, 
assessment procedures may be adjusted considering tradeoffs in accuracy, cost, and time 
necessary to perform the assessment. 

Whole-House Leakage Sensitivity Analysis  
HEST accepts either a quantitative measurement of whole-house leakage using a blower door or 
a qualitative assessment of whether the home has been air sealed. During the Home Energy 
Score pilot, blower door measurements were performed for 655 homes. NREL reran these homes 
through HEST three times using three inputs for whole-house air leakage: 

• Blower door data (quantitative input) 

• The qualitative assessment of “sealed” 

• The qualitative assessment of “unsealed” 

On average, when compared to the predictions stemming from quantitative input, the source 
energy use is increased by 6 MMBtu/yr (2.6%) when the sealed qualitative input was used and 
by 24 MMBtu/yr (10.6%) when the unsealed qualitative input was used. This could indicate that 
the leakage area assumptions behind the qualitative inputs are generally overestimating the actual 
leakages. However, these differences result in an average reduction in the Home Energy Score of 
only 0.67 points when specifying unsealed qualitative input versus entering measured leakage. 

  

                                                            
4 Differences generally followed normal distributions. The 36% value corresponds to two standard deviations in the 
Los Angeles climate and roughly bounds 95% of the differences. 
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Nomenclature 
 
ACH50  Air changes per hour at 50 Pascals of pressure differential 

CDD   Cooling degree day 

CFM25  Cubic feet per minute at 25 Pascals of pressure differential 

CFM50  Cubic feet per minute at 50 Pascals of pressure differential 

CL   Confidence level 

COP   Coefficient of performance 

COV   Coefficient of variation 

DOE   U.S. Department of Energy 

FDR   NREL Field Data Repository 

HDD   Heating degree day 

HERS   Home Energy Rating System 

HES   Home Energy Saver 

HESpro  Home Energy Saver Professional 

HEST   Home Energy Scoring Tool 

HSP   Building America House Simulation Protocols 

HSPF   Heating Seasonal Performance Factor 

LBNL   Lawrence Berkeley National Laboratory 

MEL   Miscellaneous electric load 

MGL   Miscellaneous gas load 

MLR   Multiple linear regression 

NG   Natural gas 

NREL   National Renewable Energy Laboratory 

o.c.   On center 

SD   Standard deviation 

SEER   Seasonal Energy Efficiency Ratio 

TMY   Typical Meteorological Year  
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1 Introduction 
The National Renewable Energy Laboratory (NREL) conducted a series of assessments of the 
U.S. Department of Energy’s (DOE) proposed Home Energy Scoring Tool (HEST). The primary 
objective of this work was to assess the accuracy of HEST as it was being developed and to 
provide information useful to DOE program managers and HEST development team at Lawrence 
Berkeley National Laboratory (LBNL).  

HEST assessment comprised the following analysis activities:5 

• Comparison of predicted energy uses to measured energy uses 

• Comparison of predicted energy uses to predictions from other tools 

• Statistical modeling 

• Operational uncertainty analysis 

• Whole-house leakage sensitivity analysis.  

Preliminary results of these analyses were reported in a series of memos delivered to DOE 
between May and September 2011. The general content of those memos was updated and 
organized to produce this report. NREL assessed the accuracy of HEST from the version used for 
the Home Energy Score pilot, released January 26, 2011, through the version released April 27, 
2012. With the exception of Appendix A, Historical Progression of HEST Accuracy, this report 
is an assessment of the April 27, 2012 release. 

1.1 Home Energy Scoring Tool 
The Home Energy Score provides homeowners with a simple way to compare the relative energy 
use of their homes. Utilizing information collected by a professional conducting an assessment of 
the home’s energy-related features, the Home Energy Scoring Tool generates a score from 1 to 
10, where a home scoring 1 uses the most energy and a home scoring 10 uses the least.6 HEST 
produces a Home Energy Score label (see Figure 1). 

                                                            
5 This analysis was conducted multiple times during the development of HEST. The LBNL development team used 
the results to improve the overall accuracy of HEST. The results presented in the body of this report include those 
improvements; further discussion about earlier analyses and resulting changes to HEST are included in Appendix A. 
6 Thus, the implied precision of the assessment is not intended to be better than 20% (±10%) of actual energy use.  
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Figure 1. Sample Home Energy Score label  

(source: DOE Office of Energy Efficiency and Renewable Energy website)7 

The Home Energy Scoring Tool is a variation of LBNL’s Home Energy Saver (HES) and Home 
Energy Saver Pro (HESpro). HES and HESpro are Web-based applications that generate 
estimates of energy use and potential retrofit savings for homeowners and professionals, 
respectively. HEST requires fewer inputs than HES or HESpro. HEST intentionally does not 
take any input about the actual occupants of the home, including the way the occupants operate 
the home (e.g., thermostat set points) and certain appliances (e.g., second refrigerator, aquariums, 
waterbeds). Instead, typical occupancy is assumed, resulting in an assessment of the home’s 
energy performance under standard operating conditions that can be fairly compared to 
assessments of the energy performance of other homes under the same standard conditions. 

The score is determined from the predicted source energy use of the home. Scoring bins have 
been developed for each of 245 climate locations throughout the country. The score for the home 
depends on the bin in which the predicted source energy use falls.  

Detailed documentation of HEST is available online at the following website: 
https://sites.google.com/a/lbl.gov/hes-public/home-energy-scoring-tool.8  

                                                            
7 Label at time of reporting. Final label may differ. 
8 The content of the documentation on this website is likely to be updated as HEST continues to evolve; it may not 
reflect the version that was assessed in this report. 

https://sites.google.com/a/lbl.gov/hes-public/home-energy-scoring-tool
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1.2 Home Energy Score Pilot 
In early 2011 DOE conducted a pilot of the Home Energy Score with 10 agencies, spread 
throughout the United States, who volunteered to test the concept. The agencies conducted 
dozens to hundreds of home assessments, entered data collected into the pilot version of the 
HEST Web interface, and generated Home Energy Score labels. The pilot participants provided 
feedback to DOE on several aspects of the proposed program (homeowner interest and 
acceptance of the score, likelihood of stimulating retrofit activities, ease of use, accuracy, etc). 

More than 1,000 homes were scored during the pilot (see Figure 2 for geographic locations). The 
data collected and results generated are stored in a database accessible by the HEST development 
team at LBNL. These “sessions” data were provided to NREL for use in this assessment. Of 
particular interest was the subset of the pilot homes for which blower door tests were conducted 
to assess whole-house leakage. These data were used in conducting the sensitivity analysis 
discussed in Section 5. 

 

Figure 2. HEST pilot locations 

1.3 Field Data Repository 
NREL’s Field Data Repository (FDR), under development at the time of preparing this report, is 
a collection of historical datasets that contain energy-related characteristics and utility billing 
data for homes. Figure 3 shows a schematic overview of the FDR and related tools. The 
overarching objective of the FDR project is to collect and organize disparate historical and future 
datasets into a singular repository for use by the research community. The FDR supports 
NREL’s broader efforts to assess and improve the accuracy of residential energy analysis 
methods, as described in Polly et al. (2011). 
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Figure 3. Schematic overview of the FDR 

NREL’s assessment of HEST largely coincided with the initial development of the FDR. NREL 
had been collecting historical datasets and was just beginning to organize these into a singular 
repository, and to build tools to support the application, when the HEST assessment project 
began. The HEST assessment project was the first application of FDR capabilities. Figure 4 
shows the geographic distribution of data in the FDR at the time of its use for this assessment. 

 

Figure 4. Geographic distribution of data in the FDR as of spring 2012 

For this project, NREL developed an “interpreter” to map house characteristics data from the 
FDR to HEST. The interpreter facilitated comparing predicted energy uses from HEST to 
weather-normalized measured energy uses stored in the FDR.  
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Translating data from the FDR to inputs for a particular energy analysis tool is challenging and 
can introduce some uncertainty into the process. For example, if energy analysis software offers 
discrete choices of attic insulation R-value, and none of the choices perfectly match the value in 
the FDR, some uncertainty is introduced when the interpreter makes the most logical, though 
imperfect, choice in the software.  

The FDR, data sources, and data translation are discussed in more detail in Appendix B.  

1.4 Overview of Approach 
Predicted energy uses from HEST were compared to measured energy uses (i.e., weather-
normalized utility billing data). Similarly, predicted energy uses from two other residential 
energy analysis tools were compared to measured energy uses. The FDR and supporting 
translation software were used to conduct these comparative analyses. The results of the 
comparative analyses are presented and discussed in Section 2. 

Multivariate linear models of measured energy use and of the residuals between predicted and 
measured energy uses were developed to examine the impacts of HEST inputs. These models 
inform potential changes to the software that may improve agreement between predictions and 
measurements. Results of the statistical modeling are presented in Section 3. 

The Home Energy Score assesses the performance of a home’s energy-related assets under 
typical operating conditions (standard occupants). On the other hand, utility billing data reflect 
the performance of a home’s energy-related assets under actual operating conditions, which may 
not be typical. A Monte Carlo uncertainty analysis was conducted to estimate the portion of the 
total observed variability between predicted and measured energy uses that is explained by 
variability in occupant operation of the home. This analysis is described in Section 4. 

The HEST input structure allows either a qualitative assessment or a quantitative measurement 
of whole-house air leakage. A question that is important to DOE is whether to require blower 
door measurement as part of the Home Energy Score assessment process (currently an optional 
input). Leveraging data collected during the Home Energy Score pilot, NREL examined the 
sensitivity to using quantitative versus qualitative input in HEST. This analysis is described in 
Section 5.  

Although the focus of this work is HEST, results of the analyses are reported in terms of energy 
rather than score because the process of translating energy into a score was in flux at the time 
this report was prepared. Results and discussion of the score as proposed on May 19, 2012 are 
included in Section 6. 

1.5 Limitations of Approach 
There are a number of limitations to using historical datasets to assess software accuracy: 

• The datasets may not be representative of the broader population of homes and assessors 
(who collect the data). Because the data were not collected as part of designed 
experiments, no statistical sampling procedures were applied. The “catch-as-catch-can” 
approach will generally result in data that are not statistically scalable to the broader 
population. 
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• Historical data were collected for a particular purpose using a specific data collection 
instrument (e.g., specific rating software). Assessors tend to view a house through the 
data collection instrument they have been trained to use. Applying data collected for one 
purpose, at a particular point in time, to other applications is challenging. Significant 
uncertainty is likely to be introduced when the data are transformed to meet other needs. 

• The data collected are generally limited to asset features of the home. Very few 
operational data are collected. Very little information is collected about atypical energy-
using devices (e.g., swimming pools). Measured energy use data (i.e., utility bills) reflect 
operational variations and atypical energy uses. 

1.6 Advantages of Approach 
Advantages of an automated, empirical data-driven, population-based approach to assessing 
software accuracy include: 

• Comparing predictions of energy uses to measured energy uses helps address skeptics’ 
concerns that predictions are not accurate. The approach can demonstrate whether 
software predictions are “right, on average” and provide useful information about level of 
uncertainty in energy use predictions. Empirically-based testing augments highly detailed 
software-to-software testing (e.g., BESTEST-EX as described by Judkoff et al. [2010]). 

• Using a population of homes in an assessment quantifies uncertainty in predictions across 
the population and allows stakeholders to assess risks associated with using those 
predictions. 

• Statistical analyses of population data help identify patterns that can be useful in isolating 
issues that drive errors in predictions. For example, if statistical evaluation of differences 
between predicted and measured energy use demonstrates that heavily ground-coupled 
models tend to produce larger average errors, it could indicate a potential issue with 
ground modeling in the software. 

• Automated, data-driven modeling facilitates “what if” analysis. For example, what is the 
impact of changing standard operational assumptions used in asset assessments? Do 
answers get “more right, on average?” Such questions can be easily answered 
programmatically once the framework for running population data through software has 
been developed. 
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2 Comparison of Predicted Energy Use to Measured Data 
Data from the FDR were programmatically mapped to three energy analysis tools: HEST, 
SIMPLE, and REM/Rate. Predicted energy uses from these tools are compared to measured 
energy uses in the following sections: results from HEST are presented and discussed in Section 
2.1, results of the SIMPLE analysis are presented in Section 2.2, results for REM/Rate are 
presented in Section 2.3, and results for all three tools are summarized in Section 2.4. 

Of the 1183 homes in the FDR, some were programmatically excluded for a variety of reasons: 
missing utility billing data, poor data quality, or presence of (known) asset features that cannot 
be modeled in the analysis tool.9 The intersection of all the homes successfully simulated in all 
three analysis tools (859 electric and 500 natural gas [NG]) and the utility bills are compared in 
the following analysis. 

2.1 Scoring Tool 
Data from the FDR were mapped to the April 27, 2012 release of LBNL’s HEST, submitted to 
the application programming interface, and the results returned by the application programming 
interface were collected into a database. The process of mapping FDR data to HEST inputs is 
detailed in Appendix C. 

Figure 5 shows HEST-predicted site electric energy use versus weather-normalized measured 
site electric energy use. In general, HEST tends to underpredict homes with high measured 
electric energy use and overpredict electric energy use in homes with low measured use. As 
discussed earlier, HEST models typical occupancy; thus, it would not be expected to respond to 
unusually low or high energy use. Even if HEST were perfectly accurate, and all the asset-related 
inputs were perfectly collected and entered into the software, one would not expect the linear 
regression line to match the line of perfect agreement because actual occupant behavior is not 
considered when predicting electric energy use for an asset rating. This is true for all the 
graphical presentations of predicted versus measured energy use (like Figure 5) in this report. 
The points to the far right of the graph, well below the line of perfect agreement, are likely 
homes with electrical loads are that are not considered in the asset assessment: swimming pools, 
hot tubs, aquariums, waterbeds, second refrigerators, etc. Information about these end uses is not 
available in the FDR. 

                                                            
9 The decision about whether a tool can model a particular house configuration or technology is somewhat 
subjective. The process of translating the FDR data to software inputs is detailed in Appendix C and Appendix D. 
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Figure 5. HEST-predicted site electric energy use versus weather-normalized measured site 
electric energy use 

Figure 6 shows the distribution of differences between the HEST-predicted site electric energy 
use and the weather-normalized measured site electric energy use. The distribution is 
asymmetrical, with a slight negative bias. Again, this is expected because HEST does not 
account for extraordinary electric end uses (e.g., swimming pool pumps) and the fact that energy 
use distributions are not normal: they are bounded by zero, but there is not a bound at the upper 
limit. 

Figure 7 shows HEST-predicted site NG energy use versus weather-normalized measured site 
NG energy use. The graph indicates generally better agreement than for electric use. Figure 8 
shows the distribution of differences between the HEST-predicted site NG energy use and the 
weather-normalized measured site NG energy use. The distribution is nearly symmetrical around 
zero, with only a slight negative bias. 
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Figure 6. Distribution of differences between HEST-predicted and  
measured site electric energy use 

 

Figure 7. HEST-predicted site NG energy use versus weather-normalized measured site NG energy 
use 
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Figure 8. Distribution of differences between HEST-predicted and measured site NG energy use 

2.2 SIMPLE Software 
The SIMPLE residential energy analysis tool is developed by Blasnik & Associates. SIMPLE is 
available as a Microsoft Excel spreadsheet and is licensed as the underlying engine for several 
Web-based energy analysis tools, including Earth Advantage Institute’s Energy Performance 
Score (Earth Advantage Institute, Conservation Services Group 2009). The tool employs a 
proprietary calculation method. This analysis was conducted with v0.9.11 of the spreadsheet.  

Translation of FDR data to SIMPLE inputs is described in detail in Appendix D. Translation of 
data collected using one analysis tool instead of another is not an exact science. Each tool has a 
unique “view” of a home, which influences the way an assessor looks at the home. For example, 
SIMPLE largely employs qualitative inputs rather than quantitative inputs; data collected via 
REM/Rate, and populating the FDR, are largely quantitative. Blasnik & Associates provided 
some guidance about the development of the FDR-to-SIMPLE translation software, but the 
authors recognize that the inexact nature of the process impacts the results. 

Figure 9 shows SIMPLE-predicted site electric energy use versus weather-normalized measured 
site electric energy use. Figure 10 shows the distributions of differences between the SIMPLE-
predicted site electric energy use and the weather-normalized measured site electric energy use. 
The overall predictive trend of SIMPLE is very similar to HEST; the slope of the regression line 
and standard deviation (SD) of the distribution are nearly identical. SIMPLE does, however, 
underpredict electricity use to a greater degree than HEST, with a median difference of –1,514 
versus –115 kWh. 

 



11 

 

Figure 9. SIMPLE-predicted site electric energy use versus weather-normalized measured site 
electric energy use 

 

Figure 10. Distribution of differences between SIMPLE-predicted and measured site electric 
energy use 
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Figure 11 shows SIMPLE-predicted site NG energy use versus weather-normalized measured 
site NG energy use. As seen with HEST, SIMPLE was better able to accurately predict NG use 
than site electricity consumption. Figure 12 shows the distribution of differences between the 
SIMPLE-predicted site NG energy use versus the weather-normalized measured site NG energy 
use. SIMPLE predictions of gas use trend with measured values a little better than HEST, with a 
regression slope closer to unity, and a smaller standard deviation in the distribution of 
differences. But like the electricity use predictions, SIMPLE tends to underpredict NG use to a 
greater degree than HEST, with a median difference of –177 versus –76 therms. 

 

Figure 11. SIMPLE-predicted site NG energy use versus weather-normalized measured site NG 
energy use. 
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Figure 12. Distribution of differences between SIMPLE-predicted and  
measured site NG energy use. 

2.3 REM/Rate Software 
The REM/Rate home energy rating software is developed by Architectural Energy Corporation. 
It is widely used in home energy rating systems (HERS) to predict energy use and energy 
savings in new and existing homes. The software employs a proprietary calculation method and 
is distributed as a Microsoft Windows application. This analysis was conducted with v12.93 of 
REM/Rate software, except for the Houston homes, which were simulated in v12.41 (74 homes) 
and v12.51 (8 homes).10 

Because the FDR is currently based on the REM/Rate Export Database, there is no need to 
translate the FDR data to REM/Rate inputs. Predicted energy use is generated by REM/Rate and 
exported to the database along with the house characteristics data. 

Figure 13 shows REM/Rate-predicted site electric energy use versus weather-normalized 
measured site electric energy use. Figure 14 shows the distributions of differences between the 
REM/Rate-predicted site electric energy use and the weather-normalized measured site electric 
energy use. REM/Rate electric use predictions trend much better than HEST, with a regression 
slope much closer to unity. However the standard deviation of the distribution of differences is 
actually larger than for HEST, indicating more scatter in differences between predicted and 
measured energy use. Also REM/Rate tends to overpredict electric energy use on average, 
whereas HEST tends to underpredict. 

                                                            
10 The data from Houston were originally collected and simulated in older versions of REM/Rate.  
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Figure 13. REM/Rate-predicted site electric energy use versus  
weather-normalized measured site electric energy use 

 

Figure 14. Distribution of differences between REM/Rate-predicted and  
measured site electric energy use 
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Figure 15 shows REM/Rate-predicted site NG energy use versus weather-normalized measured 
site NG energy use. Figure 16 shows the distribution of differences between the REM/Rate-
predicted site NG energy use versus the weather-normalized measured site NG energy use. 
Examination of the distribution reveals a systematic overprediction bias for NG consumption 
within REM/Rate. 

 

Figure 15. REM/Rate-predicted site NG energy use versus  
weather-normalized measured site NG energy use 
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Figure 16. Distribution of differences between REM/Rate-predicted and  
measured site NG energy use 

2.4 Summary 
Table 1 summarizes the differences between predicted and weather-normalized measured electric 
energy uses for the three analysis tools. Table 2 summarizes the differences between predicted 
and weather-normalized measured NG use. 

Of the tools evaluated, HEST has the smallest median difference between predicted and 
measured electric energy use: –115 kWh/yr versus –1,514 for SIMPLE and 835 for REM/Rate, 
though the overall difference in this value between the three tools is small, less than 9%. HEST 
had the highest percentage of homes with predicted electric energy use within ±25% of the 
measured electric energy use; 54% of the homes were within this range 

The median difference between the NG use predicted by HEST and the measured gas use is –76 
therms. This can be compared to –177 therms for SIMPLE and 256 therms for REM/Rate. Of the 
three tools, HEST had the highest percentage of homes with predicted gas use within ±25% of 
the measured gas use; 51% of the homes were within this range.  
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Table 1. Statistical Summary of Differences Between  
Predicted and Weather-Normalized Measured Electric Energy Use  

(Predicted kWh—Measured kWh)11 

 HEST SIMPLE REM/Rate 
Number of Observations 859 859 859 

Mean Measured 10,945 10,945 10,945 
Mean Predicted 10,309 8,800 11,361 
Mean Difference –636 –2,144 416 

Median Difference –115 –1,514 835 
Standard Deviation of Difference 4,443 4,351 4,696 

Mean Absolute Difference 3,111 3,326 3,226 
Median Absolute Difference 2,424 2,393 2,386 

Mean Absolute Percent Difference 33% 30% 35% 
Median Absolute Percent Difference 24% 25% 23% 

Percent Root Mean Square Error 41% 44% 43% 
Percent of Homes < ± 25% Different 54% 49% 52% 
Percent of Homes < ± 50% Different 81% 86% 79% 

R2 of Regression 0.23 0.26 0.24 
Slope of Regression 0.24 0.24 0.39 

Intercept of Regression 7,728 6,191 7,053 
 

Table 2. Statistical Summary of Differences Between  
Predicted and Weather-Normalized Measured NG Use  

(Predicted Therms—Measured Therms) 

 HEST SIMPLE REM/Rate 
Number of Observations 500 500 500 

Mean Measured 871 871 871 
Mean Predicted 787 688 1,186 
Mean Difference –84 –183 315 

Median Difference –76 –177 256 
Standard Deviation of Difference 342 281 436 

Mean Absolute Difference 256 252 392 
Median Absolute Difference 193 205 293 

Mean Absolute Percent Difference 31% 29% 51% 
Median Absolute Percent Difference 24% 27% 37% 

Percent Root Mean Square Error 40% 38% 62% 
Percent of Homes < ± 25% Different 51% 45% 38% 
Percent of Homes < ± 50% Different 83% 89% 60% 

R2 of Regression 0.32 0.46 0.40 
Slope of Regression 0.53 0.54 0.94 

Intercept of Regression 329 217 363 

                                                            
11 Equations for the statistics presented can be found in Appendix F. 
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Figure 17 shows a cumulative distribution of percent differences between predicted and weather-
normalized measured electric energy use for the three tools evaluated. At the 50% point on the x-
axis, the lines cross the median percent difference value on the y-axis. HEST crosses the 50% 
point at a value of about 1% underprediction, REM/Rate at about 8% overprediction, and 
SIMPLE about 15% underprediction.  

 

Figure 17. Cumulative distribution plot of percent differences between predicted and weather-
normalized measured site electric energy use for the three tools evaluated12 

Figure 18 shows a cumulative distribution of the percent difference between predicted and 
weather-normalized measured NG energy use for the tools. One can discern from the distribution 
that REM/Rate overpredicts NG use for 80% of the homes in the sample, compared to about 
40% for HEST and about 25% for SIMPLE. 

                                                            
12 Data points above 150% difference are not shown on the graph. 
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Figure 18. Cumulative distribution plot of percent differences between predicted and  

weather-normalized measured site NG energy use for the three tools evaluated13 

 

  

                                                            
13 Data points above 150% difference are not shown on the graph. 
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3 Statistical Models 
To estimate which inputs contribute the most to differences between HEST predictions and 
measured energy uses, a statistical analysis approach was applied to the FDR records. More 
specifically, multiple linear regression (MLR) was used to develop empirical models from HEST 
inputs and utility billing data. This section covers the approach taken, the resulting models, and 
what can be concluded from these models.  

3.1 Approach 
The general model equation for MLR is as follows: 

y = β0 + β1x1 + β2x2 + … + βnxn + ε 

where, 

  y is the dependent variable 

 β0 is the intercept 

 β1 through βn are the coefficients 

 x1 through xn are the independent variables (inputs) 

 ε is the remaining error. 

In MLR, a least-squares-fit algorithm is applied to a dataset that contains multiple records with 
each record containing one y-value and its associated x-values. Most statistical software 
programs calculate the coefficients and probability values that allow one to evaluate which 
coefficients are significant. Polynomial terms (i.e., xn

2) and interaction terms (i.e., x1x2) are 
sometimes included in the model if they improve the overall fit and have minimal correlation 
with the other independent variables. Although one starts out initially with a model containing 
practically all possible independent variables, common practice is to eliminate insignificant 
variables until a “reduced” model containing only significant variables is achieved. 

3.2 Home Energy Score Test Dependent Variables and Inputs 
For evaluating HEST results, the following dependent variables were used in four separate 
empirical models: 

• Measured site electricity (weather-normalized) 

• Measured site NG (weather-normalized) 

• Difference site electricity = (predicted site electricity) – (measured site electricity)  

• Difference site NG = (predicted site NG) – (measured site NG).  

Separate models for measured site electricity and measured site NG were created to estimate 
which inputs correlate with measured at a significant level and to evaluate how much variability 
in the measured results can be explained by these inputs. The next step was to model differences 
between HEST predictions and measured energy uses. Again, separate models were created for 
site electricity and site NG. The coefficients from these difference models can be examined to 
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evaluate which HEST inputs correlate with increasing or decreasing difference from measured 
energy use.  

There are approximately 40 HEST inputs. Some, such as floor area, are numeric, but many use 
DOE-2 codes to describe various types of building construction components (tables for these 
codes can be found at https://sites.google.com/a/lbl.gov/hes-public/calculation-
methodology/appendices/appendix-e). There are separate codes for skylight types, wall types, 
roof types, foundation types, and many other components that make up a building. For statistical 
analysis, the frequency of each specific code was examined and then a binary variable was 
defined for each. More details about variable coding for statistical analysis are given in Section 
3.4. An example of a DOE-2 ceiling construction code is “ecwf30,” which is defined as 3.5-in. 
wood ceiling joists @ 24 in. on center (o.c.), 10.5-in. (R-30) fiberglass fill ceiling insulation, and 
0.5-in. gypsum wallboard. These construction codes were used in the variable names to allow 
lookup in the DOE-2 tables for further details. It was desirable to extract insulation R-values 
from these construction codes because insulation R-values can be treated as numeric variables 
that likely correlate directly with energy use. For the variable RoofRValue, the R-values were 
extracted from both “roof” construction codes and “ceiling” construction codes, because often a 
building had insulation listed for one but not for the other. 

3.3 Dataset Limitations and Bias 
The current FDR contains measured utility data and HEST building asset characteristics for 1183 
homes. The data are limited primarily to five states (Minnesota, North Carolina, Oregon, Texas, 
and Wisconsin).14 Only houses that used electric or NG space heating were included in this 
analysis. To be included, all houses needed to have positive measured electricity use. In addition, 
houses heated with NG had to have positive measured NG use. This reduced the dataset to 764 
homes. 

Table 3 lists the number of houses from each historical dataset and state that were included in the 
statistical analysis. Differences in time periods when data were collected, data collection 
methods, housing types, and even differences in how the measured utility data were normalized 
could add variability to the HEST predictions and the measured energy uses. Therefore, each 
dataset was given its own binary variable and treated the same as any other binary variable in the 
statistical analysis. The same was done for each state. These particular binaries primarily account 
for bias error between the individual datasets.  

Often the input or explanatory variables from historical datasets are correlated with each other. 
This can result in distorted estimates of variable coefficients using MLR and cause some 
insignificant variables to appear significant. MLR models give indications of the most likely 
inputs that correlate with the dependent variable, but they do not provide absolute certainty. 

 

                                                            
14 Three houses from North Carolina Advanced Energy are located in Tennessee. From the 5-digit ZIP code, these 
houses appear to be located in eastern Tennessee, very near other houses in North Carolina; hence, they are kept in 
the analysis.  

https://sites.google.com/a/lbl.gov/hes-public/calculation-methodology/appendices/appendix-e
https://sites.google.com/a/lbl.gov/hes-public/calculation-methodology/appendices/appendix-e
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Table 3. Home Count by Historical Datasets and State 

Data Set Description15 Total Count State 
Building America Audit Assessment 48 Minnesota 

EPA ENERGY STAR® Qualified Homes Study 73 Minnesota 
EPA ENERGY STAR Qualified Homes Study 1 Wisconsin 

Advanced Energy System Vision 255 North Carolina 
Advanced Energy System Vision 3 Tennessee 

Oregon EPS Study 172 Oregon 
Houston Utility Study 42 Texas 

Wisconsin Housing Study 170 Wisconsin 
 

In addition to HEST inputs, climate differences are believed to be important. To capture actual 
climatic differences, two additional independent variables, heating degree days (HDDs) (base 
65°F) and cooling degree days (CDDs) (base 65°F), were joined to the dataset and treated as 
numeric variables. Values for these variables were taken from Typical Meteorological Year 
(TMY) weather files at weather stations near home locations (based on ZIP code values).  

3.4 Variable Coding 
All original HEST inputs were coded. These coded inputs became the independent variables in 
the regression models. Independent variables were coded primarily to allow more meaningful 
comparison of the coefficients in the final models. The actual coding method depended on 
whether the variable was numeric or binary. Unless otherwise noted, the numeric variables were 
coded using a univariate method. Univariate coding is done by subtracting the variable mean and 
then dividing this difference by the variable standard deviation. The resulting coded variable has 
a variance of one, hence the term univariate. In the few cases where the variable distribution was 
highly skewed toward zero and the ratio of mean to standard deviation was <1, an alternate 
coding was used. For the alternate coding, the 95th percentile of the variable was defined as 1 and 
zero was defined as –1.  

With the exception of hot water fuel (hwFuel), the binary variables were coded as Yes = 1 and 
No = 0. Hot water fuel was coded as Gas = 1 and Electric = –1 to test a possible interaction with 
the hot water energy factor (hwEnergyFactor). In most cases, the number 1 (or Yes) implies that 
the particular building has the HEST input characteristic. For example, C_HT_EFN = 1, means 
the heating type is an electric furnace. Although this is a generally accepted statistical modeling 
practice, the binary coded variables often have larger coefficients than a univariate coded 
variable with the same confidence level (CL) as a result of the coding technique. Hence, other 
statistics from the MLR analysis should be examined to evaluate which variables are most 
significant. 

The binary coding created multiple variables for each categorical input. For example, there were 
six heating system type categories (electric and NG only). Standard practice is to choose one 
category as a control. The control has no further variable assignment, as all other categories are 

                                                            
15 Further description of these datasets can be found in Appendix B. 
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referenced to the control. New binary variables are created for each of the other categories. Table 
4 demonstrates this method for heating types where “gas furnace” is chosen as the control. Not 
every binary variable is used in the final model, as most do not vary significantly from the 
control. The resulting number of total variables slightly exceeded 100 (HEST plus state binaries 
and dataset binaries). A complete list of HEST variables with descriptions is included in 
Appendix C. 

Table 4. Example of Binary Coding for Heating Type Category HEST Input 

Heating 
Type Description Record 

Count C_HT_EBB C_HT_EFN C_HT_EHP C_HT_GBL C_HT_GWF 

gfn 
(control) Gas furnace 471 0 0 0 0 0 

ebb Electric 
baseboard 10 1 0 0 0 0 

efn Electric 
furnace 3 0 1 0 0 0 

ehp Electric heat 
pump 246 0 0 1 0 0 

gbl Gas boiler 27 0 0 0 1 0 

gwf Gas wall 
furnace 7 0 0 0 0 1 

 

3.5 Models of Measured Energy Use 
Approximately 75% of the observations were randomly selected as a model set; the remaining 
observations were kept as a test set. The model set was used to build the model. The MLR model 
was then applied to the test set to predict the measured energy use. The R-squared value 
estimated from the test set (plot of measured versus MLR predicted) can be compared to the R-
squared value from the model building process. The R-squared value from the test set does not 
have to be exactly the same as the R-squared value from the model set, but should be 
comparable.16  

Table 5 shows the resulting MLR model with measured site electricity as the dependent variable. 
All variables listed are significant at a CL ≥95%. The variables highlighted in yellow are 
significant at a CL >99%. The list is divided between numeric variables and binary and sorted 
from most significant to least significant within each variable type. An adjusted R-squared value 
of 0.433 resulted; this implies that the model can explain approximately 43% of the observed 
variability in measured electricity use.  

 

                                                            
16 There are no specific rules, but from experience, if the adjusted R-squared value for the model set exceeds the 
adjusted R-squared value for the test set by more than 0.1, the model set has likely not captured the most significant 
factors.  
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Table 5. Significant Model Variables and Coefficients for Measured Site Electricity 

Variable 
Type Model Variable Original Variable Description Coefficients 

(MMBtu) 
CL 

From 
MLR 

 
(Intercept) 

 
32.4 100.0% 

Numeric C_numberBedrooms Number of bedrooms 3.8 100.0% 
Numeric C_floorArea Floor area (ft2) 5.2 100.0% 
Numeric C_W_WindowArea Western facing window area (ft2) 1.4 98.5% 
Binary C_HT_EHP Heating type EHP (electric heat pump) 17.5 100.0% 
Binary C_HT_EBB Heating type EBB (electric baseboard) 25.2 100.0% 
Binary C_HT_EFN Heating type EFN (electric furnace) 41.7 100.0% 
Binary State_MN State of Minnesota –6.3 100.0% 
Binary C_hwFuel Hot water fuel type (gas or electric) –3.4 100.0% 

Binary C_WC_ewps19wo 

Wall construction code ewps19wo (0.5-
in lapped wood siding, 0.5-in 

fiberboard sheathing, 5.5-in. wood 
studs @ 16 in. o.c., 1-in. expanded 
polystyrene, R-19 mineral fiber batt 

insulation, 0.5-in. gypsum wallboard) 

–7.7 98.2% 

 

Figure 19 shows a graph of the measured site electricity for the model set versus the MLR 
prediction and a graph of the test set where the resulting MLR model is used to make predictions. 
When linear regression is applied on the measured site electricity versus the MLR predicted site 
electricity for the test set, an adjusted R-squared value of 0.343 results. The test set results in an 
adjusted R-square that is comparable to the model adjusted R-square and the plot of measured 
energy use from the test set has a pattern similar to the plot of measured from the model set, 
confirming the MLR model’s predictive capability for this dataset. The coefficients will likely 
change as more data become available in the FDR. Nevertheless, the most significant 
coefficients appear to be understandable. For example, increased electricity use with increased 
number of bedrooms is indicated in the model and might be due to more occupants using more 
electricity. A positive coefficient for floor area might follow from similar factors. Using gas for 
hot water fuel should decrease electricity use, hence the negative coefficient. Increased 
electricity use is expected when electric baseboard, electric furnace, or electric heat pump are 
used.  



25 

 

Figure 19. Measured versus MLR-predicted site electricity for  
the model set (left) and test set (right)  

Minnesota appears to have significantly lower electricity use than other states in the dataset. 
Both Minnesota datasets showed similar bias. Because of the limited number of datasets, one 
cannot conclude at this time that Minnesota is truly different. The Minnesota variable correlates 
strongly (R values greater than 0.5) with both ceiling construction using R-49 insulation and wall 
construction using R-19 insulation. The same level of correlation for these inputs was not 
observed for other states. As data are collected for Minnesota homes with less insulation, these 
construction inputs may become significant. 

For modeling measured site NG, only buildings where NG is used for space heating were 
included. This reduced the number of observations to 505. As with the electric model, these 
observations were further divided into a model set (about 75% randomly selected) and a test set 
(the remainder).  

Table 6 shows the resulting MLR model with measured site NG as the dependent variable. The 
resulting adjusted R-squared for this model is 0.650, which indicates that the model explains 
65% of the variability. Graphs in Figure 20 show measured site NG versus MLR-predicted site 
NG, with the test set graph showing a pattern similar to the model set graph. At least some of the 
model variable coefficients appear to agree with how the input might be expected to influence 
NG use. For example, houses in locations with more HDDs would be expected to use more NG 
for space heating. Increased air leakage and increased floor area both contribute to higher NG 
use. A gas furnace with higher efficiency reduces NG use. Some variables do not make sense and 
may be artifacts of the current available data. In particular, age in years indicates a reduction in 
NG use for older buildings. Age in years correlates strongly with the Oregon dataset. As older 
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homes in other states are added to the FDR, a better test should result for the age in years 
variable. 

Table 6. Significant Model Variables and Coefficients for Measured Site NG 

Variable 
Type Model Variable Original Variable Description Coefficients 

(MMBtu) 
CL 

from 
MLR 

 
(Intercept) 

 
78.1 100.0% 

Numeric C_HDD_65F HDDs (base 65°F) 20.8 100.0% 
Numeric C_airLeakage50ip Air leakage (cfm) 8.8 100.0% 

Numeric C_heatingEfficiency Heating efficiency for home heating 
system –24.9 100.0% 

Numeric C_floorArea Floor area (ft2) 7.0 100.0% 
Numeric C_E_WindowArea Eastern facing window area (ft2) 5.1 99.9% 
Numeric C_age_years House age in years –5.9 99.9% 
Numeric C_N_WindowArea Northern facing window area (ft2) 4.3 99.7% 

Numeric C_WASG_Total sum((Window area) × (solar heat gain 
coefficient [SHGC])) 5.5 99.3% 

Numeric C_houseOrientation House orientation (0 = N, 90 = E, 180 = S, 
and 270 = W) –3.8 98.9% 

Binary C_hwFuel Hot water fuel type (gas or electric) 8.7 100.0% 

Binary C_FC_efwf30ca 

Floor construction code efwf30ca (11.5-in 
wood joists @ 24 in. o.c., R-30 mineral 

fiber batt insulation, 0.75-in. wood 
underlayment, 0.75-in. wood subfloor, 

carpeting) 

–39.7 99.7% 

Binary C_FC_efwf25ca 

Floor construction code efwf30ca (11.5-in. 
wood joists @ 24 in. o.c., R-25 mineral 

fiber batt insulation, 0.75-in. wood 
underlayment, 0.75-in. wood subfloor, 

carpeting) 

–16.1 99.7% 
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Figure 20. Measured versus MLR-predicted site NG for model set (left) and test set (right) 

3.6 Models of Differences Between Predicted and Measured Energy Uses 
Table 7 shows the resulting MLR model with difference site electricity as the dependent 
variable. Again, the difference is predicted site electricity minus measured site electricity. The 
resulting adjusted R-squared value for this model is 0.199, which indicates that only about 20% 
of the variability in the differences can be explained by this model. Seven variables listed are 
significant at CLs ≥ 99% and three other variables are significant at 95% CL. Additional 
validation was done by combining the MLR prediction for measured site electricity with the 
MLR prediction for the difference model. Plotting the combined MLR prediction versus the 
measured site electricity shows a pattern very similar to the HEST predictions (see Appendix E).  
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Table 7. Significant Model Variables and Coefficients for Difference Site Electricity 

Variable 
Type Model Variable Original Variable Description Coefficients 

(MMBtu) 
CL from 

MLR 
  (Intercept)   –1.2 85.5% 
Numeric C_numberBedrooms Number of bedrooms –3.3 100.0% 
Numeric C_floorArea Floor area (ft2) 2.4 99.7% 

Numeric C_WallRValue Wall R-value determined from wall 
construction inputs –1.7 99.6% 

Binary C_HT_EFN Heating type EFN (electric furnace) 26.9 100.0% 
Binary C_CT_ehp Cooling type ehp (electric heat pump) –5.1 99.9% 

Binary C_ST_dseab 

Skylight type dseab (double-pane, low-
solar-gain low-E (e = 0.05 on surface 2, 
aluminum spacer and frame with 
thermal break) 

–18.4 99.5% 

Binary State_MN State of Minnesota 4.7 99.5% 

Binary C_WC_ewps19wo 

Wall construction code ewps19wo (0.5-
in. lapped wood siding, 0.5-in. 
fiberboard sheathing, 5.5-in. wood studs 
@ 16 in. o.c., 1-in. expanded 
polystyrene, R-19 mineral fiber batt 
insulation, 0.5-in. gypsum wallboard) 

9.1 98.9% 

Binary C_HT_EBB Heating type EBB (electric baseboard) 9.6 97.1% 

Binary C_CC_ecwf21 

Ceiling construction code ecwf21 (3.5-
in. wood ceiling joists @ 25 in. o.c., R-
21 fiberglass fill ceiling insulation, 0.5-in. 
gypsum wallboard) 

8.1 96.7% 

 

The coefficients give a magnitude estimate and sign for each variable. The very low R-squared 
values indicate that only a fraction of the difference between HEST-predicted and measured 
values can be explained by the inputs. Nevertheless, a few variables might be worth 
investigating. At least six of the significant variables in the difference site electricity model occur 
in the measured site electricity model. The negative coefficients for number of bedrooms, wall 
R-value, and a few other variables indicate that the difference decreases as these variables 
increase. The positive coefficients for variables such as floor area, electric furnace, and the R-19 
wall construction indicate that the difference increases as these variables increase.  

Table 8 shows the resulting MLR model with difference site NG as the dependent variable. The 
resulting adjusted R-squared value for this model is 0.456, which indicates that about 46% of the 
variability in the difference can be explained by this model. All variables listed are significant at 
a CL ≥ 95%. Seven numeric variables plus three binary variables are significant at a CL > 99%.  
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Table 8. Significant Model Variables and Coefficients for Difference Site NG 

Variable 
Type Model Variable Original Variable Description Coefficients 

(MMBtu) 
CL from 

MLR 
  (Intercept)  9.8 97.7% 
Numeric C_HDD_65F HDDs (base 65°F) 7.5 100.0% 

Numeric C_E_WASG (East window area) × (SHGC) –6.7 100.0% 

Numeric C_heatingEfficiency Heating efficiency for home heating 
system –23.8 100.0% 

Numeric C_RoofRValue 
Roof R-value determined from roof 

construction and ceiling construction 
inputs 

–5.5 100.0% 

Numeric C_N_WindowArea North-facing window area (ft2) –4.2 99.8% 

Numeric C_houseOrientation House orientation (0 = N, 90 = E, 180 = 
S, and 270 = W) 4.5 99.7% 

Numeric C_airLeakage50ip Air leakage (cfm) 4.4 99.4% 
Numeric C_age_years House age in years 4.3 97.4% 

Binary C_WC_ewwf00wo 

Wall construction code ewwf00wo (0.5-
in. lapped wood siding, 0.5-in. 

fiberboard sheathing, 3.5-in. wood studs 
@ 16 in. o.c., 3.5-in. vertical air spaces 

(no insulation), 0.5-in. gypsum 
wallboard) 

16.9 100.0% 

Binary C_HT_GBL Heating type GBL (gas boiler) 26.6 100.0% 

Binary C_WC_ewwf19wo 

Wall construction code ewwf19wo (0.5-
in. lapped wood siding, 0.5-in. 

fiberboard sheathing, 5.5-in. wood studs 
@ 16 in. o.c., R-19 mineral fiber batt 
insulation, 0.5-in. gypsum wallboard) 

–13.5 99.7% 

 

HDDs were significant for both the measured site NG and the difference model. Both had 
positive coefficients. The indication is that HEST overpredicts the impact of greater HDDs, 
perhaps for a variety of reasons: the assumed heating set point may be too high, the variation in 
indoor air temperature is too great, empty wall cavities are imperfectly modeled, etc. Air leakage 
also had positive coefficients for both models. Increased air leakage increases energy use, but 
HEST might be overpredicting the impact. 

Heating efficiency was significant for both the measured site NG and the difference model, but 
had negative coefficients. The measured site NG model shows a reasonable trend, declining NG 
use as the heating system efficiency increases. The negative estimate for the difference model 
indicates that HEST may not completely capture the impact of increasing system efficiency.  

The roof R-value was not significant in the measured site NG model, but is significant in the 
difference model. One would expect that as roof R-value increases, the NG use should decrease, 
but it might be that in actuality NG use does not decrease as much as HEST predicts. Hence the 
predicted would be less than the measured.  
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A few other variables had interesting trends. Increased age in years showed lower NG use. The 
difference model indicated a possible overprediction by HEST. This might be an artifact of 
limited data. One generally expects newer homes to use less energy, but on average the newer 
homes have more floor area. Increasing north- and east-facing window area correlates with 
increasing NG use. The difference model indicated underprediction by HEST for at least the 
north-facing window area. House orientation indicated lower NG use as the orientation moved 
away from being directly north (0 angle). The difference model indicated a possible 
overprediction by HEST for orientation. 

The binary variables are sometimes more difficult to explain. The difference model indicates that 
HEST overpredicted NG use for homes with wood frame wall construction with no insulation 
(ewwf00wo). This could be due to lower average indoor temperatures caused by zoning or 
inaccurate modeling of uninsulated walls. One would expect higher energy use with less wall 
insulation, but in this case the correlation with wall construction types with low insulation did 
not prove significant in the measured NG model and might be hidden due to other sources of 
variability. Wall R-values were also estimated based on the DOE-2 wall construction codes and 
tested separately, but did not prove to be significant. Two floor construction types with R-30 and 
R-25 insulation (efwf30ca and efwf25ca) correlated with reduction in measured NG use. Lower 
differences were observed for homes with another type of wall construction (ewwf19wo 
designates wood frame construction with R-19 mineral fiber batt insulation in the wall). 

3.7 Summary 
In spite of the data limitations, MLR models indicated significant correlations between measured 
energy use and several HEST inputs. These methods also indicated significant correlations 
between differences (HEST predicted minus measured energy use) and several HEST inputs. 
How these inputs were collected and used in the HEST prediction models can be investigated to 
identify causes for differences from measured energy use and potential improvements to 
software inputs and models.  

The statistical models discussed in this section apply only to the current FDR data used to 
develop the models. As more data are collected, it is likely that the coefficients will change, new 
inputs will become significant, and current significant inputs might prove to be insignificant. 
Nevertheless, the current statistical models identified several HEST inputs that significantly 
correlated to measured site energy use (both electricity and NG). The difference models 
identified HEST inputs that correlated with increasing or decreasing difference from measured 
energy use. These inputs might be causing the differences or they might be used in models or 
algorithms that are causing the differences. 
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4  Operational Uncertainty Analysis 
The Home Energy Score assesses the performance of the energy-related assets of a home under 
typical operating conditions (standard occupants). However, utility billing data reflect the 
performance of the energy-related assets of a home under actual operating conditions, which can 
vary greatly. Therefore, when assuming standard occupancy, there is considerable uncertainty 
that predictions will agree with utility billing data because actual occupant behavior is not 
considered. The goal of this analysis was to estimate the effect of operational input uncertainty 
on the uncertainty in energy use predictions. A development version of BEopt™/EnergyPlus17 
was used to perform the simulations. 

4.1 Approach 
Two prototypical houses were utilized in the analysis:18 

• House A: 1,539-ft2, one-story, detached, inefficient home, representative of 1960s-era 
construction. 

• House B: 2,500-ft2, two-story, detached, more efficient home, representative of new 
construction. 

The following technical approach was used to estimate the effect of operational input uncertainty 
on the uncertainty in energy use predictions: 

1. Identify operational inputs accessible in the BEopt input file and select a subset of key 
inputs for variation. 

2. Define probability distributions representing the uncertainty ranges for each key input. 

3. Randomly select values from probability distributions for each key input and simulate 
energy use for that realization of inputs. 

4. Repeat Step 3 for many realizations to generate a range of simulation output. 

5. Analyze the distributions of simulated energy uses. 

Nineteen inputs related to the operation of the homes were selected for this analysis. These 
inputs, their physical units, and key notes are listed in Table 9. 

.  

  

                                                            
17The BEopt (Building Energy Optimization) software was developed by NREL to evaluate residential building 
designs. The software can be used to analyze both new construction and existing home retrofits, and provides 
detailed analysis using house characteristics. The version of BEopt used in this analysis utilizes the EnergyPlus 
building energy simulation engine. EnergyPlus has been developed and supported by DOE Building Technologies 
Program since 1996. 
18 More information about the operational uncertainty analysis and assumed features of the homes can be found in 
Polly (2011). 
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Table 9. Operational Inputs Perturbed in Monte Carlo Simulations 

General Category Input(s) Units Notes 

Thermostat 

Heating set point °F 
All hours during the weekday and all hours 
during the weekend were set to the same 
value. 

Cooling set point °F 
All hours during the weekday and all hours 
during the weekend were set to the same 
value. 

Miscellaneous 
Electric Loads 

(MELs) 
MELs multiplier – 

MELs include all plug loads and loads not 
explicitly defined in the Major Appliances 
group. Multiplier values specify a fraction of 
the Building America House Simulation 
Protocols (HSP) energy use. 

Miscellaneous Gas 
Loads (MGLs) MGLs multiplier  

MGLs include all gas loads not expressly 
defined in the Major Appliances group, such 
as gas fireplaces, grills, and pool heaters. 
Multiplier values specify a fraction of the 
HSP energy use. 

Miscellaneous Hot 
Water Loads 

Sink multiplier, 
shower multiplier, 

bath multiplier. 
– 

Sinks, Showers, and Baths water use (other 
water use is handled in the appliance 
group). Multiplier values specify a fraction of 
the HSP hot water consumption. 

Interior Shading 
Heating shade 

multiplier, cooling 
shade multiplier. 

– 

Interior shading multiplier for heating and 
cooling seasons. Solar gains through 
windows are reduced by the Interior 
Shading multipliers. 

Lighting 
HSP interior/exterior 

lighting energy 
multipliers 

kWh/yr Multiplier values specify a fraction of the 
HSP annual lighting energy use. 

Furniture 

Conductivity Btu-in./h·ft2·°F Conductivity of furnishings. 
Density lb/ft3 Density of furnishings. 

Specific heat Btu/lb·°F Specific heat of furnishings. 

Area fraction – Fraction of finished floor area covered by 
furniture. 

Weight lb/ft2 Furniture mass per finished floor area. 
Solar absorptance – Solar absorptance of furnishings. 

Refrigerator HSP multiplier – Multiplier values specify a fraction of the 
HSP electric energy use. 

Electric Range and 
Dishwasher HSP multipliers – Multiplier values specify a fraction of the 

HSP electric energy and hot water use. 

Clothes Washer and 
Electric Clothes 

Dryer 
HSP multipliers – Multiplier values specify a fraction of the 

HSP electric energy and hot water use. 

Natural Ventilation Fraction of total 
window area open – Specifies the fraction of total window area 

that is open during natural ventilation. 

Water Heater Water heater set 
point °F Water heater set point temperature. 

 

Input values were randomly selected from triangular probability distributions. For this 
distribution the probability of selection is greatest at the nominal value and decreases linearly to 
zero at the minimum and maximum values. The triangular distribution may be either symmetric 
or asymmetric with respect to the nominal value; an asymmetrical distribution is shown in Figure 
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21. Table 10 shows the minimum, nominal, and maximum values used to define the triangular 
probability distributions for the 19 inputs. Values were chosen using engineering judgment 
considering previous work by a group of industry experts to define uncertainty ranges for the 
Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Judkoff et al. 2010). 

 

Figure 21. Triangular probability distribution used for input selection 

Table 10. Perturbed Operational Inputs and Associated Uncertainty Ranges 

Input Minimum Nominal Maximum 
Space Heating Set Point (°F) 60 68 75 

Space Cooling Set Point19 (°F) 71 78 86 
MELs Multiplier 0.2 0.8 2.0 
MGLs Multiplier 0.2 0.8 2.0 

Miscellaneous Hot Water Loads Multiplier 0.2 0.8 2.0 
 Interior Shading Multiplier 0.5 0.6 1.0 
Interior Lighting Multiplier 0.2 0.8 2.0 
Exterior Lighting Multiplier 0.2 0.8 2.0 

Furniture Conductivity (Btu·in./h·ft2·°F) 0.64 0.80 0.96 
Furniture Density (lb/ft3) 32 40 48 

Furniture Specific Heat (Btu/lb·°F) 0.232 0.290 0.348 
Furniture Area Fraction 0.1 0.3 0.5 
Furniture Weight (lb/ft2) 2 8 14 

Furniture Solar Absorptance 0.4 0.6 0.8 
Refrigerator Multiplier 0.7 1.0 1.3 

Range/Dishwasher Multiplier 0.2 0.8 2.0 
Clothes Washer/Dryer Multiplier 0.2 0.8 2.0 

Fraction of Total Window Area Open 0.00 0.04 0.14 
Water Heater Set Point (°F) 110 125 140 

 
                                                            
19 The thermostat model in BEopt/EnergyPlus does not allow the heating set point to be greater than the cooling set 
point. The small percentage of realizations where this occurred was excluded from the analysis. 

Min Nominal Max 
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4.2 Results 
For this analysis, approximately 2500 realizations of inputs values were randomly selected and 
simulated in BEopt/EnergyPlus for both House A and House B. Figure 22 shows annual total 
source energy use output distributions in Chicago, Illinois for House A and House B. The dashed 
lines are normal distributions based on the output sample mean and sample standard deviation. 
For both House A and House B, the SD is equal to approximately 11% of the mean (i.e., the 
coefficient of variation (COV) = SD/Mean = 0.11). 
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Figure 22. Annual total source energy output distributions in Chicago, Illinois 
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Similar uncertainty analyses were undertaken for other U.S. cities as shown in Table 11. Three 
key takeaways are: 

• The COV varies by 0.03 or less between the prototypical houses.  

• The COV varies by 0.07 or less (House A) and 0.05 or less (House B) across climates—
occupants seem to have greater impact on the total energy use of the homes in milder 
climates. 

• Overall, the analysis shows that even if all other sources of inaccuracy are eliminated in 
an asset analysis, differences between software predictions and measured source energy 
could be significant because occupant behavior is variable relative to standard 
assumptions. For example, simulations showed total source energy use differences of up 
to 36%.20 

Table 11. Mean, SD, and COV for Total Source Energy Use (MMBtu/yr) by Climate 

  HOUSE A HOUSE B 
  MEAN SD COV MEAN SD COV 

Atlanta, Georgia 212.2 27.4 0.13 146.5 19.8 0.14 
Chicago, Illinois 327.1 34.8 0.11 193.8 20.4 0.11 
Houston, Texas 192.5 26.8 0.14 142.9 21.2 0.15 

Los Angeles, California 129.5 22.9 0.18 111.4 18.1 0.16 
Phoenix, Arizona 228.7 30.5 0.13 157.6 22.4 0.14 

Seattle, Washington 233.6 37.5 0.16 148.7 19.4 0.13 
City Average 220.6 30.0 0.14 150.1 20.2 0.14 

 

4.3 Applying Uncertainty Analysis Results to FDR Comparisons 
Figure 23 compares the results of the operational uncertainty analysis to the results from the 
HEST comparative analyses in Section 3.1. The gray distribution shows the differences between 
HEST predictions and measured energy uses in the FDR.21 These differences are the result of all 
sources of inaccuracy, including inaccuracies in inputs related to the occupants, the asset, and the 
site. The overlaid blue distribution represents the predicted differences caused by occupant 
variability relative to standard assumptions.22 The assumption of standard occupancy is 
necessary to provide an assessment of the home’s energy performance that can be fairly 
compared to assessments of the energy performance of other homes under the same standard 
conditions. As seen in Figure 23, occupant variability is a very significant source of inaccuracy, 
but does not explain all of the differences observed in the FDR comparisons. The remaining 
sources of inaccuracy could be targeted to improve HEST. For example, assessment procedures 

                                                            
20 The 36% value corresponds to two standard deviations in the Los Angeles climate and roughly bounds 95% of the 
differences. 
21 The comparative analyses in Section 3.1 cover site electricity and natural gas. Total source energy use differences 
are discussed in Section 6.2. 
22 A COV value of 0.14 was used generate occupant variability plot. To simplify the presentation, differences are 
shifted so the mean difference is zero for each distribution.  
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may be adjusted considering tradeoffs in accuracy, cost, and time necessary to perform the 
assessment. 

 

Figure 23. Predicted differences due to operational uncertainty overlaid on observed differences 
from FDR comparisons 
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5 Sensitivity to Assessment of Whole-House Leakage 
HEST accepts either a quantitative measurement of whole-house leakage using a blower door or 
a qualitative assessment of whether the home as been air sealed.23 When a user enters the 
quantitative results of a blower door test in CFM50, the software uses this datum to calculate the 
leakage area of the home, a direct input into the underlying DOE-2 infiltration model. When a 
user enters the qualitative assessment, HEST estimates from historical data the leakage area of 
the home based on this input and a few other key parameters.24 

5.1 Approach 
During the Home Energy Score pilot, blower door measurements were collected for 655 homes. 
NREL reran these homes through HEST. Each home was run three times using different inputs 
for whole-house air leakage:25 

• Using the blower door data (CFM50) 

• Using the qualitative assessment of “sealed” 

• Using the qualitative assessment of “unsealed” 

5.2 Results 
Results of these runs are presented in Figure 24 and Figure 25. The figures compare the total 
predicted source energy from HEST using the two qualitative input values to the total predicted 
source energy from HEST using the quantitative input stemming from a blower door 
measurement. 

                                                            
23 The quantitative input is entered as cubic feet per minute at 50 Pascals of pressure (CFM50). The qualitative input 
is choosing Yes or No to the question Does the house have weather-stripping and/or caulking to prevent air 
leakage? The HESpro website help tip for the qualitative input reads as follows: Answer “no” unless there has been 
a specific effort to stop all air leaks in the home within the last two years. 
24 Details about the HES infiltration model can be found in the HES engineering documentation, available online at 
https://sites.google.com/a/lbl.gov/hes-public/. 
25 For the 655 homes in which blower door data were collected, only 12 have data about a qualitative assessment of 
whole-house air leakage. Additionally, assessors who conducted the blower door test also provided the qualitative 
input and one must assume the diagnostic test results influenced the qualitative assessment. Hence, for this analysis 
we chose to include both Sealed and Unsealed results for each home. 

https://sites.google.com/a/lbl.gov/hes-public/
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Figure 24. Predicted source energy use from HEST using unsealed qualitative 
input for whole-house air leakage versus quantitative whole-house leakage 

 

Figure 25. Predicted source energy use from HEST using sealed qualitative input 
for whole-house air leakage versus quantitative whole-house leakage 
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Figure 26 shows the frequency distribution of the predicted annual source energy use using the 
three variations in whole-house leakage input.  

 

Figure 26. Distribution of HEST-predicted source energy use for 655 homes 
generated using three different input scenarios for whole-house leakage 

Table 12 shows the average value of the source energy for each of the three whole-house 
infiltration input scenarios. Note that the mean source energy use is lower using the measured 
whole-house leakage than for either of the qualitative input values. It appears that, on average, 
the measured air leakage for the homes in this sample is slightly lower than the default leakage 
estimated by HEST. 

Table 12. Average HEST-Predicted Source Energy Use for Each of Three Input 
Scenarios for Whole-House Infiltration 

 CFM50 Sealed Unsealed 
Mean Source Energy 

(MMBtu/yr) 227 233 251 

 

Figure 27 shows the difference in predicted source energy use generated by HEST using the 
quantitative and qualitative inputs for whole-house air infiltration. On average, when compared 
to the predictions stemming from quantitative input, the source energy use is increased by 6 
MMBtu/yr when the sealed qualitative input is used and by 24 MMBtu/yr when the unsealed 
qualitative input is used. This could indicate that the assumptions behind the qualitative inputs 
cause overestimation of leakage area. 
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Figure 27. Distribution of differences in home energy score-predicted source 
energy use using qualitative and quantitative input for whole-house leakage 

Additional analysis examining sensitivity in terms of the Home Energy Score to the quantitative 
and qualitative inputs for whole-house air infiltration is presented in Section 6.3.   
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6 The Score 
The primary objective of the Home Energy Score program is to issue a score to the homeowner. 
Although the details of the score calculation were in flux throughout the period in which NREL 
conducted this analysis, the results reflect the scoring bins released by DOE on May 19, 2012. 

6.1 Calculation of Score 
The Home Energy Score is calculated from total source energy consumption for the home as 
predicted in HEST. The source energy predictions are transformed into scores based on 10-point 
bins of source energy that have been established for 245 TMY climate stations. Glickman (2012) 
provides a detailed description of the development of the scoring bins. 

6.2 Predicted Score Versus Score Calculated From Measured Data 
Figure 28 shows the relationship between predicted source energy use from HEST and weather-
normalized measured source energy use for the homes in the FDR. Figure 29 shows the 
distribution of differences between the HEST source energy predictions and the weather-
normalized measured source energy use. HEST does a good job on average of predicting total 
source energy, with a median difference between predicted and measured energy use of just 8 
MMBtu/yr, or about 0.4%. 

 

Figure 28. HEST-predicted source energy use versus  
weather-normalized measured source energy use 
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Figure 29. Distribution of differences between HEST-predicted and measured source energy use 

Figure 30 shows the cumulative distribution of differences between HEST-predicted and 
measured source energy use. The median difference between predicted and measured source 
energy use is –8 MMBtu/yr; this can be observed at the 50% point on the x-axis in Figure 30. It 
can also be observed in Figure 30 that HEST underpredicts source energy use in about 60% of 
the homes. 
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Figure 30. Cumulative distribution of differences between  
HEST-predicted and measured source energy use26 

Figure 31 is a bubble graph of the HEST-calculated score versus a score calculated from the 
weather-normalized measured source energy use for the homes in the FDR. The size of each 
bubble represents the number of occurrences at that point. The number of occurrences is also 
displayed numerically inside or alongside each bubble. The axes are inverted to make this figure 
comparable to those above; lower scores represent higher energy use.  

                                                            
26 Data points above 150% difference are not shown on the graph. 
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Figure 31. Predicted score versus score calculated from  
weather-normalized measured source energy use 

Figure 32 shows a histogram of the differences between the HEST-calculated score and the score 
calculated from measured data. The mean and standard deviation of the differences are shown in 
the figure. For 52% of the homes in this sample, the predicted HEST is within ±1 point of a score 
calculated from measured energy use. 
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Figure 32. Histogram of differences between predicted score and score  
calculated from measured energy use 

6.3 Sensitivity of Score to Assessment of Whole-House Leakage 
Figure 33 shows the frequency distribution of the score for 655 homes in the Home Energy Score 
Pilot using the three variations in whole-house leakage input: 

• Using the blower door data 

• Using the qualitative assessment of “sealed” 

• Using the qualitative assessment of “unsealed.” 
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Figure 33. Distribution of Home Energy Score for 655 homes generated using  
three input values for whole-house leakage 

Table 13 shows the average value of the Home Energy Score for each of the three whole-house 
infiltration modes. Note that the average score is higher using the measured whole-house leakage 
than for either of the qualitative input values. It appears that on average the measured air leakage 
for the homes in this sample is slightly lower than the default leakage estimated by HEST. 

Table 13. Average Home Energy Score for Each of  
Three Input Scenarios for Whole-House Infiltration 

 
CFM50 Sealed Unsealed 

Mean Score: 5.75 5.59 5.08 
 

Pearson’s chi-square test was applied to examine the relationship between the three distributions 
shown in Figure 33.27 The chi-square test tests whether the frequency distribution of 
observations in a sample is consistent with a historical or expected distribution. Treating the 
quantitative distribution as the expected distribution, and the two qualitative distributions as 
observed distributions, we were able to draw from chi-square tests the following statistical 
conclusions for this sample of homes: 

• The sealed qualitative distribution is not significantly different from the quantitative 
distribution at a 95% CL. 

                                                            
27 Scoring bins 9 and 10 were pooled together because frequencies are less than 5 (an issue with chi-square tests). 
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• The unsealed qualitative distribution is significantly different from the quantitative 
distribution at > 99% CL. Hence, we can say with confidence that using the unsealed 
qualitative option reduces the mean score when compared to using the quantitative input 
method for the set of homes considered in this analysis. 

Figure 34 shows the difference in Home Energy Score generated by HEST using the quantitative 
and qualitative inputs for whole-house air infiltration. On average, for this sample of homes, the 
Home Energy Score is reduced by 0.16 points when the sealed qualitative input is used and by 
0.67 points when the unsealed qualitative input is used. 

 

Figure 34. Distribution of differences in Home Energy Score generated using 
qualitative and quantitative input for whole-house leakage 

An examination of the score sensitivity to the quantitative and qualitative inputs for whole-house 
air infiltration by climate28 was also conducted using the pilot data. No climate-specific issues 
were identified by the sensitivity study.   

                                                            
28 At the time of the pilot, the Home Energy Score was calculated using bins for 18 climate zones in the United 
States. The sensitivity study looked at variability in results across these zones. 
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Appendix A Historical Progression of HEST Accuracy 
This section provides a high-level historical perspective of NREL’s assessments of HEST.  

NREL first assessed the accuracy of HEST in July 2011 and provided feedback to DOE and 
LBNL. The final assessment reflected in this report covered the April 27, 2012 release of HEST. 
With each successive release of the tool, LBNL made modifications to the underlying 
assumptions and calculations, some in response to results generated by NREL, some driven by 
other factors. 

Three snapshots of HEST accuracy are presented below. The data included in each assessment 
are different, as NREL was continually adding homes to the FDR.29 Key modifications made to 
HEST between the assessments are highlighted. 

A.1 July 13, 2011 Analysis 
The figures and table below summarize results of HEST analysis conducted on July 13, 2011.

 

Date of Analysis: July 13, 2011 
Electricity NG 

Number of observations: 400 Number of observations: 328 
Median absolute difference: 32% Median absolute difference: 59% 

 

At the time of this assessment HEST assumed fixed occupancy in all homes (two adults, one 
child), which is evident in the near-horizontal bands of the electricity use plot above. The lowest 
band corresponds to homes with predicted electric energy consumption of approximately 5000 
kWh that use NG for space and water heating and have no space cooling. Most predicted 
electricity use for these homes is the HEST default electricity consumption for lighting, 
appliances, and MELs for two adults and one child. The horizontal band above the band at ~25 
MMBtu consists of homes with electric water heating and space cooling. The points above the 
bands with higher predicted (and measured) electric consumption are homes with electric space 
heating.  

                                                            
29 Note that the scales on the graphs are not consistent across the timeline. It was not feasible to go back and adjust 
axes in preceding analyses as data were added to the FDR. 
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HEST also significantly overpredicted NG consumption in this version of the tool.  

A.2 July 20, 2011 Analysis 
Selected modifications to HEST in the July 20 update include: 

• Neighboring houses on left and right assumed for shading calculations. 

• Default thermostat now 78/84 cooling, 68/60 heating, compared to 78/81 and 68/64 
previously. 

• Default clothes washer loads now 1 warm/warm, 2 warm/cold, and 3 cold/cold per week. 

• Increased DOE-2 wind shielding class, which will reduce local wind speeds. 

• Conditioned basements now have thermostat setting 5 degrees lower than main living 
area for heating and 5 degrees higher for cooling, compared to no differential previously. 

• Operable window shading now applied only during summer. 

• Default refrigerator now a 10-year-old large, top freezer auto-defrost. 

• Reduced default clothes dryer energy use, and number of loads to 5 per week. 

• Reduced default dishwasher water use to 8.2 gallons/cycle and number of loads to 3 per 
week. 

• Default water heater energy factors now 0.59 for gas and 0.90 for electric. 

• Lowered default water heater set point to 120°F. 

• Increased inlet water temperatures by approximately 8 degrees. 

 

Date of Analysis: July 20, 2011 
Electricity NG 

Number of observations: 415 Number of observations: 334 
Median absolute difference: 34% Median absolute difference: 25% 
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The impacts of changing set points and assumptions about basement space temperatures are 
evident in the NG plot and median absolute difference between predicted and measured NG use. 
The reduction in the hot water tank set point temperature is evident in the electricity plot; the 
upper band associated with hot water use is lower than in the July 13 results. However, other 
changes made to the software and/or data resulted in a small increase in the median absolute 
difference between predicted and measured electricity use. 

A.3 April 27, 2012 Analysis 
Selected changes made to HEST between the July 13 and April 27 analyses include: 

• Updated the default for number of clothes washer loads and energy use. 

• Fixed a bug where specifications for custom windows were not set correctly when all 
sides were the same. 

• Modified occupancy so that it is no longer static, but scales with the number of bedrooms 
in home. 

• Modified calculation of lighting energy use to be based on floor area. 

• Modified calculation of appliance energy use to be based on floor area and number of 
bedrooms. 

• Updated weather data with new average temperature and water inlet temperature values  

• Updated climate zone default values for foundation type, stories above ground, window 
type, and dryer, stove and oven fuels. 

• Updated default number of ceiling fans to “none.” 

 

Date of Analysis: April 27, 2012 
Electricity NG 

Number of observations: 859 Number of observations: 500 
Median absolute difference: 24% Median absolute difference: 24% 



 

53 
 

 

Changes made in standard occupancy assumptions had a considerable impact on the predicted 
electricity use, reducing the median absolute difference between predicted and measured energy 
use from 34% in the July 20 analysis to 24% in the April 27 analysis. The horizontal bands 
evident in the July 13 and July 20 electricity plots are no longer seen in the plot above; the 
predicted electricity use trends upward with increasing measured electric energy use. 



 

54 
 

Appendix B Use of Field Data Repository in Scoring Tool 
Assessment 

This section describes the state and use of the FDR in the HEST assessment project. 

B.1 Field Data Repository Data Collection 
NREL has been working to obtain historical datasets containing robust, research-grade 
characteristics data coupled with utility billing data. It has proven to be a challenging process; 
there are many obstacles, including paucity of data and legal issues related to customer privacy. 
Nevertheless, NREL managed to accumulate useful data. 

To start with, the FDR team focused on datasets that were available in the form of REM/Rate 
software input files. REM/Rate has been the most widely used home energy rating software for 
more than a decade, and thus REM/Rate input files are a relatively common format for existing 
datasets. It is used for home energy ratings (primarily supporting ENERGY STAR Qualified 
Homes Program), state and utility efficiency programs, and income-qualified weatherization 
programs. The software is used to evaluate new construction and retrofits, and its input files 
contain fairly detailed building characteristics. The software also has a feature that allows batch 
exporting of input files into a relational database. This REM/Rate database format became the 
starting point for the FDR.  

Initial datasets that were collected and aggregated into the FDR included: 

• Oregon Energy Performance Pilot Study (Earth Advantage Institute, Conservation 
Services Group 2009) data. A mix of 190 newer and older homes audited in 2008 and 
located in Portland and Bend. 

• Wisconsin Housing Characterization Study (Pigg and Nevius 2000) data. Collected 
in 1991, a mix of 299 new and existing homes located throughout Wisconsin. 

• Houston utility study. A sub-sample of 82 homes statistically derived from a utility 
program evaluation conducted by Hassel et al. in 2008 involving a sample of 226,000 
homes built from 2002 through 2007. 

• Advance Energy’s SystemVision homes. Four hundred ninety high-efficiency homes 
receiving full home energy ratings in North Carolina and Tennessee. 

• Building America Energy Audit Assessment Housing Characterization (Nettleton 
and Edwards 2012) data. One hundred twenty-five older retrofit-candidate homes 
receiving full home energy ratings in Minnesota and Wisconsin. 

• EPA ENERGY STAR Qualified Homes evaluation study. Seventy-five ENERGY 
STAR Qualified Homes in Minnesota and Wisconsin. 

These datasets resulted in a total of 1183 homes in the FDR after processing them as described in 
the next section. 
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B.2 Field Data Repository Data Processing 
Housing characteristics data across these initial datasets were consistent and required no 
processing. The data were aggregated using REM/Rate batch database capabilities. 

Utility billing data had to be processed for a subset of the datasets. To compare predicted energy 
use from HEST, SIMPLE, and REM/Rate to measured energy use, the utility billing data needed 
to be normalized for differences between the weather occurring during the utility billing period 
and the climate data used in the energy simulation. HEST, SIMPLE and REM/Rate use TMY2 
climate data—TMY data for the 30-year period 1961–1990. 

The utility billing data were weather normalized following the procedures outlined in ASHRAE 
Guideline 14-2002, Annex D: Regression Techniques (ASHRAE 2002). The requirement for 12 
months of monthly billing data was waived and lowered to 10 months of billing data to increase 
the number of homes included in the resulting dataset. Three-parameter heating and cooling 
variable-base degree-day models were used, regressing monthly utility billing data against 
monthly degree-days calculated from coincident daily average temperatures. Historic daily 
average temperatures were obtained from weather stations managed by the National Climatic 
Data Center (NCDC)30.  

Heating models were created with NG billing data and both heating and cooling models were 
created with electricity billing data. For each model, goodness-of-fit criteria were established as 
adjusted R2 ≥ 0.7 for gas and adjusted R2 ≥ 0.5 for electricity. For cases with insufficient 
goodness-of-fit, the model coefficients were not used and an annual average energy use was 
calculated from the utility billing data. For cases with fewer than 12 months of billing data, a 
daily average energy use was calculated and multiplied by 365.25 to calculate an annual energy 
use. For cases with more than 12 months of data, the annual energy use was calculated by 
summing the average energy use for each calendar month. For regression models with sufficient 
goodness-of-fit, the model coefficients were applied to the calculated degree-days from TMY2 
climate data, calculating the normalized annual consumption. Daily HDDs and CDDs for TMY2 
climate data were calculated at base temperatures ranging from 40°F to 70°F. Daily average 
temperatures were calculated from hourly TMY2 data before use in the calculation of daily 
degree-days.  

Utility billing data could not be obtained for the Oregon dataset, but climate-normalized annual 
energy uses for electricity and NG were provided by Earth Advantage Institute. 

B.3 Translation of Field Data Repository Data to Software Inputs 
For this project, “interpreters” were written in the Python programming language to translate 
FDR data to software inputs for HEST and SIMPLE. Detailed descriptions of these data 
translations are presented Appendix C and Appendix D. 

B.4 Processing FDR Results 
Results for NG and electricity use were converted to MMBtu for analysis. HEST source energy 
was calculated using national average site-to-source multipliers. Only homes for which 
successful results were returns from all three software packages and sufficient utility bills could 
be obtained were included in the analysis.  

                                                            
30 Web url: http://www.ncdc.noaa.gov/oa/climate/stationlocator.html 
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Appendix C Translation of Field Data Repository Data to HEST 
Inputs 

In translating inputs from the FDR to HEST, the goal was to provide an “out-of-the-box” set of 
inputs to HEST. In other words, to use HEST as close to how an assessor entering data would 
use it. The following is an explanation of each input to HEST and how it was derived from FDR 
data. The HEST input variables are identified by italicsAndCamelCase. 

C.1 General 
• Zipcode—The ZIP code from the house address in REM/Rate was used. For homes 

without a ZIP code recorded, the zip code was looked up for the city and state using 
postal code data from the Geonames Project.31  

• year—The year the house was built. 

C.2 House Shape and Size 
• houseOrientation—In the FDR data the orientation of the windows is known. Overall 

house orientation is not known. House orientation was estimated by taking the side of the 
house with the greatest window area and assuming that it is the back of the house. 

• storiesAboveGround— Number of above ground stories was retrieved from the FDR. 

• floorArea—Total conditioned floor area was retrieved from the FDR. 

• ceilingHeight—Average ceiling height was calculated by dividing the total conditioned 
volume by the floor area. The result was rounded to the nearest foot. 

C.3 Number of Bedrooms 
• numberBedrooms— Number of bedrooms was retrieved from the FDR. 

C.4 Airtightness 
• airLeakage50ip—The blower door measurement, measured in CFM50. If the infiltration 

was measured in air changes per hour at 50 Pascals (ACH50) it was converted to CFM50 
using 
50ܯܨܥ  = 50ܪܥܣ ∙ ݁݉ݑ݈݋ܸ 60⁄   
If the infiltration was measured in CFM25, it was converted to CFM50 using 
50ܯܨܥ  = 25ܯܨܥ ∙ (50 25⁄ )଴.଺ହ 
 

• airSealingPresent—If the infiltration units were not measured in CFM50, CFM25, or 
ACH50, the infiltration measurement was omitted in HEST and the house was marked as 
“not air sealed,” the HEST default. 

                                                            
31 http://www.geonames.org 
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C.5 Foundation and Floor 
• foundationType—The following mapping was used to convert foundation type from FDR 

to HEST compatible foundation types: 
 

FDR Foundation Type HEST Foundation Type 
Slab Slab-on-grade foundation 

Open Crawlspace Vented crawlspace 
Enclosed Crawlspace ‘Unvented Crawlspace’ if the crawlspace type 

in REM/Rate is ‘Unvented’. ‘Vented 
Crawlspace’ if the crawlspace type in 

REM/Rate is ‘Vented’ or ‘Operable Vents’. 
Conditioned Basement Conditioned Basement 

Unconditioned Basement Unconditioned Basement 
Conditioned Crawlspace Unvented Crawlspace 

 

If the foundation type was “more than one foundation type” the foundation wall or slab 
with the greatest perimeter to ambient/ground was specified as the foundation type in 
HEST. 

• foundationSideInsulationRValue—If the foundation type was a slab the R-value of the 
slab insulation with the greatest area was returned and rounded to the nearest of R-0 or R-
5 (the only options for slab insulation in HEST). If the foundation type was a basement or 
crawlspace, the sum of the exterior, cavity, and interior rigid insulation R-values of the 
foundation wall with the greatest area was returned and rounded to the nearest of R-0, 11, 
and 19 (the only options for basement and crawlspace foundation insulation in HEST). 

• floorConstruction—Insulation level of the floor above the basement or crawlspace. This 
was calculated by identifying the largest frame floor between conditioned space and the 
open crawlspace, enclosed crawlspace, conditioned basement, or unconditioned basement 
depending on the foundation type, and then adding the cavity and continuous insulation 
R-values and rounding to the closest of R-0, 11, 13, 15, 19, 21, 25, 30, and 38 (the only 
available options in HEST). Other foundation types were assumed to have zero floor 
insulation.  

C.6 Walls 
• wallsSameAllSides—Indicates if different wall types are described on each side of the 

house or if one wall type is used to describe all of the exterior walls. This input was 
always set to true to specify one wall type for the whole house. 

• wallConstructionFront—Represents the construction of all of the walls in this case 
because the wallsSameAllSides input above was set to true. Wood stud walls were input 
with the cavity insulation rounded to the closest of the available R-values in HEST 
(0,3,7,11,13,15,19,21). Any continuous insulation on a wood stud wall was assumed to be 
1-in. extruded polystyrene sheathing, as that was the only available option in the HEST 
interface. All siding on wood stud walls was assumed to be wood. Structural brick walls 
and concrete block walls, where applicable, were also translated accordingly. The R-
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values of the continuous insulation were rounded to the nearest values available in the 
HEST input (R-0, 5, 10 and R-0, 3, 6, respectively). 

C.7 Doors and Windows 
• windowArea(Front|Back|Left|Right)—Window area was totaled for each side and 

returned. For windows facing a direction between two sides (e.g., facing northeast), the 
window area was divided between the two sides (half area facing north, half area facing 
east). 

• windowUValue(Front|Back|Left|Right)—An area-weighted average U-value was 
calculated for each window direction. 

• windowSolarGain(Front|Back|Left|Right)—An area-weighted average SHGC was 
calculated for each window direction. 

• windowShade(Front|Back|Left|Right—An area-weighted average interior shading factor 
was calculated for each window direction. A qualitative input was then selected that most 
closely matched the values in Table 9, p. 89, of the HEST documentation.32 

C.8 Skylights 
• skylightsPresent—For homes with any skylight area, this was set to “true”. For homes 

with no skylight area, this was set to “false” and no other skylight inputs were specified. 

• skylightType—A skylight from the HEST library was selected that most closely matched 
the area-weighted average U-value and SHGC of the skylights on the house.  

• skylightArea—Total skylight area. 

C.9 Attic and Roof 
Only one ceiling can be specified in HEST. The ceiling with the greatest area for the house in the 
FDR was selected. All others were ignored. 

• atticType—‘Vaulted’ ceiling in FDR was translated to a ‘Cathedral Ceiling’ in HEST. 
‘Attic’ in FDR was translated to ‘Unconditioned Attic’ in HEST. 

• roofConstruction—This input is a code that represents the roofing material, roof 
insulation (not attic floor insulation), and the presence of a radiant barrier. All roofs were 
assumed to have composition shingles. For roofs with vaulted ceilings, the insulation 
indicated in the FDR was assumed to be in the roof cavity and the nearest R-value (R-0, 
11, 13, 15) available for roof insulation in HEST was selected. If a roof had a radiant 
barrier and no roof insulation then a radiant barrier was selected in HEST. For roofs 
above an unfinished attic, no insulation was specified in the roofContruction, but was 
instead specified on the attic floor in ceilingConstruction. 

• ceilingConstruction—This indicates the R-value of insulation on the attic floor. For roofs 
above an unfinished attic, the R-value from the FDR was assumed to be on the attic floor 
and the nearest option for attic floor insulation in HEST was selected (R-0, 3, 9, 11, 19, 
21, 25, 30, 38, 49, 60). For roofs above a vaulted ceiling, no insulation was specified in 
the ceilingConstruction. 

                                                            
32 http://evanmills.lbl.gov/pubs/pdf/home-energy-saver.pdf 
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• roofAbsorptivityValue—The roof absorptivity was translated from qualitative to a 
quantitative value using the values in the HEST documentation: 

REM/Rate Roof Color Absorptance 

Light 0.60 

Medium 0.75 

Dark 0.90 

Reflective 0.20 

C.10 Ducts and Pipes 
• ductLocation—Duct location was translated from FDR to HEST inputs according to the 

following mapping: 

REM/Rate Duct Location HEST Duct Location 

Open crawlspace Vented crawlspace 

Enclosed crawlspace Unconditioned basement or unvented 
crawlspace 

Conditioned craw space Conditioned space 

Unconditioned basement Unconditioned basement or unvented 
crawlspace 

Conditioned basement Conditioned space 

Attic, under insulation Conditioned space 

Attic, exposed Unconditioned attic 

Conditioned space Conditioned space 

Wall with no top plate Unknown/not applicable 

Garage Unknown/not applicable 

Exterior wall Unknown/not applicable 

Floor cavity over garage Unknown/not applicable 

Under slab floor Conditioned space 

 

• ductInsulationPresent—For homes in the FDR where the R-value of the ducts in the 
primary duct system was greater than R-1, the value for this input was set to “true” . 

• ductSealingPresent—The air handler flow rate in cfm was estimated by assuming air 
conditioners and heat pumps in cooling mode operate at 400 cfm/ton and furnaces and 
heat pumps in heating mode operate at 275 cfm/ton. If necessary, the measured duct 
leakage was converted from CFM50 to CFM25. If the duct leakage was not measured in 
CFM50 or CFM25, the HEST default of “unsealed” was assumed. The measured duct 
leakage in CFM25 was divided by the estimated total CFM to obtain a percent leakage. 
For homes with CFM25 duct leakage ≤22.5% of air handler flow, the ducts were assumed 
to be "sealed." 

• hwFromBoiler—For homes in the FDR where the water heating equipment that handles 
the largest percentage of the water heating load handles some portion of the space heating 
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load and is a gas or oil boiler, it was specified in HEST that the boiler provides hot water. 
Otherwise, it was input into HEST as having separate hot water and space heating 
equipment. If it was determined that the boiler provides hot water and the boiler’s hot 
water tank volume in the FDR is greater than zero, it was specified in HEST that the 
boiler has an indirect tank providing hot water; otherwise, the boiler was specified as 
having a tankless coil to provide hot water. 

C.11 Heating Equipment 
For each house in the FDR, the heating system that handles the greatest percentage of the heating 
load was selected. All other heating equipment was ignored. 

• heatingType—The type of primary heating equipment was translated from FDR. 

• heatingEfficiency—The heating efficiency of the heating equipment was input from the 
FDR into Heating Seasonal Performance Factor (HSPF) for heat pumps and annual fuel 
utilization efficiency for anything else. In cases where the efficiency of a heat pump was 
specified in coefficient of performance (COP), it was converted to HSPF by dividing by 
0.293. 

• heatingCapacity—The heating capacity was converted from kBtu/h to Btu/h and input 
into HEST.  

C.12 Cooling Equipment 
For each home in the FDR, the mechanical equipment that handles the greatest portion of the 
cooling load was selected. Any other cooling equipment was ignored. 

• coolingType—The type of cooling system. All homes in the FDR have either central air 
conditioning, electric heat pumps, or no air conditioning.  

• coolingEfficiency—Seasonal Energy Efficiency Ratio (SEER) was entered for central air 
conditioners and heat pumps. 

C.13 Water Heating 
For each house in the FDR, the mechanical equipment that handles the greatest percentage of the 
hot water load was selected. All other hot water equipment was ignored. 

• hwFuel—The fuel type of the primary water heater was translated from FDR. 

• hwEnergyFactor—The energy factor of the water heater was translated from FDR. 
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Appendix D Translation of Field Data Repository Data to 
SIMPLE Inputs 

In translating inputs from the FDR to SIMPLE, the goal was to provide an “out-of-the-box” set 
of inputs to SIMPLE. In other words, to use SIMPLE as close to how it would be used by an 
auditor entering data. However, in many cases the data collected were in a different form and 
needed to be translated. Specifically, in SIMPLE most of the inputs are qualitative in nature with 
numeric overrides in an override section of the spreadsheet. The FDR data are primarily numeric. 
To avoid introducing additional error by converting the numeric values in FDR to approximate 
qualitative values for input to SIMPLE, the numeric overrides were used whenever possible. 

Following is an explanation of each input to SIMPLE and how it was derived from REM/Rate 
data. 

D.1 General House Characteristics 
• Closest Weather Station—The closest weather station was selected from the ZIP code of 

the house address in REM/Rate. For homes without a ZIP code recorded, the ZIP code 
was looked up for the city and state using postal code data from the Geonames Project.33 

• Finished floor area (above grd)—For homes in the FDR with a conditioned basement, 
the total conditioned floor area was divided by the number of stories plus one (for the 
basement) to estimate the average conditioned floor area per floor. The floor area per 
floor was then multiplied by the number of above ground stories to estimate the finished 
floor area above ground. 

• Stories—Number of above ground stories was retrieved from the FDR. 

• Bedrooms—Number of bedrooms was retrieved from the FDR. 

D.2 Heating System  
• Primary Heating Fuel—This input describes the fuel used for the primary heating 

equipment. However, for electric heating it requires a selection of whether it is resistance 
heating, a heat pump, or a heat pump with a gas backup. For each home in the FDR, the 
heating system that handles the largest portion of the space-heating load was selected. 
The primary heating fuel was retrieved from that equipment and for electric heating 
equipment the appropriate equipment type was selected.  

• Heating System Type—The heating system type is a qualitative description of the heating 
system efficiency. This input was overridden by the quantitative Heating Efficiency input. 

• Heating Efficiency (override)—Heating efficiency was calculated for the primary heating 
system in the metric appropriate for the fuel type (COP for electric, annual fuel utilization 
efficiency for gas). For electric resistance heating, the efficiency was allowed to default 
in SIMPLE. Since the numeric efficiency of electric heating did not change when 
different qualitative efficiency inputs were selected the efficiency was assumed to be part 
of the logic of the SIMPLE and not intended to be an input in this case. The efficiency of 
air source heat pumps and dual-fuel heat pumps was converted from HSPF to COP. Then, 

                                                            
33 http://www.geonames.org 
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a climate adjustment was applied to the COP of air source heat pumps (not dual-fuel heat 
pumps) according to a method recommended by Blasnik & Associates. 

• Heat Distribution Type—The heating distribution type was selected based on the type of 
heating equipment (ducts for furnaces, radiators for boilers, etc.).  

• Secondary Heating Type—This input allows the same selections as the Primary Heating 
Fuel input described above with the addition of hard and soft woods. For each home in 
the FDR with more than one heating system, the one that handles the second-largest 
portion of the space heating load was selected and translated in the same manner as the 
Primary Heating Fuel input. If the secondary heating system burns wood, ‘Soft’ wood 
was assumed and submitted to SIMPLE.  

• Secondary heating - % home—The percentage of the heating load handled by the 
secondary heating system as retrieved from the FDR. If there are more than two heating 
systems, the primary heating system assumed the load of the third, fourth, etc. systems. 
For homes in the FDR with only one heating system this input was set to zero. 

D.3 Walls 
• Wall Insulation—A qualitative description of the wall insulation (e.g., “No Ins”, 

“Partial”, “Std.”, “Good”, “Very Good”). This input was overridden by the quantitative 
Wall R override. 

• Wall Area (override)—Overrides the default calculated wall area within SIMPLE. The 
wall with the largest area between conditioned and ambient space was selected for each 
house in the FDR and the area of that wall was submitted.  

• Wall Area 2 (override)—For homes in the FDR with more than one wall type between 
conditioned and ambient spaces, the second largest area was selected and submitted. 
Additional wall area between conditioned and ambient space was added to the first wall 
(Wall Area above). 

• Wall R (override)—The assembly R-value is selected from the primary wall type for each 
house as determined in the Wall Area input above. If the wall assembly R-value from the 
FDR was less than R-6, the R-value was set to R-6 to replicate the “no insulation” 
condition in the Wall Insulation qualitative input. 

• Wall 2 R (override)—The assembly R-value of the secondary wall type was calculated 
similarly to the Wall R input. 

D.4 Attics 
• Attic Insulation—A qualitative description of the attic insulation (e.g. “None”, “Some”, 

“Std. 10 inch”, “High Ins”). This input was overridden by the quantitative Attic R 
override. 

• Attic Area (override)—Overrides the default calculated attic area within SIMPLE. For 
each house in the FDR, the attic with the greatest area was selected as the primary attic 
and the area of that attic was submitted. 
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• Attic Area 2 (override)—For homes in the FDR with more than one attic type, the second 
largest attic area was selected and submitted. Additional attic area was attributed to the 
first attic (Attic Area above). 

• Attic R (override)—The total R-value of the primary attic (as determined for the Attic 
Area input above) was selected from the FDR. If the attic had a calculated R-value less 
that R-5, the R-value was set to R-5 to replicate the “no insulation” condition in the 
qualitative input (Attic Insulation). 

• Attic 2 R (override)—The assembly R-value of the secondary attic was calculated 
similarly to the Attic R input. 

D.5 Windows 
• Window Type—A qualitative description of the type of windows installed on the house 

(e.g. “Single”, “Dbl/Sng&Storm”, “Dbl & low e”, “Super”). This is overridden by the 
Windows R override as described below. 

• Window Area—A qualitative description of the relative amount of window area (e.g. 
“High”, “Typical”, “Low”). This is overridden by the Windows Area override as 
described below. 

• Windows Area (override)—Square feet of window area. For each home in the FDR the 
window area is summed and submitted.  

• Windows R (override)—An area-weighted average window R-value was calculated from 
the FDR data and submitted. 

D.6 Infiltration 
• Air Tightness—A qualitative description of the air tightness of the house (e.g. “Very 

Leaky”, “Leaky”, “Average”, “Fairly Tight”, “Tight”, “HRV”). This is overridden by the 
CFM50 Air Leakage override as described below. 

• CFM50 Air Leakage (override)—The qualitative airtightness input was overridden by the 
blower door measurement measured in CFM50. If the infiltration was measured in 
ACH50 it was converted to CFM50 using 
50ܯܨܥ  = 50ܪܥܣ ∙ ݁݉ݑ݈݋ܸ 60⁄   
If the infiltration was measured in CFM25, it was converted to CFM50 using 
50ܯܨܥ  = 25ܯܨܥ ∙ (50 25⁄ )଴.଺ହ 
 

D.7 Foundation 
• Foundation Type—Foundation types from FDR were translated to SIMPLE according to 

the following mapping: 
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REM/Rate Foundation Type SIMPLE Foundation Type 

Slab Slab 

Open crawlspace Crawlspace 

Enclosed craw space Crawlspace 

Conditioned basement Basement conditioned 

Unconditioned basement Basement 

More than one type Varies, see below 

Apartment above conditioned space Throws an error 

Conditioned crawlspace Crawlspace conditioned 

 

Where there was more than one foundation type, the foundation type was determined 
from the foundation wall or slab with the greatest perimeter adjacent to outdoors. 

• Foundation Insulation—A qualitative input describing the location of the foundation 
insulation (e.g. “None”, “Walls”, “Ceiling”). If the foundation type was a slab, “None” 
was assumed for foundation insulation. Otherwise, the R-values of the largest frame floor 
area recorded and the largest foundation wall area were compared and the one with the 
larger R-value was assumed to be insulated. 

D.8 Ducts 
• Ducts: % in Attic—The percentage of the supply ducts in the attic from the FDR were 

summed and entered into SIMPLE.  

• Ducts: % in Basement—The percentage of supply ducts in the basement was similarly 
calculated. 

• Duct Insulation—Area weighted average duct insulation R-value was calculated and then 
the duct insulation level available in SIMPLE closest to that R-value was selected. 

• Duct Leakiness—Duct leakage in CFM25 was calculated for each duct and averaged by 
floor area served. Duct leakage measured in CFM50 was converted to CFM25 using 25ܯܨܥ = 50ܯܨܥ ∙ (25 50⁄ )଴.଺ହ 

Total air handler CFM was estimated at 400 CFM/ton for an air conditioners and heat 
pumps in cooling mode or 275 CFM/ton for furnaces and heat pumps in heating mode. 
Blasnik & Associates indicated (Blasnik 2011) that the qualitative inputs for duct leakage 
corresponded to the following CFM25 values for a 1200 CFM air handler: 
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Duct Leakage Description CFM25 Leakage for a  
1200 CFM Air Handler 

Very Leaky 700 

Leaky 500 

Average 300 

Tight 100 

Airtight 0 

 

Those values were then scaled to the approximated size of air handler. The qualitative 
duct leakage with the scaled value closest to the averaged CFM25 was entered into 
SIMPLE. 

D.9 Cooling 
For homes in the FDR with multiple central air, air-source heat pump, or dual-fuel heat pump 
systems, the equipment that handles the greatest percentage of the cooling load was assumed to 
be the only cooling system. 

• AC SEER—For each home in the FDR, the efficiency of the primary air conditioning 
system, measured in SEER, was submitted to SIMPLE. If the efficiency was recorded in 
EER it was converted to SEER using the following equation from the Building America 
House Simulation Protocols (Hendron and Engebrecht 2010): 

EER = -0.02 × SEER2 + 1.12 × SEER 

• Window Shading—Shading was calculated based on data from the FDR by taking the 
average of the summer and winter internal shading coefficients multiplied by the average 
of the summer and winter external shading coefficients for each window. Then, the 
overall shading coefficient was calculated as the area-weighted average of the shading 
coefficients of each window. A shading choice was then selected from the list in SIMPLE 
based on which choice corresponded most closely to the calculated shading coefficient. 

• Cool Roof / Rad. Barrier rafters—A quantitative input describing the absorptivity of the 
roof (e.g. “Std Color”, “Reflective / low gain”, “Very Reflective”). For each home in the 
FDR, the absorptivity of the largest roof was used to select the option that corresponded 
most closely in SIMPLE. If the roof was marked as having a radiant barrier in the FDR, 
the input was then changed to ‘Very Reflective’, as per guidance from Blasnik & 
Associates (Blasnik 2011). 

D.10 Water Heating 
• Water Heater Fuel—For each house in the FDR, the water heating system that covers the 

largest percentage of the hot water load was used to determine the fuel type for input into 
SIMPLE. 

• Water Heater Type—For each house in the FDR, the water heating system that covers the 
largest percentage of the hot water load was used to determine the type of water heater 
installed (e.g. “Standard”, “Tankless”, “High Efficiency”, “Indirect”, “Integrated”, “Heat 
Pump”). For conventional tank water heaters, the water heater was assumed to be ‘High 
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Efficiency’ if the energy factor was greater than 0.9 and the fuel was not electricity 
(Blasnik 2011). Otherwise, the water heater was assumed to be ‘Standard.’ Other 
translations of the FDR water heater types were fairly straightforward (e.g., ‘Instant’ 
translates to ‘Tankless’). 

• Hot Water Fixture Efficiency—Assumed to be Average. 

D.11 All Else Information34 
• Lighting Efficiency—Assumed to be “Average”. 

• Primary Refrigerator—For homes in the FDR where a default refrigerator was specified, 
an ‘Average’ refrigerator was selected in SIMPLE.  

• Refrigeration (override)—Specifies kilowatt-hours per year of refrigerator energy use and 
overrides the Primary Refrigerator input above. For homes in the FDR where a user-
defined refrigerator was specified, the refrigerator data were available in terms of total 
kWh/yr of refrigerator energy use (adding the energy use of more than one refrigerator, if 
necessary). Those data were then used here to override the Primary Refrigerator input. 

• Extra Refrigerators / Freezers—Assumed to be “None”.  

• Entertainment (TVs & PCs)—Assumed to be “Average”. 

• # Other Large Uses (500 kWh)—Number of other electricity uses near 500 kWh/yr. 
Assumed to be zero. 

• Other Plug Loads—Assumed to be “Average”. 

• Clothes Dryer Fuel—Retrieved from the FDR for each house. 

• Cooking Fuel—Retrieved from the FDR for each house. 

D.12 Occupancy and Behavior 
• Occupants—Set to zero, which caused SIMPLE to make a default assumption about 

occupancy based on other inputs. 

• Heating Setpoint—The average heating setpoint was selected to match the average of the 
heating set point schedule35 in HEST: 65°F.  

• Cooling Setpoint—The average cooling setpoint was selected to match the average of the 
cooling set point schedule36 in HEST: 80.25°Ft. 

  

                                                            
34 All Else Information is SIMPLE terminology. 
35 http://goo.gl/SaRof 
36 http://goo.gl/SaRof 
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Appendix E Additional Statistical Model Information 
Included in this appendix are additional information and background materials for the statistical 
models developed in Section 3. Additional validations of the difference models are provided. A 
complete list of coded variables and descriptions are included. 

E.1 Additional Validation of MLR models 
In Section 3, measured energy use and differences (predicted minus measured) in energy use 
were modeled separately for each energy type. Because the models of differences had very low 
R-squared values, an additional validation was done. By adding the MLR prediction for 
differences to the MLR prediction for measured, an MLR prediction of the HEST prediction is 
obtained. Hence, a simple linear regression can be applied for HEST prediction as a function of 
this combined MLR prediction.  

The figure below shows the HEST prediction versus the MLR prediction for site electricity use. 
The data shown are from the test set. The adjusted R-squared was 0.723, which can be 
interpreted that the MLR models can recover approximately 72% of the HEST prediction. 

 

HEST prediction versus combined MLR models for measured site electricity 
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The figure below shows the HEST prediction versus the MLR prediction for site NG usage. 
Again, the data shown are from the test set. The adjusted R-squared was 0.861, which means the 
MLR models recover approximately 86% of the HEST prediction. 

 

MLR HEST prediction versus combined MLR models for measured site NG 

E.2 Home Energy Score Test Variables Tested in Statistical Analysis 
This section lists the HEST variables and coding used for the statistical analysis. In addition to 
inputs listed in Appendix C, base 65°F HDDs, base 65°F CDDs, and a few combined variables 
were included in the analysis. The table below gives a complete list of HEST variables and 
descriptions.  

Variables Used for Statistical Analysis and Descriptions 

Number Coded Variable 
Original Variables 

and Inputs 
Original Variable Description 

1 C_HDD_65F HDD_65F HDDs (base 65°F) 

2 C_CDD_65F CDD_65F CDDs (base 65°F) 

3 C_numberBedrooms numberBedrooms Number of bedrooms 

4 C_storiesAboveGround storiesAboveGround Stories above ground level 

5 C_ceilingHeight ceilingHeight Ceiling height (feet) 
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Number Coded Variable 
Original Variables 

and Inputs 
Original Variable Description 

6 C_floorArea floorArea Floor area (ft2) 

7 C_houseOrientation houseOrientation 
House orientation degrees (north = 0, 
east = 90, south = 180, and west = 270) 

8 C_airLeakage50ip airLeakage50ip Air Leakage (cubic feet per minute) 

9 C_roofAbsorptance roofAbsorptance Roof absorptance 

10 C_fndtnInsulRValue 
foundation-
SideInsulationRValue 

Foundation side insulation R-value 

11 C_skylightArea skylightArea Skylight area (ft2) 

12 C_windowAreaTotal windowArea Window area total  

13 C_WAU_Total windowArea*U sum((Window area) × (U-factors)) 

14 C_WASG_Total windowArea*SHGC sum((Window area) × (SHGC)) 

15 C_N_windowArea 

windowAreaFront, 
windowAreaRight, 
windowAreaBack, and 
windowAreaLeft 

Direction of window area determined from 
houseOrientation 

16 C_E_windowArea same as above same as above 

17 C_S_windowArea same as above same as above 

18 C_W_windowArea same as above same as above 

19 C_N_WAU 
Directional 
windowArea*U (Window area) × (U-factors) 

20 C_E_WAU same as above same as above 

21 C_S_WAU sames as above same as above 

22 C_W_WAU same as above sames as above 

23 C_N_WASG 
Directional 
windowArea*SHGC (Window area) × (SHGC) 

24 C_E_WASG sames as above same as above 

25 C_S_WASG same as above same as above 

26 C_W_WASG same as above same as above 

27 C_heatingEfficiency heatingEfficiency System heating efficiency 

28 C_coolingEfficiency coolingEfficiency Cooling efficiency for air conditioner 

29 C_hwFuel hwFuel Hot water fuel type (gas or electric) 

30 C_hwEnergyFactor hwEnergyFactor Hot water energy factor 

31 C_RoofRValue roofRValue 
Roof R-value determined from roof 
construction and ceiling construction 
inputs 

32 C_FloorRValue floorRValue 
Floor R-value determined from floor 
construction input 

33 C_WallRValue wallRValue 
Wall R-value determined from wall 
construction input 

34 Bend_OR Bend, OR Bend, Oregon in climate zone 18 

35 Built_2001_plus from yearBuilt House built in 2001 or later 

36 Built_1976_to_2000   House built between 1976 and 2000 
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Number Coded Variable 
Original Variables 

and Inputs 
Original Variable Description 

37 Built_1951_to_1975   House built between 1951 and 1975 

38 C_HT_GBL heatingType Heating type GBL (gas boiler) 

39 C_HT_GWF   Heating type GWF (gas wall furnace) 

40 C_HT_EBB   Heating type EBB (electric baseboard) 

41 C_HT_EFN   Heating type EFN (electric furnace) 

42 C_HT_EHP   Heating type EHP (electric heat pump) 

43 C_RC_rfps11co roofConstruction Roof construction code rfps11co 

44 C_RC_rfps15co   Roof construction code rfps15co 

45 C_RC_rfrb00co   Roof construction code rfrb00co 

46 C_RC_rfwf00co   Roof construction code rfwf00co 

47 C_RC_rfwf11co   Roof construction code rfwf11co 

48 C_RC_rfwf15co   Roof construction code rfwf15co 

49 C_AT_cath_ceil atticType Attic type of cathedral ceiling 

50 C_CC_ecwf00 ceilingConstruction Ceiling construction code ecwf00 

51 C_CC_ecwf03   Ceiling construction code ecwf03 

52 C_CC_ecwf06   Ceiling construction code ecwf06 

53 C_CC_ecwf09   Ceiling construction code ecwf09 

54 C_CC_ecwf19   Ceiling construction code ecwf19 

55 C_CC_ecwf21   Ceiling construction code ecwf21 

56 C_CC_ecwf25   Ceiling construction code ecwf25 

57 C_CC_ecwf30   Ceiling construction code ecwf30 

58 C_CC_ecwf38   Ceiling construction code ecwf38 

59 C_FT_slab foundationType Foundation type code slab 

60 C_FT_uncond_base   Foundation type code uncond_base 

61 C_FT_unvent_crawl   Foundation type code unvent_crawl 

62 C_FT_vent_crawl   Foundation type code vent_crawl 

63 C_FC_efwf00ca floorConstruction Floor construction code efwf00ca 

64 C_FC_efwf11ca   Floor construction code efwf11ca 

65 C_FC_efwf13ca   Floor construction code efwf13ca 

66 C_FC_efwf15ca   Floor construction code efwf15ca 

67 C_FC_efwf19ca   Floor construction code efwf19ca 

68 C_FC_efwf21ca   Floor construction code efwf21ca 

69 C_FC_efwf25ca   Floor construction code efwf25ca 

70 C_FC_efwf30ca   Floor construction code efwf30ca 

71 C_FC_efwf38ca   Floor construction code efwf38ca 

72 C_WC_ewps00wo wallConstruction Wall construction code ewps00wo 

73 C_WC_ewps03wo   Wall construction code ewps03wo 

74 C_WC_ewps11wo   Wall construction code ewps11wo 

75 C_WC_ewps13wo   Wall construction code ewps13wo 

76 C_WC_ewps15wo   Wall construction code ewps15wo 
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Number Coded Variable 
Original Variables 

and Inputs 
Original Variable Description 

77 C_WC_ewps19wo   Wall construction code ewps19wo 

78 C_WC_ewps21wo   Wall construction code ewps21wo 

79 C_WC_ewwf00br   Wall construction code ewwf00br 

80 C_WC_ewwf00wo   Wall construction code ewwf00wo 

81 C_WC_ewwf03wo   Wall construction code ewwf03wo 

82 C_WC_ewwf07wo   Wall construction code ewwf07wo 

83 C_WC_ewwf13wo   Wall construction code ewwf13wo 

84 C_WC_ewwf15wo   Wall construction code ewwf15wo 

85 C_WC_ewwf19wo   Wall construction code ewwf19wo 

86 C_WC_ewwf21wo   Wall construction code ewwf21wo 

87 C_ST_dcab skylightType 
Skylight type dcab (double pane clear, 
aluminum frame) 

88 C_ST_dcaw   
Skylight type dcaw (double pane clear, 
wood or vinyl frame) 

89 C_ST_dpeaab   
Skylight type dpeaab (double pane, low e, 
argon gas fill, ATB frame) 

90 C_ST_dpeaaw   
Skylight type dpeaaw (double pane, low 
e, argon gas fill, wood or vinyl frame) 

91 C_ST_dseab   
Skylight type dseab (double pane, low e, 
ATB frame) 

92 C_ST_dseaw   
Skylight type dseaw (double pane, low e, 
wood or vinyl frame) 

93 C_ST_thmabw   
Skylight type thmabw (triple pane, low e, 
argon gas fill, wood or vinyl frame) 

94 C_CT_cac coolingType Cooling type cac (central air conditioning) 

95 C_CT_ehp   Cooling type ehp (electric heat pump) 

96 C_DL_uncond_attic ductLocation Duct location uncond_attic 

97 C_DL_uncond_base   Duct location uncond_base 

98 C_HWB_separate hwFromBoiler 
Hot water boiler (highly correlated with 
C_HT_GBL 

99 C_HWB_tankless hwTankless Hot water tankless heater 

 

The table below gives details on the coding used. As mentioned in Section 4.2, some inputs like 
floor area are numeric, but many of the inputs use DOE-2 codes to describe various types of 
building construction components (tables for these codes can be found at 
https://sites.google.com/a/lbl.gov/hes-public/calculation-methodology/appendices/appendix-e). 
There are separate codes for skylight types, wall types, roof types, foundation types, and many 
other components that make up a building. The “NG” column in the table indicates that the 
variable was tested in the NG models. The “Electricity” column in the table indicates that the 
variable was tested in electricity models. 

 

https://sites.google.com/a/lbl.gov/hes-public/calculation-methodology/appendices/appendix-e
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Coding Details for Variables Used for Statistical Analysis. 

Number Coded Variable 
Variable 

Type 
Coding 

Control for 
Binary 

NG 
Elec-
tricity

1 C_HDD_65F Numeric Univariate 
Not 
applicable 

x x 

2 C_CDD_65F Numeric Univariate 
Not 
applicable 

x x 

3 C_numberBedrooms Numeric Univariate 
Not 
applicable 

x x 

4 C_storiesAboveGround Numeric Univariate 
Not 
applicable 

x x 

5 C_ceilingHeight Numeric Univariate 
Not 
applicable 

x x 

6 C_floorArea Numeric Univariate 
Not 
applicable 

x x 

7 C_houseOrientation Numeric Univariate 
Not 
applicable 

x x 

8 C_airLeakage50ip Numeric Univariate 
Not 
applicable 

x x 

9 C_roofAbsorptance Numeric Univariate 
Not 
applicable 

x x 

10 C_fndtnInsulRValue Numeric 
95th percentile 
= 1, zero = -1 

Not 
applicable 

x x 

11 C_skylightArea Numeric 
95th percentile 
= 1, zero = -1 

Not 
applicable 

x x 

12 C_windowAreaTotal Numeric Univariate 
Not 
applicable 

x x 

13 C_WAU_Total Numeric Univariate 
Not 
applicable 

x x 

14 C_WASG_Total Numeric Univariate 
Not 
applicable 

x x 

15 C_N_windowArea Numeric Univariate 
Not 
applicable 

x x 

16 C_E_windowArea Numeric Univariate 
Not 
applicable 

x x 

17 C_S_windowArea Numeric Univariate 
Not 
applicable 

x x 

18 C_W_windowArea Numeric Univariate 
Not 
applicable 

x x 

19 C_N_WAU Numeric 
95th percentile 
= 1, zero = -1 

Not 
applicable 

x x 

20 C_E_WAU Numeric Univariate 
Not 
applicable 

x x 

21 C_S_WAU Numeric Univariate 
Not 
applicable 

x x 

22 C_W_WAU Numeric Univariate 
Not 
applicable 

x x 

23 C_N_WASG Numeric Univariate 
Not 
applicable 

x x 

24 C_E_WASG Numeric Univariate 
Not 
applicable 

x x 

25 C_S_WASG Numeric Univariate 
Not 
applicable 

x x 
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Number Coded Variable 
Variable 

Type 
Coding 

Control for 
Binary 

NG 
Elec-
tricity

26 C_W_WASG Numeric Univariate 
Not 
applicable 

x x 

27 C_heatingEfficiency Numeric Univariate 
Not 
applicable 

x x 

28 C_coolingEfficiency Numeric Univariate 
Not 
applicable  

x 

29 C_hwFuel Binary 
Gas = 1, 
Electric = -1 

Not 
applicable 

x x 

30 C_hwEnergyFactor Numeric 
Modified 
univariate 

Not 
applicable 

x x 

31 C_RoofRValue Numeric Univariate 
Not 
applicable 

x x 

32 C_FloorRValue Numeric 
95th percentile 
= 1, zero = -1 

Not 
applicable 

x x 

33 C_WallRValue Numeric Univariate 
Not 
applicable 

x x 

34 Bend_OR Binary Yes = 1, No = 0 Not Bend x x 

35 Built_2001_plus Binary Yes = 1, No = 0 1800 to 1950 x x 

36 Built_1976_to_2000 Binary Yes = 1, No = 0 1800 to 1950 x x 

37 Built_1951_to_1975 Binary Yes = 1, No = 0 1800 to 1950 x x 

38 C_HT_GBL Binary Yes = 1, No = 0 HT = GFN x x 

39 C_HT_GWF Binary Yes = 1, No = 0 HT = GFN x x 

40 C_HT_EBB Binary Yes = 1, No = 0 HT = GFN x 

41 C_HT_EFN Binary Yes = 1, No = 0 HT = GFN x 

42 C_HT_EHP Binary Yes = 1, No = 0 HT = GFN x 

43 C_RC_rfps11co Binary Yes = 1, No = 0 
RC = 
rfps00co 

x x 

44 C_RC_rfps15co Binary Yes = 1, No = 0 
RC = 
rfps00co 

x x 

45 C_RC_rfrb00co Binary Yes = 1, No = 0 
RC = 
rfps00co 

x x 

46 C_RC_rfwf00co Binary Yes = 1, No = 0 
RC = 
rfps00co 

x x 

47 C_RC_rfwf11co Binary Yes = 1, No = 0 
RC = 
rfps00co 

x x 

48 C_RC_rfwf15co Binary Yes = 1, No = 0 
RC = 
rfps00co 

x x 

49 C_AT_cath_ceil Binary Yes = 1, No = 0 
AT = 
uncond_attic 

x x 

50 C_CC_ecwf00 Binary Yes = 1, No = 0 CC = ecwf11 x x 

51 C_CC_ecwf03 Binary Yes = 1, No = 0 CC = ecwf11 x x 

52 C_CC_ecwf06 Binary Yes = 1, No = 0 CC = ecwf11 x x 

53 C_CC_ecwf09 Binary Yes = 1, No = 0 CC = ecwf11 x x 

54 C_CC_ecwf19 Binary Yes = 1, No = 0 CC = ecwf11 x x 

55 C_CC_ecwf21 Binary Yes = 1, No = 0 CC = ecwf11 x x 

56 C_CC_ecwf25 Binary Yes = 1, No = 0 CC = ecwf11 x x 

57 C_CC_ecwf30 Binary Yes = 1, No = 0 CC = ecwf11 x x 
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Number Coded Variable 
Variable 

Type 
Coding 

Control for 
Binary 

NG 
Elec-
tricity

58 C_CC_ecwf38 Binary Yes = 1, No = 0 CC = ecwf11 x x 

59 C_FT_slab Binary Yes = 1, No = 0 
FT = 
cond_base 

x x 

60 C_FT_uncond_base Binary Yes = 1, No = 0 
FT = 
cond_base 

x x 

61 C_FT_unvent_crawl Binary Yes = 1, No = 0 
FT = 
cond_base 

x x 

62 C_FT_vent_crawl Binary Yes = 1, No = 0 
FT = 
cond_base 

x x 

63 C_FC_efwf00ca Binary Yes = 1, No = 0 FC = (blank) x x 

64 C_FC_efwf11ca Binary Yes = 1, No = 0 FC = (blank) x x 

65 C_FC_efwf13ca Binary Yes = 1, No = 0 FC = (blank) x x 

66 C_FC_efwf15ca Binary Yes = 1, No = 0 FC = (blank) x x 

67 C_FC_efwf19ca Binary Yes = 1, No = 0 FC = (blank) x x 

68 C_FC_efwf21ca Binary Yes = 1, No = 0 FC = (blank) x x 

69 C_FC_efwf25ca Binary Yes = 1, No = 0 FC = (blank) x x 

70 C_FC_efwf30ca Binary Yes = 1, No = 0 FC = (blank) x x 

71 C_FC_efwf38ca Binary Yes = 1, No = 0 FC = (blank) x x 

72 C_WC_ewps00wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

73 C_WC_ewps03wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

74 C_WC_ewps11wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

75 C_WC_ewps13wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

76 C_WC_ewps15wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

77 C_WC_ewps19wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

78 C_WC_ewps21wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

79 C_WC_ewwf00br Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

80 C_WC_ewwf00wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

81 C_WC_ewwf03wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

82 C_WC_ewwf07wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

83 C_WC_ewwf13wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

84 C_WC_ewwf15wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

85 C_WC_ewwf19wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 

86 C_WC_ewwf21wo Binary Yes = 1, No = 0 
WC = 
ewwf11wo 

x x 
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Number Coded Variable 
Variable 

Type 
Coding 

Control for 
Binary 

NG 
Elec-
tricity

87 C_ST_dcab Binary Yes = 1, No = 0 No skylight x x 

88 C_ST_dcaw Binary Yes = 1, No = 0 No skylight x x 

89 C_ST_dpeaab Binary Yes = 1, No = 0 No skylight x x 

90 C_ST_dpeaaw Binary Yes = 1, No = 0 No skylight x x 

91 C_ST_dseab Binary Yes = 1, No = 0 No skylight x x 

92 C_ST_dseaw Binary Yes = 1, No = 0 No skylight x x 

93 C_ST_thmabw Binary Yes = 1, No = 0 No skylight x x 

94 C_CT_cac Binary Yes = 1, No = 0 No AC x x 

95 C_CT_ehp Binary Yes = 1, No = 0 No AC x 

96 C_DL_uncond_attic Binary Yes = 1, No = 0 
DL = 
cond_base 

x x 

97 C_DL_uncond_base Binary Yes = 1, No = 0 
DL = 
cond_base 

x x 

98 C_HWB_separate Binary Yes = 1, No = 0 
HWB = 
(blank)  

x 

99 C_HWB_tankless Binary Yes = 1, No = 0 
HWB = 
(blank)  

x 
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Appendix F Statistical Equations 
The table below shows the mathematical equations used to populate Table 1 and Table 2 in 
Section 2. 

Statistic Description Equation 

Number of Observations The number of observations in sample ݊ 

Mean Measured 
The mean value of the measured 

observations 
∑ ݉௜௡௜ୀଵ݊  

Mean Predicted 
The mean value of the predicted 

observations 
∑ ௜௡௜ୀଵ݊݌  

Difference Differences between predicted and 
measured observations (݀) 

݌ − ݉ 

Mean Difference 
The mean value of the differences 
between predicted and measured 

observations (݀̅) 

∑ ௡௜ୀଵ(௜−݉௜݌) ݊  

Median Difference 
The median value of the differences 
between predicted and measured 

observations 

The value for which 50% of 
errors are lower and 50% are 

higher. 

Standard Deviation of 
Difference 

The sample standard deviation of the 
differences ඩ 1݊ − 1 ෍(݀௜ − ݀̅)ଶ௡

௜ିଵ  

Mean Absolute Difference 
The mean value of the absolute 

differences 
∑ |݀௜|௡௜ୀଵ݊  

Median Absolute 
Difference 

The median value of the absolute 
differences 

The value for which 50% of 
errors are lower and 50% are 

higher. 

Mean Absolute Percent 
Difference 

The mean value of the absolute 
differences 

∑ ቚ݀௜ ݉௜ൗ ቚ௡௜ୀଵ ݊  

Median Absolute Percent 
Difference 

The median value of the absolute 
differences 

The value for which 50% of 
errors are lower and 50% are 

higher. 

Root Mean Squared Error 
(RMSE) 

The square root of the mean value of 
the squared differences ܴܧܵܯ = ඨ∑ ݀௜ଶ௡௜ୀଵ݊  

Percent Root Mean 
Square Error 

Normalized square root of the mean 
value of the squared differences ܴܰܧܵܯ = × ܧܵܯܴ  ݀݁ݎݑݏܽ݁ܯ ݊ܽ݁ܯ100
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