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ABSTRACT 

The ability to accurately predict power delivery over the 
course of time is of vital importance to the growth of the 
photovoltaic (PV) industry. Important cost drivers include 
the efficiency with which sunlight is converted into power, 
how this relationship changes over time, and the uncertainty 
in this prediction. An accurate quantification of power 
decline over time, also known as degradation rate, is 
essential to all stakeholders - utility companies, integrators, 
investors, and researchers alike. In this paper we use a 
statistical approach based on historical data to quantify 
degradation rates, discern trends and quantify risks related 
to measurement uncertainties, number of measurements and 
methodologies. 

1. INTRODUCTION 

To sustain the commercial success of photovoltaic (PV) 
technologies it becomes vital to know how power output 
decreases with time. An accurate quantification of power 
decline over time, also known as degradation rate (Rd), is 
essential to all stakeholders - utility companies, integrators, 
investors, and researchers alike. Financially, degradation of 
a PV module or system is equally important, because a 
higher degradation rate translates directly into less power 
produced and, therefore, reduces future cash flows. [1] 
Technically, degradation mechanisms are important to 
understand because they may eventually lead to failure. The 
identification of the underlying degradation mechanism 
through experiments and modeling can lead directly to 
lifetime improvements. Outdoor field testing has played a 
vital role in quantifying long-term behavior and lifetime for 
at least two reasons: it is the typical operating environment 
for PV systems, and it is thus far the only way to correlate 
indoor accelerated testing to outdoor results to forecast field 
performance. We will discuss in this paper the connection of 

outdoor field measurement uncertainties to financial risk as 
the primary motivation. Several excellent treatments of 
uncertainty analysis of PV testing have been done in the 
past, specifically for outdoor [2, 3, 4, 5] and indoor I-V 
characterization. [6] We will expand on this work and 
discuss the impact of the number of measurements on 
uncertainty. Finally, we will investigate uncertainties 
associated with continuous data metrics such as the 
performance ratio and PVUSA method. Specifically, we 
will demonstrate the influence of data filtering which is a 
necessary step in the assessment of degradation rate 
uncertainties. 

2. HISTORICAL DEGRADATION RATES 

An extensive search resulted in more than 2000 PV 
degradation rates (Rd) quoted in publications and locations 
worldwide. Figure 1 shows a summary histogram of 
degradation rates and provides an update of a more detailed 
previous report. [7] The summarized rates are long-term 
degradation rates and usually do not include short-term, 
light-induced degradation. A decrease in performance is 
defined as a positive degradation rate. Conversely, a 
negative rate indicates an improvement. While this 
histogram needs to be updated frequently as new 
information becomes available, some general insights can 
be drawn from it. The distribution is skewed toward high 
degradation rates with a mean of 0.8%/year and a median of 
0.5%/year. The majority of these reported rates, 80% of all 
data, are below a rate of 1%/year. 
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Fig. 1: Histogram of historical degradation rates. 

Crystalline Si technologies (x-Si), mono-crystalline (mono-
Si) and multi-crystalline Si (multi-Si), showed very little 
change between the older and newer data, but each of the 
thin-film technologies improved significantly during the last 
decade. Furthermore, Figure 4 compares the field exposure 
for each of these studies compared to a typical module 
manufacturer warranty. [8] As module durability increased 
during the last three decades, module warranties increased 
accordingly, but only in the last six years have there been 
studies that meet or exceed a typical module warranty. 
Offering a warranty that is longer than available field 
observations can create a state of elevated risk. 

Fig. 2: Geographical distribution of degradation rates. 

Figure 2 shows the geographical distribution of the same 
rates of Fig. 1. The size of the circle indicates the number of 
reported rates at a given location. The number of cited rates 
is large enough to allow grouping for installation before and 
after the year 2000, and by technology as shown in Fig. 3. 
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Fig. 4: Outdoor field exposure in years versus date of 
publication. Module warranty from one manufacturer is 
shown as comparison. 

3. DEGRADATION RATE UNCERTAINTY AND RISK 
It is important to distinguish the terms risk and uncertainty. 
Uncertainty in this paper will be used as the measurement 
uncertainty of a physical parameter while risk indicates an 
uncertain state that could lead to a loss, specifically to a 
financial loss. This section will discuss the connection 
between these two terms. 

Figure 5 shows the evolution with time of the performance 
of two modules deployed at NREL. It is immediately 
apparent that the two modules exhibit very different 
behavior. Module 1 has been deployed for nearly 10 years 
while Module 2 has been exposed for only 3 years. Module 
2 shows strong seasonal fluctuations whereas Module 1 
exhibits almost no seasonality. Surprisingly, both modules 
have the same degradation rate of 0.8%/year. The 
uncertainties, however, are very different, changing the 
warranty default risk significantly. 

Fig. 3: Historical degradation rates partitioned by 
technology and date of installation. The number in each 
category indicates the number of data points. The 95% 
confidence interval is denoted by the diamonds with the 
mean as the crossbar. 
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4. NUMBER OF MEASUREMENTS 40 

Further insight can be gained by investigating the historical 
degradation rates with respect to the number of 
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Fig. 5: DC power data from 2 modules located at NREL 
using PVUSA method. [9] 

The lack of certainty has significant impact when the power 
production is calculated after 25 years according to equation 
(1). 

(1) Power (Yearn) = Power (Year1) · (1-Rd)
n 

A Monte Carlo simulation, shown in Fig. 6, illustrates this 
point. Typical maximum manufacturer warranties are 80% 
power production after 25 years of field use, which is 
indicated by a dashed green line.  For the module with the 
smaller uncertainty the probability to default on the 
warranty (the integrated probability below the warranty line) 

measurements taken to determine degradation rates. 

Fig. 7: Percentage pie chart indicating the number of 
measurements taken to determine degradation rates. 

47% 

22% 

19% 
13% Continuous 

Discrete 
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Figure 7 indicates that almost half the studies use 
continuous data metrics such as the performance ratio (PR) 
[10], PVUSA or take I-V curves in very short time intervals. 
[11] The discrete category consists of studies that take more 
than two measurements but do not acquire data 
continuously. It is noteworthy, however that a high 
percentage of references take only one or two measurements 
to report degradation rates. This situation is often 

is 24% after 25 years. However, the module with the larger 
uncertainty exhibits almost a 60% chance to default on the 
warranty despite the fact that both modules have the same 
degradation rate. This probabilistic approach demonstrates 
clearly how increased uncertainty in determining physical 
parameters can have a dramatic impact on risk in the future. 

encountered when baseline measurements were never taken 
or no longer exist today. Thus, modern measurements need 
to be compared to the original manufacturer’s standard test 
condition (STC) ratings. [12] This approach can add 
significant uncertainty to the measured degradation rates. 
[13, 14] To demonstrate the risk resulting from few 

The remainder of the paper will investigate various sources 
of uncertainty. 
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Fig. 6: Monte Carlo simulation for the standard-conditions 
power production of the two modules after 25 years 

measurements, I-V data taken on cloudless days every two 
months for a module deployed at NREL are shown in Fig. 8. 
I-V curves were irradiance and temperature corrected 
according to IEC 60891 method 1. [15] 
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Fig. 8: Quarterly I-V data of a mono-Si module deployed at 
compared to a typical warranty of 80% indicated by the NREL. 

green dashed line. 
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The degradation rate using all available data is determined 
to be (0.38±0.03) %/year. Subsequently, a specific number 
of data points are taken randomly from this dataset and the 
degradation rate calculated. The resulting degradation rate 
will depend on the number of data points chosen and the 
time span between them, as illustrated by taking two data 
points (squares) and three data points (triangles), 
respectively (Fig. 8). The degradation rate may deviate 
substantially from the nominal (0.38±0.03) %/year 
particularly when the time span between taken data points is 
short. To evaluate the one data point situation a 3% 
uncertainty was added to the nominal rating in accordance 
with the Solar America Board for Codes and Standards 
recommendation. [16] As this procedure is repeated the 
resulting distribution of degradation rates for a specific time 
interval and a specific number of data points can be 
determined. The standard deviation of these distributions is 
a measure of the uncertainty and is shown in Fig. 9 as a 
function of the number of data points and number of years 
between the data points. 

(a) 

(b) 

Fig. 9: Contour plot of the standard deviation of the 
calculated Rd as a function of the number of years and data 
points from the data set in Fig. 8. No uncertainty was 
assumed for the temperature correction factor (a); a 20% 
relative uncertainty in the correction factor was assumed in 
(b). 

As the number of data points and the number of years 
increases, the calculated degradation rate approaches the 
rate of Fig 8. For fewer data points and short time spans the 
Rd distribution and therefore the probability increases 
significantly that the obtained degradation rate may be 
misleading (a). The situation is exacerbated when the 
temperature and irradiance correction is not ideal and 
includes a relative uncertainty (b). 

5. Rd METRICS AND TOTAL UNCERTAINTY 
Not only the number of measurements but also the 
methodology used for quantifying degradation rates can 
affect uncertainty. No standard exists today to determine 
long-term degradation rates, therefore a variety of different 
metrics are used. Examining again the historical data, 
degradation rate methodologies can be grouped into 4 broad 
categories, Indoor and Outdoor I-V, PVUSA and 
Performance Ratio (PR). Figure 10 shows a percentage 
breakdown of the different methodologies. 

31% 

22% 13% 

34% 
Outdoor IV 

Indoor IV 

PVUSA 

PR 

Fig. 10: Pie chart of the number of references deploying the 
indicated methods to determine degradation rates. 

One important aspect for the continuous data metrics 
PVUSA and PR that is not necessarily applicable to the 
other metrics is data filtering. Data filtering refers here to 
any examination or treatment of the data prior to assessing 
long-term trends. Outdoor I-V curves are typically taken 
around solar noon on clear days which essentially reflects a 
type of data filtering by choosing sunny days.  Indoor I-V 
curves are typically taken under the same STC conditions. 

After the continuous raw data are collected the question 
arises as to which subset will be taken to assess long-term 
performance. Outliers, for instance caused by maintenance 
events or snow covering the panels may need to be excluded 
from the assessment. Performance metrics can be 
determined in different sampling intervals; for example, in 
monthly, weekly or daily increments. It has been shown that 
reducing the sampling interval from monthly to weekly 
increases the number of outliers, but with additional time-
series modeling the calculated uncertainty may be reduced. 
[17] Additionally, utilizing only sunny days has been shown 
to reduce the uncertainty for the PVUSA methodology. [18] 
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However, whether other metrics benefit in a similar way is 
not clear and some of the benefit may depend on what 
specific metric is utilized. 

To answer some of these questions, 4 different performance 
metrics were investigated on 7 different systems at NREL. 
The metrics included PVUSA, PR, the median DC Power 
over plane-of-array irradiance (DC/POA) uncorrected and 
temperature-corrected and the systems consisted of 3 x-Si 
and 4 thin-film arrays. The temperature correction was 
preferably done using the median of several module 
temperature (Tmod) measurements and corrected to 45º C 
using temperature coefficients derived from the continuous 
data. However, not all systems contained consistent multiple 
module temperature measurements in which case ambient 
temperature (Tamb) was used and corrected to 20º C, which 
is approximately equivalent to 45º C Tmod for the climate 
in Colorado. Since the data quality differed for DC Power 
and AC Power data for some systems all calculations are 
based on DC Power data such that direct comparison was 
possible. However, the following section should also be 
applicable if only AC Power data are used. All four metrics 
were investigated in monthly and daily intervals except the 
shorter interval for the PVUSA methodology was weekly. 
The impact of using only sunny days versus using all 
available days was investigated. Sunny days were 
determined by the clearness index of 0.5 which is the ratio 
of measured global irradiance over the extraterrestrial beam 
irradiance on a similarly tilted surface. [19] Filtering by 
irradiance was done by (1) keeping the upper limit fixed at 
1200 W/m2 with a variable lower limit and (2) keeping both 
limits flexible resulting in 200W/m2 irradiance bands. 
Lastly, different irradiance-level cutoffs ranging from 0 to 
800 W/m2 were investigated. The filtering criteria are 
summarized in Fig. 11. To investigate the fairly large 
decision tree of Fig. 11, degradation rates and their 
statistical uncertainties were determined through automation 
resulting in 300-500 degradation rates per system. 

Filtering 

DC/POA Performance Ratio PVUSA DC/POA Temp-corr Metric 

Interval 

Sunny only 

Monthly Weekly Daily Monthly 

Yes No 

Fixed UL & Flexible LL Flexible LL & UL Irradiance Limit 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Tamb (20C) Tmod (45C) 

Irradiance Level . 200 W/m20 W/m2 .400 W/m2 600 W/m2 800 W/m2 

Fig. 11: Decision tree for data filtering. 

To assess the impact of the filtering on the degradation rate, 
a most likely or nominal degradation rate was needed. 
Since a true degradation rate cannot be determined [20] the 
nominal Rd was calculated as the median of 5 methods that 
included time series modeling and measurement of quarterly 
field I-V curves. [21] 

Because performance at low irradiance may differ 
substantially from technology to technology, especially for 
thin-film systems only degradation rates at high irradiance 
(800W/m2) were further analyzed. Therefore, the group 
“Lower” in the Irradiance limit (H limit) category in Fig. 12 
refers to the flexible lower limit and constitutes an actual 
filtering interval from 800-1200W/m2. The group “Upper” 
refers to a flexible upper limit in addition to a flexible lower 
limit and an actual filtering interval from 700-900W/m2. 
Red dashed lines of 0.2%/year deviation from the nominal 
degradation rate are added as reference lines to the eye. The 
difference to the nominal degradation rate for each system 
and each data filtering category is shown for 4 thin-film 
systems (top) and 3 x-Si systems (bottom). Because of the 
lack of knowledge of a true degradation rate the salient 
feature of this figure is how the different metrics compare 
under the same filtering conditions. 

It appears that the temperature corrected DC/POA ratio falls 
mostly within or very close to the tight 0.2%/year interval. 
For the thin-film systems even the uncorrected DC/POA 
ratio and the PR fall within that same interval. This may be 
due to the 4 thin-film systems having on average been 
fielded longer than the 3 x-Si systems. For the x-Si systems 
the uncorrected DC/POA ratio and the PR show more 
scatter around the 0.2%/year interval. The PVUSA 
methodology shows large fluctuations depending on the 
filtering conditions. A possible reason is that the PVUSA 
methodology uses a two regression approach. In the first 
step, the raw data are normalized using POA, ambient 
temperature and wind speed in typically monthly 
increments. The second step is to graph the adjusted data in 
a time series and use a second regression to assess long-term 
behavior. Typically, the two regressions use a standard least 
square approach based on minimization of the squared 
residuals making it susceptible to outliers. It may be 
possible to improve the methodology by using for example 
a robust regression approach making it less susceptible to 
outliers. Another difficulty in the analysis of Fig. 12 is that 
filtering that gives the lowest uncertainty depends on the 
data set, since large data sets may still retain substantial data 
even after heavy filtering, whereas sparse datasets can’t 
tolerate much filtering. In general, this clearly shows that 
different performance metrics have different sensitivities to 
data filtering and thus different contributions to uncertainty. 
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Fig. 12: Difference to nominal degradation rate in %/year 
for different metrics and data filtering methods. Four thin-
film systems are shown on top and 3 x-Si shown at the 
bottom. Intervals of 0.2%/year interval are indicated by the 
red dashed lines and range bars for each category are also 
shown. 
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