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Abstract— Variable renewable generation resources are 

increasing their penetration on electric power grids. These 

resources have weather-driven fuel sources that vary on different 

time scales and are difficult to predict in advance. These 

characteristics create challenges for system operators managing 

the load balance on different timescales. Research is looking into 

new operational techniques and strategies that show great 

promise on facilitating greater integration of variable resources. 

Stochastic Security-Constrained Unit Commitment models are 

one strategy that has been discussed in literature and shows great 

benefit. However, it is rarely used outside the research 

community due to its computational limits and difficulties 

integrating with electricity markets. This paper discusses how it 

can be integrated into day-ahead energy markets and especially 

on what pricing schemes should be used to ensure an efficient 

and fair market. 

Keywords- Electricity markets, power system operations, power 

system economics, unit commitment, wind generation) 

I.  NOMENCLATURE 

Indices 

i = generator 

h = Hour 

k = piecewise linear cost block 

r = reserve category 

n = bus 

l = line (branch) 

s = scenario 

Sets 

H = Hours 

G = Generators 

Ki = Set of blocks for unit i 

R = Reserve categories {SR = Spinning Reserve, NS = Non-

Spinning Reserve, Rep = Replacement Reserve, Reg = 

Regulating Reserve} 

L = Lines (branches) 

N = Buses 

S = Scenarios 

GLSTART = Generators with start times greater than one hour 

Variables 

Pg = Generation schedule (MW) 

Pp = Pumping schedule (MW) 

RS = Reserve schedule (MW) 

u = Unit status {0,1} (no units) 

z = startup status {0,1}  (no units) 

y = shutdown status {0,1} (no units) 

LL = Lost (Shed) load (MW) 

IR = Insufficient reserve (MW) 

STL = Storage level (MWh) 

Matrices 

[K] = bus connection matrix (with generation or with load) 

Parameters 

IC = Incremental cost for generators ($/MWh) 

NLC = No-Load Cost ($/h) 

SUC = Startup Cost ($) 

RC = Reserve Cost ($/MWh) 

VOLL = Value of Lost Load ($/MWh) 

VOIR = Value of Insufficient Reserve ($/MWh) 

STV = Storage Value at end of day ($/MWh) 

 = probability of occurrence (no units) 

Dual values 

 = Dual of energy balance constraint 

 = Dual of transmission flow constraint 

 = Dual of reserve constraint 

II. INTRODUCTION 

The power system deals with variability and uncertainty in 
its generation fleet, its load, and its network infrastructure. 
Power system operators have numerous techniques to deal 
with these characteristics. Operating reserve is held to 
accommodate generation or network failures [1]-[2]. Security-
Constrained Unit Commitment (SCUC) and Security-
Constrained Economic Dispatch (SCED) are used to 
efficiently commit and schedule generation resources to meet 
expected load and reserve demands [3]. These are adjusted 
when necessary to meet varying conditions. Some generation 
resources (as well as new emerging technologies and demand 
response) are being built with additional flexibility so that they 
can react to changing conditions with fast ramping ability, 
quick synchronization times, and inertial and frequency 
response capabilities [4]. Lastly, since restructuring of the 
electricity sector, efficient markets are put in place to 
incentivize the correct behavior to maximize reliability [5]. 
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The SCUC is performed to ensure the most cost-effective 
selection of unit online status is made to reliably meet the 
system load [6]. SCUC ensures that reserve requirements are 
also met and that generation and system network constraints as 
well as selected contingency constraints are monitored. SCUC 
is also usually the foundation for the day-ahead energy 
market. The solution of SCUC determines the day-ahead 
energy schedules and day-ahead energy prices. This tie 
between SCUC and the day-ahead energy market is essential. 
The day-ahead energy market ensures an efficient operation 
whereby units receive day-ahead prices and schedules that 
best reflect what will occur in real-time, they are able to hedge 
against the volatility in real-time prices, and have guarantees 
from the Independent System Operator (ISO) that they will 
recover costs through side payments if the prices are not 
sufficient [7]. 

The current SCUC procedure is deterministic. A single 
prediction must be made for all conditions when solving 
SCUC. The discrepancy between real-time conditions and the 
SCUC solution is dealt with using operating reserves and real-
time market incentives. It has been shown, however, that 
increasing amounts of variable generation (e.g., wind power) 
have unique uncertainty characteristics and that a deterministic 
SCUC may not be the most efficient procedure when 
determining what units should be online in advance. Research 
has shown that a stochastic SCUC (STSCUC) can provide 
great benefits reducing costs and increasing reliability [8]-
[12]. A STSCUC determines a unit commitment solution that 
can meet multiple scenarios of expected outcomes. Its 
objective is to minimize the expected operation cost where 
each scenario is weighted by its associated probability of 
occurrence. The usual SCUC constraints are applied to all 
scenarios and the only condition that is satisfied which is 
common to all scenarios is the so-called first stage “now” 
constraints. In most cases, these constraints are the unit 
commitment decision for units that have long start times since 
their start-up decision must be made before the scenarios 
become realized. This creates a solution that can reliably meet 
multiple real-time outcomes and economically do so if they 
occur. 

Although stochastic STSCUC is described extensively in 
the literature, it has generally not yet been applied in actual 
system operations. One reason for this is the great 
computational burden. The number of variables of the problem 
is about n times greater than those of a deterministic SCUC, 
with n being the number of scenarios. Therefore, the solution 
time on a practical ISO system with hundreds to tens of 
thousands of generators, buses, and branches is considerable 
and generally not acceptable for the current timelines the ISO 
procedure uses for the day-ahead energy market. Another 
complication of the STSCUC is that it may not be able to 
integrate seamlessly into the current ISO market structure. The 
SCUC and day-ahead market currently have a strong 
interaction that emphasizes reliability and efficiency. It is 
important for a paradigm where STSCUC is the means of 
clearing the day-ahead energy market for it to place the right 
incentives and administer rules that specifically apply to its 
unique qualities. 

This paper proposes a probability-weighted locational 
marginal price (LMP) and probability-weighted reserve 
clearing price (RCP) that can be used to clear day-ahead energy 
markets that use a STSCUC. Section III describes the STSCUC 
model that is used.

 
Section IV discusses the current and 

proposed pricing schemes. Section V then compares results of 
the two pricing schemes using a STSCUC model and a 
modified IEEE 118-bus test system. Section VI provides a 
conclusion on the proposal based on these results. 

III. STOCHASTIC SCUC MODEL 

The STSCUC model used in this research is similar to [9] 
and [12]. A one day, 24-hour optimization is used to replicate 
the day-ahead market. Constraints are modeled towards 
typical constraints used in ISO SCUC programs. The one-hour 
start time is used as a limit for those units that do not need 
constant unit commitment status between scenarios. The 
model is developed in GAMS using CPLEX Mixed Integer 
Programming Solver [13] and called from Matlab [14] based 
on [15]. The formulation is briefly described in this section. 
Equation (1) explains the objective function used in the model. 

 

                                            

                         
                          

                             

                       
                                                         

 
The objective function minimizes the expected costs based 

on all scenarios. For this model, a piecewise linear cost curve 
is used to represent fuel costs, which is included in the model 
along with reserve costs, penalty costs for violating the load 
and reserve balance, and maximal storage levels left at the end 
of the day based on the value of the associated storage 
resource.  

The system constraints include the load balance, reserve 
balance, power flow equations, power flow limit constraints, 
and contingency constraints. There is allowance for phase 
angle regulator and HVDC branches. To keep linearity, the 
power flow is a DC approximation.  

The generator constraints model the individual constraints 
on each generating unit based on its type. The constraints 
include capacity constraints, ramp rates, variable generation 
forecasts, minimum run times, minimum down times, and 
maximum starts per day. 

The reserve constraints describe how individual units are 
able to supply each reserve category. The reserves used in this 
model are defined as spinning reserve, nonspinning reserve, 
regulation reserve, and replacement reserve. These reserves 
are generally based on NERC BAL standards and constrained 
by online status, quick start capability, AGC qualified status, 
and ramp rate limitations [16]. It should be noted that the 
reason for the reserve requirements are for system 
contingencies and for minute to minute frequency regulation. 
Contingencies are not modeled as a stochastic variable and 
since the time resolution of the model is one hour, minute-to-
minute frequency regulation needs are assumed independent 
of the stochastic variables. 
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The contingency constraint equations model power flow 
immediately following a network contingency. These 
equations allow for post-contingency limitations for normal 
AC lines, phase angle regulators, and HVDC contingency 
conditions. 

Equations are used to model the corresponding storage 
resources (e.g., pumped hydro storage). These constraints 
include efficiency losses, pumping capacity constraints, and 
storage reservoir limits.  

Lastly, (2) shows the equation that represents the “now” 
decision that must be made. Units with long start times 
(greater than or equal to one hour) must be told to start during 
the first stage, and therefore, their unit commitment decision 
must be the same for all potential scenarios. 

 

                                                          (2) 

 
The STSCUC program therefore selects a unit 

commitment set that can meet the scenarios while minimizing 
the expected cost. Unlikely scenarios may utilize the use of 
expensive combustion turbines during high net load scenarios 
or the use of wind curtailment during low net load scenarios 
rather than changing the commitment set for all scenarios. It is 
also possible that load is shed or reserves are insufficient for 
the very unlikely scenarios, based on evaluation of 
probabilities and the associated infeasibility penalty costs. 
However, in our analysis the number of scenarios is reduced to 
five and probabilities are generally still greater than or equal 
to 0.1; this does not occur frequently. For a two stage 
simulation, the unit status for units with startup times greater 
than or equal to one hour are kept constant for the real-time 
market, whereas unit status for units with start-up times less 
than one hour and the dispatch and reserve amounts for all 
units can be adjusted. 

IV. PROBABILITY-WEIGHTED LMP 

In today’s energy markets, the LMP represents the 
marginal cost of energy at a specific location and is 
mathematically represented as the dual value of the nodal 
injection constraints. The RCP is calculated as the marginal 
cost of reserve at a location (in this model this is system-wide 
only) and is the dual value of the reserve balance constraint. 

This is shown in equation (3) and (4). ref is the 

dual/lagrangian of the energy balance equation,  is the dual 
of the transmission constraint equation, SFn,l is the shift factor 
of bus n contributing to branch l, and DF is the delivery factor 
of a bus with respect to the reference bus incorporating system 

losses.  is the dual of the reserve balance equation and must 
be positive since the equation is an inequality. 

 

                   
     
                      (3) 

 
                     (4) 

 
In a STSCUC, there would be LMP and RCP values for 

every scenario that is being evaluated. In other words, the 
marginal cost of energy in one scenario is different than the 
marginal cost of energy in another scenario. Therefore, in day-

ahead energy markets which use STSCUC, numerous options 
may be taken when determining the energy and reserve 
settlement. One option may be to solve a deterministic SCED 
after the stochastic SCUC is solved using fixed commitments 
from the STSCUC. However, this would mean that one would 
have to select a single scenario from the many used in the 
STSCUC to be used in the SCED. Another option might be to 
use the most probable or median scenario marginal values 
from the STSCUC for calculation of LMP and RCP. However, 
this procedure assumes that there is a median or most probable 
scenario which with many stochastic variables may not be the 
case. For instance, a single scenario may include high load, 
low wind power in one area and high wind power in another 
area. This also complicates the option of creating an expected 
value for all stochastic variables in use of solving an 
additional SCED for calculation of LMP and RCP. The 
expected value calculation will ignore the correlations of the 
variables for each scenario. For instance, if one scenario 
represented a high wind, low-load event, and another scenario 
a low wind, high load event, the expected value would be 
medium wind and medium load scenario, unrepresentative of 
both likely scenarios. 

This paper proposes a probability-weighted LMP and 
probability-weighted RCP as the means of integrating a 
stochastic SCUC with day-ahead energy markets. This 
proposal should properly price energy according to the 
objective function used, give day-ahead prices that are on 
average more closely aligned with real-time prices, incentivize 
proper flexibility in resources to be able to accommodate more 
variable resources, and reduce inefficient incentives and uplift. 
The proposal would calculate payments as the sum of the 
probability-weighted LMP times the energy schedule of each 
scenario and the sum of the probability-weighted RCP times 
the reserve schedule of each scenario. This can be seen in (5). 
Note that the marginal values used to calculate LMP and RCP 
from (3) and (4) that come from the equation according to the 
objective function in (1) would already be probability 
weighted and therefore, the equation in (5) assumes marginal 
values are normalized prior to the calculation. With the raw 

marginal values, the s would not be part of the equation and 
the calculation would simply be the sums of energy and 
reserve payments for each scenario. 

 

        
             

                
      

   

         
         

   
                  (5) 

 

In an ISO, SCED is performed in real-time to correct 
schedules based on the real-time outcomes (although quick-
start commitments may often be allowed as well). This SCED 
is aligned with the real-time market just as the SCUC is 
aligned with the day-ahead market. Currently, total settlements 
are a sum of payments in the day-ahead market and real-time 
market. When day-ahead markets are cleared with 
deterministic SCUC, the real-time payments are calculated as 
that energy scheduled by the real-time SCED above which 
was paid the day-ahead LMP multiplied by the real-time LMP, 
which can be a negative value if the real-time schedule is less 

3



than the day-ahead. Equation (6) shows the total payments for 
the deterministic case for a unit during each hour. 

                
                

         
   

     
                 

           
         

           
    

   

       
          

                 (6) 

This again becomes complicated for stochastic SCUC. 
Because real-time has less uncertainty without need of first 
and second stage decisions, and because real-time energy 
markets require simulations to be solved as quickly as every 5 
minutes, it is likely to assume that the benefits of a stochastic 
SCED for the real-time market are not as great as they are for 
the day-ahead SCUC. Therefore we assume that a 
deterministic SCED is performed for the real-time market. The 
settlements must take into account the energy scheduled in the 
day-ahead market when settling the real-time market. 
Therefore, equation (7) shows the total settlements from day-
ahead and real-time for energy and ancillary services for an 
entire day given the probability-weighted LMP and RCP 
proposal using a STSCUC in the day-ahead market and a 
deterministic SCED in the real-time market. 

                         
                  

      
   

           
           

   
            

              
    

     

             
            

                
    

      
   

      
                            (7) 

The pricing schemes used in energy markets are in place to 
ensure proper incentives to participate in the day-ahead market 
so that system operators can plan with better knowledge of 
what will occur in real-time. One method to evaluate the 
pricing scheme is to see how often and to what magnitude 
negative profits are occurring. Negative profits can show that 
generating resources are not being paid sufficiently enough to 
recover their costs to run. This can show inefficiency in that 
the incentives are not enough for the generating resources to 
be running at the scheduled level even when they are needed 
at the scheduled level. It should be noted that negative profits 
are expected to occur to some degree due to the non-convexity 
of generator costs (e.g., due to NLC and SUC) and because of 
inter-temporal constraints (e.g., minimum run times). The 
generator costs used in our analysis can be seen in (8).  

 

                                          

       
                    

 
                (8) 

 

Lastly, profit (revenue) can be calculated as seen in (9). 

 

                                             (9) 

The number of negative profits is therefore one metric that 
shows the efficiency of a pricing scheme. Other analysis and 
behavior monitoring would be required to fully assess the 
appropriateness of this pricing scheme. The quality of the 
probabilistic forecasts would also be assessed. Lastly, market 
monitoring procedures would need to be evaluated to see if any 
gaming behavior can differ in this pricing proposal compared 

to the single pricing procedure. However, these analyses and 
procedures are out of the scope of this paper. 

V. CASE STUDY 

A modified 118-bus IEEE test system is used for 
simulation. This model gives a realistic representation of large 
systems without being too overly computational. The system 
contains 54 thermal generators, 3 pumped hydro storage 
facilities, 177 AC transmission lines, a single phase shifting 
transformer, and 8 HVDC lines. Generating resources ranged 
from quick start combustion turbines that could start in 10 to 
30 minutes and had capacities of 20 to 50 MW and larger 
steam units with longer start times, minimum run times and 
capacities of up to 420 MW. All thermal units had minimum 
capacities of at least 25% of maximum capacity. PHS had a 
value designed to them for having energy stored at the end of 
the day (STVi) of about $15/MWH and had 80% round-trip 
efficiency. An amount of wind energy equal to 25% of the 
load was added to this system, with a large portion in one 
transmission region representing a “good wind resource” 
where transmission was not able to always accommodate high 
wind output. This helped represent some of the typical 
situations that occur today in systems with growing wind 
penetrations. The wind data was taken from [17] with load 
data taken from the same days and locations from [18] and 
scaled down to the system characteristics. Lastly, reserve 
requirements represented 50% of the largest contingency (420 
MW) for spinning, 100% of the largest contingency for non-
spinning, 1% of the hourly load for regulating, and 150% of 
the largest contingency for replacement reserves. Spinning 
reserve automatically contributed to non-spinning and non-
spinning automatically contributed to replacement reserve. 

The simulations used the STSCUC model as described in 
Section III for the day-ahead market and followed with a 
deterministic real-time SCUC/SCED model for the real-time 
market. The real-time model could commit resources with 
start times less than one hour, but all other commitments 
whether on or off were held fixed from the day-ahead 
STSCUC. The wind power in the STSCUC was represented as 
probabilistic forecasts and generally was given as normally 
distributed around a mean given some hourly standard 
deviation. Note that a normal distribution is not the best 
representation of wind power forecasts, [19], [20], but is used 
here for illustrative purposes. Ultimately, on real systems the 
probabilistic forecasts will depend on the weather pattern on 
the system. Five scenarios were used as input to the STSCUC 
and load was treated deterministically. In the subsequent real-
time SCUC/SCED run, a random number was drawn as the 
actual wind power output and was drawn from the original 
normal probability distribution function. 

Simulations were modeled for a high wind day in April and 
a high load day in August. Payments were calculated as in (6) 
for the single-scenario pricing and (7) for the probability-
weighted pricing schemes. Costs and revenues were calculated 
as in (8) and (9). LMP and RCP values were calculated from 
each scenario and the five scenarios represented probabilities 
{0.1, 0.25, 0.5, 0.25, and 0.1} based on the probability 
distribution function and taking a weighted average of 
numbers that fell in each bin. This method converted the 
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continuous pdf to be used as a discrete pmf which can be 
represented in the STSCUC. LMPs (averaged for all buses on 
network) from the April day are shown in Fig. 1 for each of 
the scenarios. The single price LMP/RCP pricing scheme took 
prices and schedules from the third median scenario. A 
relative duality gap of 0.5% was chosen for the simulations. 
Table I shows negative profits based on LMP only and Table 
II shows negative profits based on LMP and RCP. 

 

Fig. 1. LMPs for each scenario of April day. 

 

TABLE I 

TOTAL UNIT-HOURS WITH NEGATIVE PROFITS FOR DAY (LMP ONLY) 

 Unit-hours with negative profit Total $ of negative profit 

 LMP based 
on single 
scenario 

Probability 
weighted LMP 

LMP 
based on 

single 
scenario 

Probability 
weighted 

LMP 

August  71 66 -$8,939 -$5,857 

April 114 122 -$7,203 -$6,542 

 

TABLE II 

TOTAL UNIT-HOURS WITH NEGATIVE PROFITS FOR DAY (LMP AND RCP) 

 Unit-hours with negative profit Total $ of negative profit 

 LMP based 
on single 
scenario 

Probability 
weighted LMP 

LMP 
based on 

single 
scenario 

Probability 
weighted 
LMP/RCP 

August  77 43 -$9,252 -$4,180 

April 73 42 -$6,357 -$4,724 

 

The first observation is that the probability-weighted LMP 
pricing scheme provides a lesser amount of negative profits 
and thus less uplift. The April case in Table I did show more 
unit-hours with negative profit in the probability-weighted 
pricing scheme, however. It is important to note, as is shown 
in Table III for the summer case, that the actual comparison of 
prices between the two schemes shows no large premium and 

that on average the prices are very close to one another. In 
fact, the total revenue from the single median scenario pricing 
scheme for the April scenario was larger than the probability-
weighted pricing scheme ($918,835 compared to $913,705).  
This can support the fact that the probability-weighted pricing 
scheme is not necessarily increasing prices and profits but 
distributing them more efficiently. 

 

 

TABLE III 

COMPARISON OF HOURLY LMPS FOR REFERENCE BUS FOR APRIL DAY 

 Scenario 3 ($/MWh) Probability Weighted 
($/MWh) 

0 17.55 22.03 

1 16.01 16.07 

2 15.61 15.28 

3 14.27 14.48 

4 14.31 14.26 

5 13.53 12.07 

6 13.93 14.63 

7 15.96 15.72 

8 16.39 16.19 

9 16.69 16.80 

10 17.62 17.64 

11 19.13 18.77 

12 18.89 18.90 

13 19.18 19.08 

14 19.16 19.64 

15 24.28 22.08 

16 17.05 18.83 

17 19.12 18.73 

18 19.26 19.12 

19 15.30 16.89 

20 15.21 16.89 

21 17.20 17.22 

22 14.69 15.65 

23 14.49 15.15 

 

In the examples of Table I and Table II, the standard 
deviation of the probabilistic forecasts were 6% of the 
nameplate capacity of the wind, with 5 selected hours at 10% 
to represent a more variable period of the day. To analyze how 
these pricing methods behave in relation to uncertainty, we 
now increase the standard deviation to 12% at most hours and 
15% at the 5 higher varying hours. Results are shown in Table 
IV and Table V. 

TABLE IV 

TOTAL UNITS WITH NEGATIVE PROFITS FOR DAY WITH HIGHER STANDARD 

DEVIATION (LMP ONLY) 

 Unit-hours with negative 
profit 

Total $ of negative profit 

 LMP based 
on single 
scenario 

Probability 
weighted 

LMP 

LMP based 
on single 
scenario 

Probability 
weighted 

LMP 

August  132 100 -$15,562 -$10,164 

April 99 103 -$9,763 -$8,150 
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TABLE V 

TOTAL UNITS WITH NEGATIVE PROFITS FOR DAY WITH HIGHER STANDARD 

DEVIATION (LMP AND RCP) 

 Unit-hours with negative 
profit 

Total $ of negative profit 

 LMP based 
on single 
scenario 

Probability 
weighted 

LMP 

LMP based 
on single 
scenario 

Probability 
weighted 
LMP/RCP 

August  126 71 -$17,623 -$8,326 

April 76 33 -$10,035 -$5,546 

 

A few observations can be discovered from these results. 
Generally, it appears that the probability-weighted LMP has 
less total negative profits. It can also be observed that adding 
RCP to the equation makes the probability-weighted pricing 
appear more efficient. In fact, some units had increases in 
negative profits for the single-price pricing scheme when 
adding the RCP to the payments. Since RCPs cannot be 
negative, this had to do with the units in particular that were 
being adjusted. The reserve schedules from the final real-time 
run must have been less than in the median scenario of the 
STSCUC for certain units. Lastly, it appears that the higher the 
uncertainty (higher standard deviation), the more efficient this 
probability-weighted pricing scheme becomes. 

VI. CONCLUSION 

The benefits that stochastic SCUC can give in terms of 
reliability and economics can be substantial in power systems 
with high penetrations of variable generation. Currently, no 
systems we are aware of have begun using STSCUC in actual 
day-ahead market operations. Difficulties in solving within 
feasible times due to computational intensity and the issues 
involved with integration into existing market structures are 
two reasons why this has not yet occurred. This paper attempts 
to facilitate the interaction between stochastic SCUC and day-
ahead energy markets by introducing a probability-weighted 
LMP and RCP pricing scheme for paying generators.  

Testing the proposal on a small but practical system 
showed great benefits in terms of lesser negative profits 
occurring when compared to a pricing scheme that only used 
schedules and prices from one scenario. The benefits appear to 
increase when more uncertainty is present in the system and 
when probability-weighted RCP is used in addition to 
probability-weighted LMP. This might be one of the decisions 
when deciding to implement this procedure in a market that 
has decided to utilize STSCUC. If the market had highly 
variable wind power that was difficult to predict and therefore 
probabilistic wind power forecasts had high uncertainties, the 
probability-weighted pricing scheme would ensure generators 
would recover costs more often and would reduce make-whole 
side payments resulting from inefficiencies. 
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