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Abstract—Wind power forecasting is expected to play an increasing 
role in power system operations as the amount of wind capacity on-
line continues to increase. Traditional forecasting metrics, such as 
MAE and RMSE, neglect some of the information inherent in 
forecasting error distributions.  Information entropy approaches, 
based on the Rényi entropy, have been proposed as an alternative 
metric to assess different forecasting methods.  In this work, we 
examine the parameters associated with the calculation of the Rényi 
entropy in order to further the understanding of its application to 
assessing wind power forecasting errors. 

Keywords- Power generation; stochastic systems; power 
engineeringand energy; wind power generation 

I.  INTRODUCTION 
Wind power installed capacity has been increasing 

significantly in the United States over the past few years.  Since 
wind is a variable and uncertain source of power, many questions 
have been asked about how these large additions of wind power 
can be integrated into the existing electricity system, designed for 
more predictable and less variable generation.  One way that the 
uncertainty associated with wind power production can be 
reduced is through forecasting.  As the amount of wind power in 
the system increases, the importance of wind power forecasting in 
power system operations is also expected to increase.  Wind 
forecasting can be undertaken at a number of different 
geographical and organizational scales.  In this work, we are 
primarily concerned with wind power forecasting for bulk power 
system operations, thus there is a focus on centralized forecasting 
systems employed by Independent System Operators (ISOs), 
though consideration is also given to forecasting individual wind 
plant output. 

Porter and Rogers [1] provide an overview of the centralized 
wind power forecasting systems in use by various system 
operators across North America.  An update to that study by the 
same authors provides the performance of various wind 
forecasting systems, though only in terms of the two most 
common metrics, Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE) [2].  These two measures correspond to 
measures of the first and second statistical moments of the error, 
respectively.  However, previous work has established that the 
forecast error distributions seen in wind power forecasting are 
non-normal [3, 4], and the impacts of wind power forecasting 

errors do not scale linearly.  Small deviations from the forecast 
output can be relatively easily compensated for in power system 
operations.  Since load is also variable and uncertain, power 
systems have mechanisms to account for load forecasting errors; 
at small time frames this is the function of regulation.  
Nevertheless, large forecast errors can necessitate unit start-up or 
out-of-merit dispatch, expensive corrections for over-forecasting 
events.  Under-forecasting events can be more easily compensated 
for through wind curtailment, though this also includes a lost 
opportunity cost.  For plant owners that participate in day-ahead 
markets, large forecast errors can have large financial 
consequences because they will require deviations from their 
production schedule. By considering the third and fourth 
standardized moments, skewness and kurtosis, respectively, 
forecasting error distributions from operational wind forecasting 
systems may be more accurately represented [4].  Since the MAE 
and RMSE metrics cannot distinguish between two distributions 
with the same mean and variance, but different skewness and 
kurtosis values, they ignore additional information about the 
forecast errors that could potentially have a significant impact on 
system operations.  In fact, the use of statistical measures beyond 
the variance has been shown to decrease the total system costs 
with stochastic unit commitment [5].  A brief discussion of the 
different metrics that may be applied to wind power forecasting 
assessment is provided in Giebel et al. [6]. 

 The realization that standard forecasting metrics are only 
optimal if the error distribution is Gaussian has led to the use of 
concepts from information theory to identify new metrics that can 
utilize all of the information present in the forecast error 
distributions [7].  Bessa et al. [8] explore the use of minimum 
error entropy and correntropy as training metrics in a neural 
network that produces wind power forecasts from inputs of wind 
speed and direction forecasts of a numerical weather prediction 
model. This approach assumes that the less information contained 
in the forecast error distribution, the better the forecast.  As an 
illustrative example: a Dirac delta function would contain no 
information because there is only one possible value realization.  
However, one limitation of this approach is that it does not matter 
where along the range of possible forecast values the Dirac delta 
function lies. It cannot distinguish between the case of all errors 
occurring at the point of zero forecast error and the point of a full 
wind plant’s capacity.  In this work we attempt to determine the 
suitability of information entropy approaches, based on the Rényi 
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entropy [9], as general metrics for assessing wind power 
forecasting errors.  For this assessment we have identified the 
main parameters associated with the calculation of the Rényi 
entropy and performed a sensitivity analysis on their values over 
realistic ranges.  Our goal is to examine the potential benefits and 
limitations of using metrics based on information theory as wind 
power forecasting performance metrics. 

II. METHODS AND DATA 
To assess the suitability of information entropy approaches to 

serve as wind power forecasting performance metrics, we first 
define and examine the Rényi entropy concept that serves as a 
basis for the approach in Section II-A.  Section II-B describes the 
wind power forecasting data taken from operational systems that 
is used to help examine the metric. 

A.  Rényi entropy 
To move beyond the limitations of second-order moment 

metrics for wind power forecasting, and make use of the full 
range of information available in the error distributions, concepts 
developed in the field of information theory have been suggested. 
The Shannon entropy [10] is a measure of the information 
content contained in a message, and serves as one of the pillars of 
modern information theory.  The Rényi entropy is a 
generalization of the classical Shannon entropy  and is defined 
as: 

  (1) 

Here α is a parameter that allows for the creation of a spectrum of 
Rényi entropies and pi are the probabilities of each discrete 
section of the distribution {x1, x2, …xn}.  Previous work with the 
Rényi entropy in wind power forecasting [7, 8] has utilized the 
special case of quadratic entropy, i.e., when α = 2.  However, the 
choice of α value used in the calculation of the Rényi entropy can 
be very important, as it determines the relative weighting of high 
and low probability events.  High values of α will favor higher 
probability events, while lower values of α weight all of the 
instances more evenly.  This weighting is an important 
consideration in the application of the metric to wind power 
forecasting errors.  Traditional power system operations without 
variable generation include the forecasting of demand so that 
supply can be made available to meet the demand.  Therefore, 
services such as regulation are available to compensate for these 
relatively small forecast errors, whether they arise due to load or 
wind power forecasting.  It is the low probability, but high 
magnitude, forecasting events that are particularly troublesome 
for power system operations.  The choice of α value can therefore 
significantly impact how wind forecasting methods are assessed 
and improved.  For example, it can mean the difference between 
shifting the focus from preventing large magnitude errors 
(distribution tail reduction) and increasing the peakedness of the 

distribution (i.e., shifting shoulder values into the peak while 
ignoring the tails).  The relative weighting of forecast errors, and 
hence choice of α, is especially important in applying the metric 
between different power systems.  This is because different power 
systems have different amounts of flexibility inherent in current 
system operations, often based on the physical characteristics, 
such as minimum up and down times, ramping rates, etc., of the 
other power plants in the system.  Since the flexibility available in 
the system may vary depending on what other plants are actually 
online at a given time, it is easy to imagine that the optimal α 
value for a particular system will change with time. 

In this work, we estimate the probability mass function of the 
wind power forecasting errors by using a large number of bins, 
such as would be employed in creating a histogram, to represent 
the values that the function may take.  This method is used both to 
aggregate the probability mass functions created from wind power 
forecasting error data, and to estimate the continuous probability 
density functions used to model the observed distributions.  In this 
way, it is similar to the Parzen window size approach used in 
kernel density estimation, as it effectively aggregates the observed 
errors into discrete points from which the probability density 
function may be constructed.  As will be shown in Section III, the 
method of aggregating the observed errors into discrete groups 
where a probability of occurrence may be calculated is another 
critical parameter in the calculation of the Rényi entropy. 

B. Data Utilized 
To assess and compare the various metrics suggested for 

analyzing wind power forecast errors, we utilize the observed 
errors from three different operational forecasting systems in the 
evaluation of the metrics.  Each dataset comes from a different 
geographic area of the United States.  The first dataset comes 
from a single wind plant in the Xcel Energy Colorado territory 
with a nameplate capacity of approximately 300 MW.  The data 
include three months of wind power forecasts and measured 
output from the plant.  The forecasts are updated every 15 minutes 
for every hour in the next 72 hours and the actuals provide the 
plant power output at every hour.  The second dataset is one year 
of day-ahead forecasts, made for every hour of the next day, and 
actuals for the aggregation of a number of wind plants in the 
CAISO region.  The total capacity of all of the wind plants 
considered is roughly 940 MW.  The final dataset comes from the 
ERCOT interconnection.  The centralized day-ahead forecasts and 
actuals at hourly intervals for approximately 9,000 MW of wind 
capacity over a 13-month period are included.  Further 
information on the centralized wind power forecasting systems in 
use in North America, including those used in creating these 
datasets, may be found in two reports by Porter and Rogers [1, 2]. 

While the normal distribution is often used to represent the 
forecast errors observed in forecasting systems, it tends to under 
represent the number of large errors in the tails of the distribution 
[4].  When the forecast error distribution from an operational 
system is compared to a normal distribution, the observed 
distribution tends to have a sharper peak, more narrow shoulders, 
and fatter tails, as shown in Fig. 1.  Recognizing the usefulness of 
having a model distribution with which to represent the 
distributions obtained from operational forecasting systems, we 
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have chosen the hyperbolic distribution as a more accurate 
substitute.  Distribution parameters were fit to the data using a 
maximum likelihood method implemented in the hyperbFit 
function of the HyperbolicDist package [11] in the R statistical 
computing environment [12]. 

 

Figure 1.  Histogram of the day-ahead forecasts for the CAISO system over a 
one-year period.  This includes forecasts for different timescales, ranging from 18 

to 42 hours ahead. μ = -0.004; σ = 0.13; γ = -0.39; κ = 1.50. The black line 
represents a normal distribution with the same mean and standard deviation. The 
blue line represents a hyperbolic distribution fit to the data with: π = -0.139, ζ = 

9.62 E-5, δ = 8.79 E-6, μ = 0.021. 

III. RESULTS 
To assess the utility of information entropy techniques as wind 

forecasting performance metrics, we must first test the parameters 
associated with their calculation.  Most traditional metrics do not 
involve a choice of parameters, meaning that they may be applied 
to similar datasets in only one manner.  While this simplicity is a 
benefit for their uniform application, it is also a limitation.  For 
example, the ability to change the α parameter in the calculation 
of the Rényi entropy could allow for the degree of system 
flexibility to be considered when deciding which forecasting 
systems should be employed in a certain region.  In this section, 
we first make a qualitative comparison between using the Rényi 
entropy as a wind power forecasting performance metric, and 
two traditional metrics. We then examine some of the 
implications of being able to choose the size of the divisions used 
in binning the forecast error distribution, as well as different 
values of the α parameter. 

A. Comparison of Metrics 
While multiple metrics have been proposed for assessing wind 

power forecasting errors, each of these metrics provides only 
certain information about the distribution of forecasting errors. 
Due to the limited information provided by any one metric, it is 
always wise to consider multiple metrics when comparing 
alternative forecasting performance methods.  However, problems 
arise when the metrics provide differing assessments of the 
forecasting performance method’s capabilities.   This is especially 
true when trying to discern between very similar methods.  As an 
example of this problem, we have compared the forecast errors 
from the Xcel data with two traditional metrics, as well as the 
Rényi entropy.  To compare the different metrics we have also 
included two more distributions, a normal distribution and a 
hyperbolic distribution.  These two alternative distributions were 
created by fitting the model distributions to the observed Xcel 
errors and then taking a number of samples equal to the size of the 
Xcel data from each of the model distributions.  The results of 
these calculations are provided in Table I. 

TABLE I.  COMPARISON OF METRICS FOR XCEL DATA 

 Observed Normal Hyperbolic 

MAE 87.21 125.82 87.69 

RMSE 3.64 3.66 2.86 

Rényi entropya 6.20 6.93 7.23 

a. Calculated with number of bins = 200 and α = 0.05 

 

If we were to choose which of the two model distributions 
better fits the observed data, the answer would depend on which 
of the metrics we were considering.  Judging solely on the MAE 
score, the hyperbolic distribution provides a very close fit to the 
observed data.  For the RMSE values, the normal distribution is 
much closer to the observed values, however, the hyperbolic 
distribution has a lower value, meaning that it produces a better 
forecast than the observed distribution, taking only this single 
metric into consideration.  Using the Rényi entropy as a metric, 
we find that the normal distribution is preferred over the 
hyperbolic distribution.  This result may be true for arbitrarily 
chosen parameters, such as when the number of bins used in the 
calculation of the Rényi entropy is 200 and the α value is 0.05.  
However, with larger α values, the choice of model distribution is 
switched.  This result clearly necessitates a closer examination of 
the role of the parameters in the calculation of the Rényi entropy. 

B. Effect of Number of Bins 
A key consideration when examining any distribution is the 

degree to which different observations should be grouped.  This 
takes the form of the bin size when creating a histogram or the 
size of the Parzen window if a non-parametric approach, such as 
kernel density estimation, is applied.  This choice determines how 
smooth the graphical representation of the distribution will be and 
can be quite important in the recognition of particular 
characteristics of the distribution.  Guidelines for determining the 
number of bins to use in a histogram do exist, for example Scott’s 
rule [13]. However, in this work we have chosen to perform a 
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parametric sensitivity analysis to examine the impact of the 
number of bins on the calculation of the Rényi entropy over a 
range of possible values. 

The number of bins used in a histogram function of the 
ERCOT data was varied between 10 and 9,500, by intervals of 
one bin, and the Rényi entropy value was computed with a 
constant α value over all of the bin sizes.  The results of these 
computations are plotted in Fig. 2, for α = 0.5.  It is immediately 
apparent that the number of bins used has an important impact on 
the calculation of the Rényi entropy value.  At lower numbers of 
bins the entropy value calculated is reduced, because the 
information is aggregated into a smaller number of categories.  
Larger numbers of bins allow the information available in the full 
distribution to be recognized, resulting in higher entropy values.  
As might be expected from the Rényi entropy formulation given 
in eq. 1, the entropy value varies logarithmically with the number 
of bins.  It is interesting to see the step function changes that occur 
in the entropy value with increasing numbers of bins.  Since the 
number of bins is a discrete parameter, and the parameter was 
varied by a single increment for each calculation, the step point 
represents a point where further disaggregation of the data 
provides additional information. 

 
Figure 2.  Rényi entropy values for the observed ERCOT day-ahead forecast 
errors for a number of different histogram bin values.  The α value used in this 

example was held constant at 0.5. 

C. Effect of α Value 
The α parameter value chosen can also be a key consideration 

in the calculation of the Rényi entropy.  As discussed in the 
Methods and Data section, the parameter value may be selected to 
adjust the weighting between the peak and tails of the distribution.  
When dealing with wind power forecasting errors this is a very 
important consideration, as large forecast errors have a much 
greater impact on system operations than do small errors.  
Therefore, a well-designed metric for assessing wind power 
forecasting errors should weigh larger errors proportionally more 

than smaller errors.  Fig. 3 shows the result of computing the 
Rényi entropy value for different α values with a constant bin size 
for the Xcel hour-ahead forecast data.  It is important to note the 
log-scale on the x-axis.  Two different ranges of α values were 
assessed.  The first includes values less than one, starting at 0.01 
and incrementing by 0.01 until 0.99.  These values are meant to 
examine weightings that emphasize the tails of the distribution.  
The second ranges from 1.1 to 100 by increments of 0.1.  The 
upper values in this range tend to neglect the tails of the 
distribution in favor of the peak values.  Fig. 3 demonstrates that 
the Rényi entropy value computed can differ significantly based 
on the α value utilized. 

There is a point in Fig. 3, at approximately α = 0.25, where the 
information entropy values of the normal distribution and 
hyperbolic distribution representations cross.  This occurrence is 
significant in that the choice of which model forecast error 
distribution representation is superior, according to the 
information entropy metric, is reliant on the α value chosen to 
assess the models.  Presuming a smaller information entropy 
value is better, the normal distribution would be preferred when 
using a very low α value, while the hyperbolic distribution would 
be preferred for a higher α value.  This inconsistency is closely 
related to the relative shapes of the two distributions, which may 
be seen in Fig. 4.  Since higher α values place more emphasis on 
the smaller magnitude deviations, the hyperbolic distribution is 
favored due to its more pronounced peak.  For the lowest α 
values, the heavier tails of the hyperbolic distribution are 
emphasized and the normal distribution has lower Rényi entropy 
values. 

 
Figure 3.  Rényi entropy values for the observed Xcel hour-ahead forecast errors, 
along with the normal distribution and hyperbolic distribution representations of 
the observed errors, for a number of different α values.  The number of histogram 

bins used in this example was held constant at 250. 

It is also interesting to examine the relative fits of the two 
model distributions compared to the observed distribution over 
the entire range of α values in fig. 4.  In this particular case, the 
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hyperbolic distribution seems to over-represent the tails of the 
distribution, leading to a higher Rényi entropy value in the range 
of the very low values.  Conversely, the hyperbolic distribution 
tends to under-represent the peak of the distribution, as seen in the 
higher α values.  However, the hyperbolic distribution does come 
closer to matching the observed distribution in this range than 
does the normal distribution.  There is a region of α values, 
between approximately 0.2 and 0.9, where the hyperbolic 
distribution matches the observed distribution very closely.  It is 
important to note that these fits are impacted by the step change 
behavior seen in the choice of the number of bins.  Since the 
location of the step changes may differ for each of the different 
model distributions, as well as the observed errors, this can play a 
very large role in assessing which distribution provides a better fit 
based on the Rényi entropy criterion. 

 
Figure 4.  Histogram of the one-hour-ahead forecasts for the Xcel plant over a 3-
month period. μ = 0.01; σ = 0.08; γ = -0.01; κ = 17.62. The blue line represents a 
normal distribution with the same mean and standard deviation.  The black line 
represents a hyperbolic distribution fit to the data with: π = 0.087, ζ = 3.88 E-5, δ 

= 1.76 E-6, μ = 0.005.  The forecast errors have been normalized based on the 
total wind plant capacity. 

D. The Relationship between the Number of Bins and α 
Having already individually examined the choice of two 

parameters: number of bins and α value in the computation of the 
Rényi entropy value for wind power forecasting errors, it is 
interesting to examine the relationship between the two 
simultaneously.  Fig. 5 shows a three dimensional plot of the 
Rényi entropy values calculated using the same range of α values 
and number of bins as examined in the preceding sections.  The 
step change pattern seen with varying number of bins is clearly 
apparent on the z-axis, though the degree of change is slightly less 
at low α values.  On the x-axis, the largest changes in Rényi 
entropy are seen with α values in the zero to one range.  The 
information entropy measure decreases very gradually with 
increasing α values greater than one. 

 
Figure 5.  Comparison of the Rényi entropy value of the Xcel hour-ahead 

forecast errors when calculated using  different numbers of bins and α values. 

IV. CONCLUSION 
Information entropy approaches have been suggested as 

possible replacements for the traditional performance metrics of 
wind power forecasting because they allow for the utilization of 
all of the information in the wind power forecast error 
distributions, including higher moments.  However, these 
approaches also have limitations based on the choice of 
parameters utilized.  The size of the bin or window used in the 
estimation of the probability density function is one such 
parameter that may have a large impact on the resulting 
information entropy value.  In the calculation of the Rényi 
entropy, the α parameter can also have a significant impact; 
deciding the weighting between different sections of the 
distribution in the resulting value.  We have highlighted some of 
the potential pitfalls associated with using the Rényi entropy as 
the basis for a wind power forecasting performance metric and 
advocate the use of a systematic approach when applying the 
metric to real systems.  However, despite these limitations, this 
approach has the potential to tailor the wind forecasting 
performance metric used based on the state of the electricity 
system where it is applied.  This is an important consideration, 
because it would allow systems to define the level of wind 
forecasting error that they can reasonably accommodate, and then 
focus their forecasting improvement work on eliminating errors 
outside of their acceptable range. 
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