
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy
Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Contract No. DE-AC36-08GO28308

An Object-Oriented Database for
Managing Building Modeling
Components and Metadata
Preprint
N. Long, K. Fleming, and L. Brackney
Presented at Building Simulation 2011
Sydney, Australia
November 14-16, 2011

Conference Paper
NREL/CP-5500-51835
December 2011

NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

http://www.osti.gov/bridge�
mailto:reports@adonis.osti.gov�
mailto:orders@ntis.fedworld.gov�
http://www.ntis.gov/help/ordermethods.aspx�

1

AN OBJECT-ORIENTED DATABASE FOR MANAGING BUILDING MODELING
COMPONENTS AND METADATA

Nicholas Long, Katherine Fleming, and Larry Brackney
National Renewable Energy Laboratory, Golden, CO USA

ABSTRACT
Building simulation enables users to explore and
evaluate multiple building designs. When tools for
optimization, parametrics, and uncertainty analysis are
combined with analysis engines, the sheer number of
discrete simulation datasets makes it difficult to keep
track of the inputs. The integrity of the input data is
critical to designers, engineers, and researchers for
code compliance, validation, and building
commissioning long after the simulations are finished.
This paper discusses an application that stores inputs
needed for building energy modeling in a searchable,
indexable, flexible, and scalable database to help
address the problem of managing simulation input data.

INTRODUCTION
Over the past decade, traditional relational database
management systems (RDBMS) have shown their
limitations in a Web-based world where scalability and
redundancy across multiple servers are of interest.
These simulation databases will be easier to implement,
maintain, and update if they are designed with a
flexible object-oriented database model that stores data
in a single collection rather than across multiple tables
and rows. Nonrelational database structures are more
agile; however, they lack the well-known table-join
structure of the conventional relational databases.
Although not ideal for all solutions (such as heavily
transaction-dependent accounting applications where
the timing and completion of data manipulation are
critical), nonrelational database systems are well-suited
for handling the size and complex relationships
associated with building data. We discuss the benefits
and difficulties of implementing a nonrelational
database management system to index several hundred
thousand simulation components in a Web-based
framework.
The Building Component Library (BCL) is a new Web
resource and database being developed at the National
Renewable Energy Laboratory. It addresses issues
associated with reliable storage and retrieval of data
required for building energy modeling (BEM) and will
be an online repository for building component
metadata and associated raw data that are generally
required to build and execute building energy models.

The library will include window and wall
constructions, heating, ventilation, and air-conditioning
(HVAC) components, plug loads, weather data, code-
compliant components, utility rate data, energy
conservation measures, complete subsystems, and even
whole buildings. BCL metadata include data
conformant to a component taxonomy that enables
searching and a flexible and extensible set of attributes.
These attributes include length, width, weight, cost, U-
factor, data provenance, and supporting video or
images, along with other attributes that further define
components. Model input can be stored in multiple
formats, including OpenStudio (NREL 2011),
EnergyPlus (Crawley et al. 2008), DOE-2 (York and
Cappiello 1981) input, and various weather file
formats.

BACKGROUND
For years, organizations, researchers, and companies
have sought a solution for storing all the data needed to
design, model, construct, operate, and evaluate a
building. This concept is termed building information
modeling (BIM) and is the digital representation of the
building in the form of building objects along with their
attributes, properties, and relationships with other
building objects (Eastment 2009).
The United States spends an estimated $15.8 billion per
year on issues related to interoperability (Gallaher et al.
2004). Several companies have implemented the BIM
concept in different ways but with essentially the same
goal (unifying building data into a single model). These
entities have started developing online data repositories
to store individual components and objects for their
BIM offerings.
Autodesk released Autodesk Seek as a beta application
in 2008 (Donn et al. 2009), which continues to be
extended with product specifications and geometric
representations for various computer-aided design
(CAD) packages. The components on Seek contain
several files, including the CAD file, and occasionally
performance data (such as the IES file for lighting)
(Autodesk 2011).
SmartBIM was created in 2010 by Reed Construction
Data and Source2, which recently merged with
ecoScorecard (SmartBIM 2011). SmartBIM’s online

2

repositories contain building components for various
needs. The SmartBIM objects typically include the
product specifications and typically do not contain
performance data suitable for BEM.
Google created the 3D Warehouse in 2005 (Google
2011), which allows Google SketchUp users to upload
pieces or entire models into the warehouse to share. If
an entire model is uploaded (and geolocated), the
model may also be added to Google Earth. Google’s
3D Warehouse does not contain detailed product data
or performance data that are suitable for BEM.
Autodesk, buildingSMART, and Google create online
repositories for building components. In general they
focus on the architectural, geometric, and mechanical
aspects, as the goal is to integrate the objects into CAD
tools but not to directly target BEM.
There is no standard file format for defining the data
needed for the BIM components. Two of the most
prominent interoperability file format offerings are the
Industry Foundation Classes (IFC) and Green Building
eXtensible Markup Language (gbXML) (gbXML
2008).
The International Alliance for Interoperability branded
the buildingSMART Alliance (IAI-bSa 2011) to better
integrate the various formats of building data. The
Industry Foundation Classes format is helpful for
characterizing building architectural elements;
however, it lacks a large amount of HVAC and other
data needed for general BEM.
The gbXML format is based on the popular XML. In
general, gbXML defines the geometric and
architectural elements well, including a high-level
HVAC definition that could be translated with various
assumptions into BEM.
The BIM data format is further complicated when
BEM is the goal, as the file formats depend on the
particular information needed by different simulation
engines. The BCL target is to provide data to the
energy modeler. It also contains information related to
the operational aspects of the building (schedules,
water mains temperatures, etc.), and includes
representative components that may not be available
from a manufacturer. The components are typically
used for codes and standards types of analyses.

THE CASE FOR OBJECT-ORIENTED
DATABASES IN ENERGY MODELING
The data used to describe and analyze buildings vary in
type and dimensionality. Building characteristics data
such as location, size, and the more complex envelope
constructions must be stored alongside time series
information such as performance and weather data at
annual, monthly, daily, hourly, and even minute
recording intervals. Moreover, aggregated data, either

of a single variable over time or of a sum or average of
related variables, often need to be stored.
Relational database management systems (RDBMSs)
have been the go-to model for database enterprise and
Web solutions. These types of databases have multiple
tables with columns representing different fields and
rows representing individual records. Data associations
are established through keys, which create relationships
between records in different tables (Bowman et al.
1996).
Relational databases are widespread, well known, and
well supported. Examples of open-source and
proprietary RDBMSs include MySQL, PostgreSQL,
Microsoft SQL Server, ORACLE, and SQLite. Their
schema (the database structure representing each table,
its fields, and its relationships to other tables and fields)
must be defined and implemented before the database
can be used. The SQL query language is used to insert,
update, and return information from the database to the
user or application (Bowman et al. 1996). When data
are queried by an application, they are returned in a
specific format, which must then be converted to a
format (such as an array) that can be used by the
application language, before they can be manipulated.
The converse is also true: data stored in an array by the
application must then be converted to SQL format
before they can be inserted in the database.
Relational databases such as EnergyPlus’s SQLite
output (UIUC, LBNL 2010) have been used quite
successfully to store building characteristic metadata
and performance data. They are, however, rigid, bulky,
and difficult to scale across several servers. Multiple
tables are needed to represent complex relationships
between variables, which makes querying the database
complicated and error prone. Issues arise when new
data need to be stored: additional fields must be
incorporated into the database schema, which may
result in new tables, fields, and relationships. These
new fields must then be added to all previously stored
records, which may result in many empty fields and
much wasted space.
Time-varying building performance data present a
storage challenge for any type of database, but
relational databases have particular difficulty because
of the large number of records, querying, and
aggregation requirements these data entail. Relational
databases usually scale vertically, which means
processing power, memory, and space are added to a
single “super” server to increase performance. This is
more expensive (in maintenance and costs) than
horizontal scaling, now that server resources have been
commoditized. Horizontal scaling involves adding
multiple modestly equipped servers to increase overall
system performance. This scaling method has the
added benefit of increased reliability through

3

redundancy. Relational databases can sometimes be run
on multiple servers to increase performance, but these
solutions are expensive and difficult to implement
(Plugge et al. 2010).
The NREL Commercial Buildings group has had
experience with two building-related Web applications
built on relational databases: the 179D Easy Calculator
and the High Performance Buildings Database
(HPBD). The HPBD was originally developed in 2002
and substantially updated in 2011 (as discussed later).
The HPBD contains many exemplary building case
studies that are displayed on a dozen portals, including
the American Institute of Architects and the U.S. Green
Building Council websites, in addition to the main
HPBD portal. Naturally, each portal’s requirements
differ slightly and change over time to increase its
functionality. No matter how well-designed the original
schema, tables and fields often need to be added to
satisfy evolving needs. This is a costly and time-
consuming task. Changes made for one portal must be
propagated to the others, and mappings from the
database fields to the code must be implemented. The
result is an explosion of tables and join-statements,
which makes the implementation challenging to
maintain and the data difficult to reuse and repurpose.
179D estimates a building owner’s potential tax
deduction based on comparisons of lighting, envelope,
and HVAC parameters to baseline simulation models.
More than 200,000 simulations were run and the results
were used to extrapolate equations that calculate
estimated savings. The simulation results and
aggregated results were stored in comma separated
value (CSV) files, which were then loaded into a
relational database that is specific to the 179D
application and does not house the raw simulation
results. Having a generic, centralized method of
housing simulation data that may vary slightly from
one record to another would facilitate its repurposing
for other research studies and applications.
MongoDB is a document-oriented database that is
optimized for speed and scalability (Plugge et al.
2010). It is a schemaless database, is not made of tables
with rows of data, and does not use the SQL language
for querying. Instead, data are stored in structured
“documents” that can contain all the information
related to an entity. All data are stored in one location,
and no relationships are necessary between documents
so MongoDB can easily scale to many servers.
Scalability is essential in Web 2.0 applications, where
users not only access information, but also generate
content.
A user can store complex data in a single document,
instead of using multiple tables to store and join
statements to query the information in a relational
database. Storing and retrieving data are easy and no

time is unnecessarily spent designing and updating
schemas. Each document can be completely different
from the others and structure does not need to be
specified upfront. The mappings between the
application code and the database are easier to
implement and use: the data are stored in a binary
format and are returned in typed arrays that can be used
directly by the code, making the database faster to
access, develop, and maintain.
MongoDB allows a special indexing technique called
geospatial indexing, so geography-dependent
information such as climate and other weather-related
data can be queried by proximity to a given location.
This is relevant to storing weather station locations and
geolocated building data such as location.
The new HPBD implementation (DOE 2011) also uses
the MongoDB database to store building data. As with
our other data-intensive Web applications, the HPBD
site is implemented in Drupal (a content management
platform) (Drupal 2011) and uses a hybrid solution to
store data. MySQL (MySQL 2011), a popular relational
database, is used to store the Drupal content needed to
render the site; MongoDB is used to store all building-
related information.
In the HPBD, each MongoDB record, or document,
corresponds to a single building’s complete set of
metadata and performance data. The documents are
stored in a single collection, MongoDB’s equivalent of
a relational table. No schema needs to be defined ahead
of time, and data can be easily structured in the
documents. Embedded documents in the main
document are used to structure multiple annual water
and energy performance datasets as well as monthly
utility bill data.
Most documents currently in the database are similarly
organized, because they were created as part of the
same application; however, there is no restriction on
the number and type of fields each document can
contain or on document organization. Null fields are
simply not added to documents. This saves space, and a
user can add new fields on the fly without updating
stored records.
All data pertaining to a building are stored in a single
MongoDB collection and all extraneous data related to
the specific application are stored in a separate
database. This facilitates data sharing between multiple
applications and application program interface (API)
development. Building data at various levels of
detail—and captured through various means—could be
stored in the same database as the HPBD data to create
a centralized repository for all building-related
information. This would facilitate data analysis and
visualization.

4

BUILDING COMPONENT LIBRARY
IMPLEMENTATION
The BCL was designed to separate the building data
from the website content, even though this required two
databases. This separation enables greater future
flexibility, the building of additional front ends on the
building component data, and the performance of data
mining routines without accessing user accounts or
website content. A document database stores building
data; a relational database stores website-specific data.
We chose the technologies used to implement the
website based on several criteria: open source
licensing, functionality, compatibility with server
architecture, security, and community engagement
related to the development. Multiple Web servers are
used to facilitate expansion and handle the potentially
large number of users. MongoDB was of particular
interest because it scales horizontally and allows for
splitting the database across several servers as well as
replication. The replications create backups of data on
other servers and can provide automatic failover.
We used agile principles to design the site because the
technologies were uncertain, and revisited and
enhanced many steps throughout the design. The steps
used in the design were: (1) develop the site map,
which included high-level design mockups and
understanding how users would access the data; (2)
design the component taxonomy structure (see next
section); and (3) generate and upload components.
A beta release version of the BCL site is publicly
available.

TAXONOMY, METADATA, AND DATA
The vast number of building design parameters makes
characterizing these in a single cohesive taxonomy a
formidable, yet critical, task. During the taxonomy
design process, we decided to keep the taxonomy as
flat as possible to allow for future flexibility. Rigid
taxonomies will not last more than a couple of
iterations, so, based on user feedback, the taxonomy
was allowed to morph.
For flexibility, we subdivided the taxonomy into a few
principal categories: building design, construction
assemblies, building loads (including miscellaneous
electrical loads), HVAC systems, schedules, and
location-dependent components. One category of
interest is the miscellaneous electrical loads (Frank et
al. 2011), which includes hundreds of products such as
computers and appliances that are uploaded into the
BCL.
The taxonomy describes the component types in the
BCL; each has an unnumbered set of attributes.
Currently, the attributes are broken up into a few data
types consisting of strings, integers, and doubles. Each

attribute type is expressed differently in the search
facets functionality described in the next section.
Figure 1 shows metadata that are available for a typical
BCL component. These can vary by component type.
Many components presently contain images and
component-specific attributes, information about the
source or manufacturer, a description of the data
provenance, cost, and a summary of attached files
available for download. Attached files can be retrieved
from the component page via a download link, which
provides a zip file containing images, videos, and
model input file snippets as appropriate. The file
snippets are not restricted to any particular modeling
software.

Figure 1 A BCL Component

Attribute metadata are currently used to filter search
results, and are described in the next section. More
metadata and associated dynamic calculations will be
added to enable high-level analysis external to BEM
engines. For example, life cycle cost data and
site/source transport calculations may be easily added
to BCL. Users can employ a comma separated value
export facility coupled with BCL’s search and sort
functionality to quickly perform life cycle analysis of a
prospective component.
Each BCL component is versioned and assigned a
unique identifier that can be accessed via an associated
uniform resource locator (URL). This will facilitate
citation and enable BEM to be both transparent and
repeatable. This will increase BEM credibility.
Specifications, publications, and entire models can
contain references to specific versions of components
by URL.

FACETED SEARCH FUNCTIONALITY
The BCL can perform multifaceted searching, enabling
users to quickly identify relevant components that meet
specific constraints. This will become a key feature for

Credit: Building Component Library / NREL (http://bcl.nrel.gov)

5

efficient access to relevant data, as the BCL will
certainly grow to contain millions of components.
Apache Solr was identified as a capable, open source
search engine that could integrate with the Drupal
content management and MongoDB framework used
for this project. It provides rapid full text searching,
faceted search, database integration, and other enabling
features that could quickly be leveraged for BCL
(Apache 2011).
In practice, user search queries return a list of potential
components along with a filter sidebar that enables
users to efficiently refine searches by constraining
attributes, component types, and file formats. For
example, the search term window returns a list of all
window-related components that may be sorted by
relevance, user rating, or upload date. A contextually
appropriate list of relevant attributes that may be used
to quickly refine search results appears in the sidebar.
A partial list of appropriate attributes automatically
returned in the sidebar of a window search is shown in
Figure 2.

Figure 2 BCL Filter by Attributes

In this example, the initial search returned 1,412
components associated with the search term window. A
specified U-factor range reduced the results to 164.
Multifaceted searching also further reduces options,
and the list of available attributes changes dynamically
based on the components remaining in the filtered
search.
Users may employ the filter by component type or file
type to further refine their searches (see Figure 3).
These are also dynamically constructed and appear in
the filter sidebar of a search. In this case, the user might
specify a skylight component, which would reduce the
search to only 36 components. Each search result has
an associated EnergyPlus .idf file snippet. Search

results producing alternate data formats such as .epw
files would also appear as search options.

Figure 3 Component and File Type Filters

INTEROPERABILITY
An API for accessing the search engine and returning
specific BCL components is provided for external
applications, and is critical for transparent data access
and integration. The API documented on the BCL
website includes application examples for returning
programmatic queries in various formats, including
YAML, XML, and JSON. The API is freely accessible
to registered users.
Three methods are exposed in the API:
• Search. The user can concatenate filters for each

component attribute.
• View. The user can see the details of each

component of interest.
• Download. The user can send a list of identifiers to

download the components.
An example of a search query resulting in two records
that represent Denver follows. The API key is needed
to verify the user’s identity.

http://bcl.domain.name/api/search/denver.xml?show_ro
ws=02&oauth_consumer_key=#{apikey}

As components are uploaded to the BCL, additional
attributes will be created and periodically added to the
faceted search index and made available through the
API.
The OpenStudio suite and software development kit
(SDK) are currently being extended to use BCL data.
The SDK includes an object-oriented abstraction to
BEM (presently emphasizing EnergyPlus) that is being
closely aligned with BCL content. OpenStudio reverse
translators (translating from EnergyPlus to the
OpenStudio native format) can use raw .idf snippets
presently stored in the BCL; however, we envision
extending BCL data with OpenStudio component (.osc)
models as the format matures. The .osc format contains
information required for the EnergyPlus simulation
engine. Raw snippets in other software formats, such as

Credit: Building Component Library / NREL (http://bcl.nrel.gov)

Credit: Building Component Library / NREL (http://bcl.nrel.gov)

6

Radiance, can also be stored along with universal
metadata native to the BCL (Ward 1994).
In practice, OpenStudio will provide a mechanism for
managing a local database of user-specified
components. Users would draw from the local library
to create a project-specific library containing
constructions, schedules, weather input, and other
relevant data for that specific energy modeling project.
Data synchronization and revision management with
the energy model will be transparent to users who
interact with the BCL through the proposed integrated
ProjectManager user interface built with OpenStudio
(see Figure 4).

Figure 4 Mockup of an OpenStudio Local Component

Library

SOCIALIZING DATA
The potential scope of a fully populated BCL is
substantial, and the cost to populate and manage
millions of components is almost certainly more than a
single organization could bear. To address these
challenges, the BCL was designed with social
functionality.
Social engagement is offered through a component
rating system whereby a user may assign a qualitative
measure of 1 to 5 “stars” to assess the overall quality of
a component’s metadata and data. The score reflects a
combination of community-perceived accuracy and
utility, and is used as a sorting criterion by the search
engine. A second method of social interaction is the
facility for a user to comment on components. This
provides a means for more detailed feedback than does
the simple voting mechanism, and can enable a user to
identify specific deficiencies in metadata or data.
Components are ultimately envisioned to be publicly
submitted and revised through a user-generated content
module developed for the BCL. This module will also
provide Atom or Really Simple Syndication (RSS)
news feeds for information about component updates

and recently added comments that are useful for
component owners and users. Publicly submitted
components will be distinguished from those submitted
by standards organizations or other “trusted sources,”
and faceted searching will enable end users to identify
appropriately vetted components based on their needs.

CONCLUSION
BEM penetration has been limited across the sector
because analysis tools are complex and gathering
appropriate and trusted input data is difficult. BCL is
intended to address the latter issue by simplifying the
task of gathering model inputs. Providing mechanisms
to cite and repeat analyses will also provide substantial
benefit to the sector through easier replication of design
and transparency for those who are required to inspect
the underlying assumptions of a given analysis. BCL
data are socialized to distribute the effort of populating
and maintaining such a large database, and mechanisms
have been created to help users identify components of
high quality and utility.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the support of
the U.S. Department of Energy’s Building
Technologies Program including former Buildings
Program Manager, Drury Crawley, and current
Buildings Analysis Tool Program Manager, Amir Roth.
The authors would also like to thank Oliver Davis,
Matt Brown, Allan Wintersieck, and Mike Chin from
concept3D for their development efforts.
This work was supported by the U.S. Department of
Energy under Contract No. DE-AC36-08-GO28308
with the National Renewable Energy Laboratory.

REFERENCES
Autodesk. 2011. Autodesk Seek. http://seek.

autodesk.com (accessed August 11, 2011).
Bowman, J.S., Emerson, S.L., Darnovsky, M. 1996.

The Practical SQL Handbook: Using Structured
Query Language. Addison Wesley, Third Edition.

Crawley, D.B., J.W. Hand, M. Kummert, and B.T.
Griffith. 2008. “Contrasting the Capabilities of
Building Energy Performance Simulation
Programs.” Building and Environment 43 (4):
661–673.

DOE. 2011. High Performance Building Database
(HPBD). Washington, D.C.: U.S. Department of
Energy. http://buildingdata.energy.gov.

Donn, M. Crawley, D. Hand, J. Marsh, A. 2009. “The
Provenances of Your Simulation Data.” Glasgow,
Scotland: Building Simulation 2009. 1405–1412.

Drupal. 2011. http://drupal.org (accessed August 11,
2011).

Credit: Marjorie Schott / NREL

http://buildingdata.energy.gov/�
http://drupal.org/�

7

Eastment, C. 2009. “What is BIM?” Article Last
updated August 2009. http://bim.arch.gatech.edu
/?id=402 (accessed August 13, 2011).

Frank, S., L.G. Polese, E. Rader, M. Sheppy, and J.
Smith. 2011. “Extracting Operating Modes from
Building Electrical Load Data.” Baton Rouge, A:
Proceedings of the 2011 IEEE Green Technologies
Conference 2011, pp. 1–6.

Gallaher, M.P., A.C. O’Conner, J.L. Dettbarn, and L.T.
Gilday. 2004. “Cost Analysis of Inadequate
Interoperability in the U.S. Capital Facilities
Industry.” Gaithersburg, MD: National Institute of
Standards and Technology.

gbXML. 2008. Green Building XML Version 0.37.
http://www.gbxml.org. (accessed August 13,
2011).

Google. 2011. Google 3D Warehouse.
http://sketchup.google.com/3dwarehouse/
(accessed August 11, 2011).

Apache. 2011. Apache Solr. Last published July 2011.
http://lucene.apache.org/solr/ (accessed March 31,
2011).

IAI-bSa. 2011. BuildingSMART Alliance.
http://www.buildingsmartalliance.org/ (accessed
August 11, 2011).

MySQL. 2011. http://www.mysql.com/ (accessed
August 11, 2011).

NREL. 2011. http://openstudio.nrel.gov (accessed May
20, 2011).

Plugge, E., Membrey, P., Hawkins, T. 2010. The
Definitive Guide to MongoDB. Apress, First
Edition.

SmartBIM. 2011. http://smartbim.com (accessed
August 11, 2011).

UIUC, LBNL. 2010. EnergyPlus Documentation:
Output Details and Examples. U.S. Department of
Energy.

Ward, G.J. 1994. The RADIANCE Lighting
Simulation and Rendering System. Proc.
SIGGRAPH.

York, D. and C. Cappiello. eds. 1981. DOE-2
Reference Manual (Version 2.1A). Berkeley, CA:
Lawrence Berkeley National Laboratory.

http://bim.arch.gatech.edu/�
http://www.gbxml.org/�
http://sketchup.google.com/3dwarehouse/�
http://lucene.apache.org/solr/�
http://www.buildingsmartalliance.org/�
http://www.mysql.com/�
http://openstudio.nrel.gov/�
http://smartbim.com/�

	51835 web.pdf
	ABSTRACT
	introduction
	Background
	The Case for Object-Oriented Databases IN Energy Modeling
	Building Component Library implementation
	taxonomy, metadata, and data
	faceted search functionality
	Interoperability
	socializing data
	Conclusion
	AcknowledgEmentS
	References

