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I.1. Concept: Enhance flow induced motions

VIV (Vortex Induced Vibration)

Galloping

Soft

Hard

Wake galloping
Proximity galloping
Interference galloping

Flutter
Buffeting
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I... VIV

Vortex Induced Vibration

e Elastic cylindrical body

e Rigid cylinder on elastic
support

Features
e Vortex synchronization
e Synchronization lock-in

Initial Branch
lee at £ +/- 50%-60%
I ol o Self - limiting amplitude
1/3 (forced oscillations)

e Initial, upper, and lower
Tima O . .
N synchronization branches
R e Vortex structures
e Hysteresis
e Correlation length

1/2

Lower Branch
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1.3. High damping V1V at 8x103<Re<1.5x105

Smooth cylinder results —>* A/D=1.9
Skop-Griffin Plot

Typical VIV tests are: 1.4 F

* [ab based with low Re
and low damping

0.8 % . o
* Field based with high Re 4 < e )
trying to suppress VIV oa b i °1°
' 18],
0.2 0
i GO‘o
0”x —— ,.11) —_— 1..“.|l . .““10 R |
10~ 10™ 10° 10 10
(m"+C,y) ¢ \
Few of these results are relevant VIVACE tests

to energy harness through VIV
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4. Oscillators: Linear and nonlinear

Linear oscillator
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I1.1. Development of VIVACE

* Stage 1: The concept

e Scales

* Stage 2: Proof of concept, channel tests
* Stage 3: Field tests

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Tidal-current Subsystem testing | Subsystem testing Full scale Commercial
energy conversion | at intermediate at large scale prototype testing demonstrator
concept scale testing
U of Michigan | U of Michigan | St. Clair River | St. Clair River TBD
2005 to 2009 Summer 2010 Summer 2011 Summer 2011

2009 to Present

S= T P—




II.2. Stage 1: The concept

1940: Tacoma Narrows bridge collapsed 1965: Ferrybridge cooling towers
due to wind-induced vibrations collapsed due to VIV
ST g v g Y e ]

DISASTER!
The Greatest

Camera Scoop
of all time!

*%
.

FIM can be controlled to generate energy!
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I1.;. How VIVACE works

Objective: Capture the abundant hydro-kinetic energy in even low-
speed ocean/river currents without using dams or turbines

Approach: Develop technology that mimics and enhances natural
phenomena: VIV, galloping

V1V: Enhance vortex shedding, Harness VIV energy

Galloping: Enhance instability, Harness VIV energy

Fish biomimetics: Surface roughness; cylinder proximity; passive fish tail

Concept: FIM converts hydrokinetic energy to transverse

mechanical motion.

VIV concept

/' Current
—)
—)

J

Bluff Body

.

Flow Lines

O

Vortices

Movement

Shedding

Shedding

G2

N\

@

g

Movement
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IL.4. Stage 2: Proof of concept lab tests

& 4 =5

Flow
Velocity
U=
1.6knots
(0.8m/s)

Synchronization
U=[0.56-1.05]m/s
at high damping,
K=2*518 N/m,
m*=1.45



11.5. VIVACE scalability & modularity

Water flow : Large Scale

Object: Cross-
section of a cylinder

%

How VIVACE works .

A device invented by a University of Michigan professor and students harnesses the energy in a water

current, and then drives a generator to create electricity. The device will be put into the Detroit River

next year. "
1 Boxes with cylinders are
placed on the bottom of the river. AC cable 4 The DC current is

changed to AC and
sent to shore where
it will light a new
wharf between the
Renaissance Center
and Hart Plaza.

£3 Each bobbing )
cylinder moves a
magnet up and
down a metal
coil creating a
DC current.

Cylinder Magnet

HRarm Scale

E As the current passes over the Coil
cylinders it creates vortices that

makes them bob up and down.

Electromagnet

Source: University of Michigan DAVID PIERCE/Detroit Free Press
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VIVACE scales
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4-cylinder VIVACE module
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Oscillation amplitude ratio (A/D)

I11.c. Enhance VIV & galloping

< Galloping >

< Vortex Induced Vibration
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II.7 Stage 3: Prototype testing
ik 35‘33@ Univ. of Michigan towing tank:
Sept. 2009

‘Y',“ gu, "‘\ . ’M’ ‘1 - =
————{

St. Clair river: Summer 2010

8-CYLINDER VIVACE MODULE
DEPLOYMENT CONCEPT




Lab tests: 1 cylinder, 1.9 knots




Lab tests: 1 cylinder with PTC, 2kn




Lab tests: 1 cylinder with PTC, 2 knots







I1.8. River deployment: 2 cylinders with PTC

The St. Clair River, Blue Water Bridge. | Bé?f;:fProt




River deployment: 2 cylinders with PTC

Open-water 2-cylinder testing

Vortex Hydro Energy
Open Water Testing

VIVACE Converter

August 2, 2010
St. Clair River

Y
= )




G1

G2
G3
G4

Function like a school of fish, 1.e. a 3-D device with component

synergy stemming only from hydrodynamic interaction
Operate efficiently at four scales with speeds as low as 0.5knots
Be environmentally compatible.
Generate electricity at a competitive cost.
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Objective #1: Integrated PTO & V_ .,

Virtual m-c-k model

V.I.V.ACE Test
Modules 7

7.387 m




Physical & Virtual VIVACE

FIow direction Flow direction)

mj} T (Cbear:‘ng T Chm‘n)j’ T kv:‘rualy = ffluid (t)
Fenotor f «V) — CoirtualtY T kvz’rtuazy

my + Cbearingy — f Sfluid (t) +F motor
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Objective #2: Hydrokinetic to Mechanical

Expand the high lift regime TrSL3
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Name of
Reynolds number the Characteristic feature
lower limit range < Re < upper limit range .
regime
1x103- 2x103 < Re < 2x10%- 4x104 TrSL2 Formation of transition vortices in free shear layer
2x10%- 4x10* < Re < 1x103- 2x10° TrSL3 Fully turbulent shear layer
1x10° - 2x10°< Re < 3.5%10°- 6x10° TrBL
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Expand synchronization range u-u_/f, D)

GLP
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A/D

Maintain V1V in the transition region

VIVACE Synchronization Ranges

3.5

2.5

5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05 4.5E+05
Re

~#-Cylinder in Galloping (6 in) ~*-Cylinder B with PTC (10 in)
~+~Cylinder A with PTC (10 in) —Cylinder with no PTC (10 in)
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Objective #3: Passive turbulence control

Mechanics of PTC Major Parameters of PTC
* Trip the boundary layer. * Oprc, placement angle.

* Set the correlation length. * Area coverage.

* Introduce turbulence. * k, Roughness grit size.

* T=k+p, PTC total height.

Placement PTC Coverage Area / w\ T, —\
angle (aprc) (Rouglh ness) (width of strip) X T
Douple-sided PTC p
T tape |
/77777
Stagnation Cylinder Surface

point Cylinder (Front)
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Map of PTC to FIM (ris0)

o Half inch width, P180

o 6 Zones —WS1, HGI,
W52 80 SG, HG2, SS, WS2

Map of Roughness Induced FIM
(P180)

B WS]1 BEHGI OSG BEHG2 BSS OWS2 [
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Objective #4: Enhance vorticity or instability?

Reynolds Numbers
1.6E+4 3.2E+4 4.8E+4 6.5E+4 S8.1E+4 9.7E+4 1.L1IE+S LL3E+S 1.SE+S

3.2
3 -
2.8 -
2.6 -
2.4 -
22
2 .
18 1
<16 -
1.4 -
12 -

I o

0.8 -
0.6 -
0.4 -
0.2 -
0

—Smooth Cylinder (-)

P60 £10°~£26° (-)

P60 0°~=16° (-)

Figure 8(a). Amplitude plots showing cnitical strip locations for galloping.
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Objective #5: Improve cylinder interaction

Four 1n the

channel [N 4

o.s80 M

Two 1n the towing tank
~ e

N Two 1n the St. Clair River 3040



Improve cylinder interaction (cont.)

Four cylinders in the channel '

Center to Center distances:
1 to 2: 1.95 Diameters
2 to 3: 3.95 Diameters
3 to 4: 1.63 Diameters

Cylinder spacing robustness
V- S |



Improve cylinder interaction (cont.)

Cylinders D3.5"- 4 cylinders
2.8 - - g
Distance C2C 2.0D/ 2.868D/ 2.0D v d
>
Ist 2nd 3rd 4th 7‘1 _F M
2.4 + kK@®Nm) | 732 732 732 732 AN
A
m(kg) | 9535 | 958 | 9495 | 9590 A /V/\?x
5 | PTC P60, 30°-40° M / -
1.6 ,-/ }
/.
;ﬁx’
=512 " ¥
4 A
Pes ond ff —e— 1st Cylinder @@
’
0.8 of
' / ——2nd Cylinder
"// —rdCylinder
i ,./ —=— 4th Cylinder
289 3.75 4.62 549 635 722 8.09 895 982 10.69 11.55
Re (10"4)

Four cylinders 1n the channel ,,,,



Objective #6: Increase power density

This 1s a hydrodynamic design i1ssue: complexity vs. power density
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Benchmark: Power density

VIVACE > 14,600
Wind

Footprint Volume = Foolprint . water depth
0.30 ; 0.278

Turbine .

0.25 -

0.20 -

Current Velocity

0.15 - = 3knots

0.10 -

0.05 -

0.009 0.004 0.001 0.001

0.00 -

Footprint Volume Density (kWatts/m?)

Early ~ New Pelamis Power Energetech Verdant Lunar  pcT
VIVACE VIVACE Buoy Power 34/40



Objective #7: Fish-tail kinematics

Passive fish tail

Tails and splitter plates
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Objective #8: Improve research tools

Measurements:
*Channel *Towing tank <St. Clair River
To 1dentify new phenomena and their parametric dependence
Increase test section depth from 80cm to 120+25cm
Increase A/D limit from 3 to 5.5 for D=3.5"

Flow visualization: Large FOV (von Karman-scale)
To describe new phenomena and their wake/vortex structures.
To 1dentify source of oscillatory forces.

Flow visualization: Small FOV (Boundary layer-scale)
To understand the formation of the vortex structures and shear
layers that cause these new phenomena.

CFD simulations:
For comparison and possibly complementary data only.
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Visualization: Large FOV

Single-body with broad-
wake FOV: about 6*D;
A | magnified on the right.

\x

Multi-body with broad-
wake FOV: about 15*D

Wake-structure scale with 32 frames/sec .,



Visualization: Small FOV

Boundary layer scale with 1,000 frames/sec for PIV
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CFD simulations
Cylinder with PTC in FIM at high Reynolds numbers
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