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Details of our work on turbines  may be found in

• Xu W. and Kinnas, S. A.,”Performance Prediction and Design of 
Marine Current Turbines”, in 16th Offshore Symposium, Texas 
Section of The Society of Naval Architects & Marine Engineers 
(SNAME), Houston, Texas, February 9, 2010.

• Wei Xu (MS, Ocean, UT, August 2010 - pdf can be downloaded from 
Kinnas homepage: 
http://www.caee.utexas.edu/prof/kinnas/home.html

• Kinnas, S.A., Xu, W., Yu, Y.-H., and He, L.  "Computational Methods 
for the Design and Prediction of Performance of Tidal Turbines", 
Journal of Offshore Mechanics and Arctic Engineering (May 2011, to 
appear-revised version of OMAE’10 conference paper).

• He, L., Xu, W., and Kinnas, S.A. “Numerical Methods for the 
Prediction of Unsteady Performance of Marine Propellers and 
Turbines”, ISOPE 2011 (June 2011, Maui)
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Quick review of OEG’s most recent research on 
marine propulsors
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Pump of water-jet Propeller/rudder interaction

Ducted propellers

Leading edge vortex
tracking

Heaving hydrofoil



Some recent marine propulsors we have analyzed…

Contra-rotating props Podded prop
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Definition of parameters in our propeller analysis models
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•Fully-unsteady (NOT quasi-steady) 
•Handles back and/or face sheet cavitation with 
determined cavity detachment
•Effects of viscosity via friction coefficient (specified or 
function of local Reynolds #) applied on wetted part
•Includes effects of thickness/loading coupling and 
non-linear effects of camber /inflow on 
pressure/cavity shape
•Includes hub (pod or duct) effects via simplified 
image or panel model
• Coupled with our Euler code (GBFLOW) or RANS 
(Fluent, OpenFOAM, …) for the evaluation of effective 
wake or interaction with duct, hub, pod, or hull
•Includes simplified or fully-unsteady trailing wake 
alignment, and most recently, rigid motions of prop

Propeller in heaving motion

MPUF-3A: most recent version of PUF-3A vortex/source-
lattice (placed on mean camber surface) method  

Propeller wake/rudder interaction
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•Fully-unsteady (NOT quasi-steady) 
•Handles back and/or face sheet cavitation with 
determined cavity detachment
•Has been extended and applied on surface-piercing 
propellers
•Effects of viscosity via friction coefficient, or via 
coupling with XFOIL (integral boundary layer code)
•Includes hub (pod, duct, or water-jet casing) effects via 
panel model
•Can be applied on rotor or stator and include their 
interaction (time-averaged)
•Includes treatment of developed tip vortex cavity
• Has been coupled with RANS (Fluent) in the case of 
water-jets
•Includes simplified or fully-unsteady trailing wake 
alignment, and most recently, rigid motions of prop
•Currently  being extended to include effects of leading 
edge vortex.

Cavity patterns on rotor
Of water-jet

PROPCAV: Boundary Element  Method (BEM: panels placed 
on blade surface),  based on wetted code PSF-10/PUF-10 

Leading edge vortex model



Turbine Model (Bahaj et al, 2007)
R=400mm

Tip speed  ratio :TSR =
ωR
V

;ω  is rotational  velocity in rad / sec  

and  V  is the current  speed  in m / s
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Application of MPUF-3A/PROPCAV in the case of turbines

TSRnDVJ // π==Advance Ratio:



Unsteady wake alignment in MPUF-3A 
(He and Kinnas, PROPS 2009) 

Alignment is crucial in predicting 
turbine performance

Not having the correct wake might 
lead to higher predicted efficiencies 
(more than the Betz ideal of 59%!)
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Thrust and Power Coefficients

Comparison of results from different methods with the experimental measurements－
25 degrees hub pitch, zero yaw and no hub: (a) thrust coefficient , CT, for different TSR
(Tip speed ratio) (b) power coefficient, Cpow, for different TSR.

PROPCAV: Blade pitch
MPUF-3A: Fully unsteady

PROPCAV: Blade pitch
MPUF-3A: Fully unsteady

CT =
T

(1 2)ρV 2A
Cpow =

Qω
(1 2)ρV 3A
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Pressure Coefficients predicted by PROPCAV & RANS
Comparison of Pressure coefficients (Cp) at various Y from FLUENT

and PROPCAV
25 degrees hub pitch, zero yaw and no hub
TSR=6.0

-Cp at Y=0.3 -Cp at Y=0.5 -Cp at Y=0.8

Cp =
P − P0

0.5ρn2 D2
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Prediction of cavity pattern from PROPCAV
(uniform current speed profile)

CASE:
• 0 yaw angle
• 25 degrees hub pitch
• Tip speed ratio (TSR) : 7.5
• Cavitation number : 3.9

• Uniform inflow

►Photo of cavitation from the 
experiment

►The cavitation patterns and 
pressure contour of the suction side 
from PROPCAV

σ n = (Pshaft − Pvapor ) (ρ
2

n2D2 )

Note: The turbine in the photograph is left-handed 
while the turbine model in PROPCAV is right-handed.
That means the results from PROPCAV must be 
mirrored relative to the vertical plane in order to make 
comparisons with the experiment
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Application of MPUF-3A in the case of inflow with yaw



APPLICATION OF MPUF-3A  COUPLED WITH
NS-3D (UT’S NAVIER-STOKES CODE) TO TURBINE

SUBJECT TO NON-UNIFORM CURRENT
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Q: What should be the proper inflow to the turbine?
A: NOT the current velocity in the absence of turbine (what we call nominal wake),
rather it should be the effective inflow (see next slide)



Grid and flow-field predicted by 
NS-3D : The turbine is modeled 
with body forces at the location 
of its blades – The strength of 
the body forces are determined 
using the pressure distribution 
over the blades predicted by 
MPUF-3A.

Nominal wake = inflow in the 
ABSCENSE of turbine

Effective wake= (Total flow in the presence of 
turbine: evaluated via NS-3D)-(Induced by turbine: 
evaluated via MPUF-3A)
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Mean of effective wake inflow<Mean of nominal wake
and…

due to that the delivered power by the turbine reduces



Optimum loading (circulation) 
distribution along span
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UT’S LIFTING LINE OPTIMIZATION MODELS:
LLOPT & LLOPT-BASE

Γ1

Γm

ΓΜ

Γn
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),( nmut

*
tu

*
au



Linearization (assumption):

To maximize torque:

Induced axial velocity:

Must maximize Torque, Q

Efficiency=Power Coefficient:
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LLOPT



Betz’s efficiency for ideal case: 
Cpow=4α(1-α)2=0.593 max value for  α=1/3; uw=2Vo/3)
Assumptions:
•Negligible viscous forces
•Infinite number of blades
•No swirl downstream (J→0 or TSR→∞)

F=axial force on
turbine
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OPTIMUM CIRCULATION & AXIAL INDUCED VELOCITY AT
TURBINE PLANE; FROM LLOPT & LLOPT-BASE

LLOPT predicts the wrong induced 
axial velocity at the lifting line 
plane, and a smaller turbine power 
than LLOPT-BASE (see slide # 25) !!



NREL Workshop- March 1-2, 2011 Presentation by Prof. S.A. Kinnas UT Austin 23

LLOPT-BASE



NREL Workshop- March 1-2, 2011 Presentation by Prof. S.A. Kinnas UT Austin 24

LLOPT-BASE

The analysis part of LLOPT 
is run for an array of 
discrete value of k and h, 
and the values that 
produce the largest 
efficiency (power) are 
selected (k=-0.13, h=0.9 in 
this case)
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RESULTS FROM LLOPT & LLOPT-BASE

Betz’s optimum



Turbine Blade Design (using CAVOPT-BASE originally 
developed under NNR-NE support)

Blade design procedure (Kinnas et al, SNAME Transactions 2005) :
• Select a base geometry (the original experimental geometry is chosen as an

example or can be designed based on the loading/circulation from LLOPT-BASE).
• Select parameters that are used to scale the base geometry ( Pitch and chord and

blade offsets of pressure and suction sides can be chosen here)

• Usually, 10×10×10 combinations of x1,x2,x3 over a desired range are analyzed
and the results are interpolated over that range

• set a lower bound and upper bound for each parameters and use PROPCAV to
create a turbine performance database

• use nonlinear optimization method (CAVOPT-BASE) to search for the optimum
geometry by specifying certain constraints

(P D)design = (P D)base × x1

(c D)design = (c D)base × x2

(Yp,s c)design = (Yp,s c)base × x3

are two multipliers corresponding 
to two design parameters 
(x3=1/x2 in order to keep the maximum 
thickness the same)

x1, x2 , x3
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Case A: Using a known marine 
turbine as the base geometry
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CAVOPT-BASE results-Fully Wetted Case 
Application

Original case (fully wetted):
• Blade geometry is that tested by Bahaj et al. at 25 degrees hub pitch, tidal velocity 
V=2.5m/s, TSR=5.0
• Cavitation number: N/A

Design constraint: 
• no constraint
(All performance data in the database are fully wetted results) 
• two parameters:                             design results:

(chord stays the same and pitch decrease)

Only the pitch and chord length are varied in this case (x3=1/x2 in order to keep the maximum 
thickness to be the same)

0.8 ≤ x1 ≤ 1.2
0.8 ≤ x2 ≤ 1.2
         x3 = 1 / x2

x1 = 0.803
x2 = 1.006
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CAVOPT-BASE results-Fully Wetted Case
Application

Original geometry
Cpow=0.39

CT=0.55

NEW Designed geometry
Cpow=0.412
CT=0.586

Pressure 
distribution for 

original case
Cpmin=7.26

Pressure 
distribution for 
the design case

Cpmin=7.78

Cpow increases by 5.6% but also CT increases by 6.5% 

A balance must be found between the extra costs of the 
support structure (larger CT) and the extra power 
(larger Cpow) that can be generated. 
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Turbine Blade Design results-Cavitating Case  

Original case (cavitation):
• 25 degrees hub pitch, TSR=5.0, steady cavitating case
• Cavitation number: 5.0

Design constraint: 
• -Cp < 5.0  (no cavitation)
(All performance data in the database are fully wetted result) 
• two parameters:                             design results:

(chord increases and pitch stays the same)

Only the pitch and chord length are varied in this case (the maximum thickness distribution 
along the radius is maintained the same)

1.0 ≤ x1 ≤ 1.2
0.3 ≤ x2 ≤ 1.5
         x3 = 1 / x2

x1 = 1.00595
x2 = 1.35108
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Turbine Blade Design results-Cavitating Case 

Original geometry
Cavitation occured

Cpow=0.3176
CT=0.486

Pressure 
distribution 

for cavitating
case

Pressure 
distribution 

for the 
designed 

wetted caseCpow increases by 16.8% 
CT increases by 6.2% 

NEW Designed geometry
No cavitation

Cpow=0.371
CT=0.5163
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Case B: Determining the blade 
geometry based on the circulation 
determined by LLOPT-BASE, and by 
using Prandtl’s lifting–line equation
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APPLICATION TO A DESIGN CASE
(TSR=6, 3-BLADED, NACA 66 –MOD & A=0.8)

Predicted Cpow from various methods:

LLOPT-BASE (inviscid) 0.485

MPUF-3A (inviscid) 0.476

CAVOPT-BASE/MPUF-3A (with 
friction on)

0.434

Designed blade shape at the root



Case C: Using CAVOPT-3D. No need 
for base geometry. Pitch and camber 
distribution are determined by the 
non-linear optimization method. 
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Blade Design-CAVOPT-3D (Mishima & Kinnas, JSR’97)  

Geometry: B- Spline Geometry

P(u, w) = [x(u, w), y(u, v), z(u, v)] = dij
j=0

Nw−1

∑
i=0

Nu−1

∑ Ni,4 (u)N j ,4 (w)

di,j=B-spline control points
Ni,4(u)=B-spline basis of order 4
Nj,4(w)=B-spline basis of order 4
u,v=parameters for B-spline
Nu=number of B-spline control points in u-direction
Nw=number of B-spline control points in w-direction

Initial geometry 
with design variables x0

Initialization 
of linear optimization 

linear optimization
(initialization of quadratic optimization) 

quadratic optimizationAnalysis of the turbine 
at any step

Output design 
geometry and results

B-spline Geometry Design variables and 
vertex movement
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CAVOPT-3D - Given Chord 
Application

Initial geometry:
• Manually created by 
specify 4x4 B-spline control points 

• Fully wetted

Design objective and constraint: 
• Maximize Cpow
• CT≤0.55
Chord Distribution:

r/R=0.2      c/D=0.125
r/R=0.4      c/D=0.106
r/R=0.8      c/D=0.069
r/R=1.0      c/D=0.050

Initial Geometry
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CAVOPT-3D results – Given Chord
Application

Design geometry
Fully Wetted
Cpow=0.386

CT=0.55

Design results for P/D, f/D
and c/D

Convergence History of 
KQ and KT
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What have we done? 

•Modified our predictive methods so that they can 
apply to tidal turbines (also done in the case of non-
uniform current) 
•Applied our methods and RANS to a tested model and 
made comparisons with measurements
•Applied our non-linear optimization methods in several 
cases of wetted/cavitating turbines, and showed that 
the delivered power can be increased (with some 
increase in the axial turbine force) while the presence of 
cavitation can be eliminated (or reduced)
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What we would like to do next?
•Extend our design methods in the case of contra-rotating turbines in 
order to improve efficiency. A preliminary design approach will be 
presented at OMAE’11 (Rotterdam, The Netherlands, June 19-24, 
2011)

•Apply our methods in the case of the current being at a yaw angle 
relative to the flow direction. Some results from applying our 
methods and comparisons with experiments will be presented at 
ISOPE’11 (Maui, Hawaii, June 19-24, 2011)

•Validate/improve our methods further, especially in the case of non-
uniform current

•Include turbine to turbine interference effects in the case of 2 
turbines, or a farm, by coupling MPUF-3A, applied to each one of the 
turbines, with a RANS solver for the global flow-field, as already 
done in the case of contra-rotating propellers

•Apply our design methods to design a new (actual) turbine blade
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