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Executive Summary 

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of 
locations within the western United States. This is done by optimizing the operation of the CSP 
plant and by using the effective load carrying capability (ELCC) metric, which is a standard 
reliability-based capacity value estimation technique. Although the ELCC metric is the most 
accurate estimation technique, we show that a simpler capacity-factor-based approximation 
method can closely estimate the ELCC value. 

Without storage, the capacity value of CSP plants varies widely depending on the year and solar 
multiple.  The average capacity value of plants evaluated ranged from 45%–90% with a solar 
multiple range of 1.0–1.5.  When introducing thermal energy storage (TES), the capacity value 
of the CSP plant is more difficult to estimate since one must account for energy in storage. We 
apply a capacity-factor-based technique under two different market settings: an energy-only 
market and an energy and capacity market. Our results show that adding TES to a CSP plant can 
increase its capacity value significantly at all of the locations. Adding a single hour of TES 
significantly increases the capacity value above the no-TES case, and with four hours of storage 
or more, the average capacity value at all locations exceeds 90%. 
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1 Introduction 

Power system planners are tasked with ensuring 
adequate supply of electricity to meet demand. 
In addition, system planners face consumer and 
political demands to increase the share of 
renewable energy such as wind and solar in 
their energy mix. But the variable and uncertain 
nature of these renewable resources poses some 
challenges for utilities and system operators. 
Planners need an accurate estimate of the 
capacity value of such resources in order to 
represent renewable resources in reliability 
models for long-term planning purposes. 

Concentrating solar power (CSP) plants are one 
renewable technology currently being deployed 
both in the United States and internationally. 
For planners, CSP has a potential advantage 
over many other technologies because of its 
ability to use thermal energy storage (TES). 

This report details techniques that can be used 
to estimate the capacity value of CSP plants. 
The techniques consist of models, which 
optimize the commitment and dispatch of the 
CSP plant, and statistical methods used to 
estimate the probability of a system outage 
event. These techniques are compared in terms 
of their computational cost and accuracy. The 
report also presents results for case studies 
conducted at locations throughout the western 
United States. We show that adding TES to a 
CSP plant can significantly increase its capacity 
value. 

 

 
 
 
 
 

Defining Capacity-Related Terms 

This document focuses on the capacity 
value of CSP plants.  There are a number 
of capacity-related terms commonly used 
with substantially different meanings. 

Capacity generally refers to the rated 
output of the plant when operating at 
maximum output.  Capacity is typically 
measured in terms of a kilowatt (kW), 
megawatt (MW), or gigawatt (GW) rating.  
Rated capacity may also be referred to as 
“nameplate capacity” or “peak capacity.”  
This may be further distinguished as the 
“net capacity” of the plant after plant 
parasitic loads have been considered, 
which are subtracted from the “gross 
capacity.” 

Capacity Factor is a measure of how 
much energy is produced by a plant 
compared to its maximum output.  It is 
measured as a percentage, generally by 
dividing the total energy produced in a 
year by the amount of energy it would 
have produced if it ran at full output over 
that year. It may also be expressed as the 
ratio of average output to maximum output 
over a year.  

Capacity Value is the focus of this report 
and refers to the contribution of a power 
plant to reliably meeting demand.  
Capacity value is the contribution that a 
plant makes toward the planning reserve 
margin, with a more comprehensive 
technical definition provided in Section 2. 
The capacity value (or capacity credit) is 
measured either in terms of physical 
capacity (kW, MW, GW) or the fraction of 
its nameplate capacity (%).  Thus a plant 
with a nameplate capacity of 150 MW 
could have a capacity value of 75 MW or 
50%. 

Capacity Payment is a monetary 
payment to a generator based on its 
capacity value.  The capacity payment is 
generally in terms of $/MW where the MW 
is the generator’s capacity value.  
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2 Methods for Estimating Capacity Value 

A number of different methods have been used to calculate the capacity value of renewable and 
conventional generators [1]-[3]. These methods differ in terms of computational time, 
complexity, and data requirements. A majority of the methods utilize power system reliability 
evaluation techniques [4], which are based on two standard reliability indices—loss of load 
probability (LOLP) and loss of load expectation (LOLE). LOLP is defined as the probability of a 
loss of load event, in which the system load is greater than available generating capacity during a 
given time period. LOLP is typically computed in one-hour increments. The LOLE is the sum of 
the LOLPs during a planning period, typically one year. LOLE gives the expected number of 
time periods in which a loss of load event occurs. Power system planners typically aim to 
maintain an LOLE value of 0.1 days/year (based on the target of one outage-day every 10 years) 
[5]. This value is used as the target LOLE value throughout this report. The capacity value of a 
plant represents the ability of the plant to reduce the probability or severity of a loss of load 
event. Thus, a generator’s capacity value is measured based on how adding it to the system 
changes the system’s LOLP and LOLE. 

Generator outages may leave the system with insufficient capacity to meet load. Conventional 
generator outages are typically modeled using an expected forced outage rate (EFOR), which is 
the probability that a particular generator can experience a failure at any given time. When 
renewables are added to a system, the LOLP and LOLE must also capture the variability of these 
resources. To do this, renewable generator outages are modeled using an EFOR, and resource 
variability is estimated using historical data or by simulating such data. 

The following sections examine common techniques for estimating capacity value of renewable 
and conventional generators. 

2.1 Effective Load Carrying Capability 
One of the most robust and widely accepted techniques for estimating capacity value is 
determining the effective load carrying capability (ELCC) of a generator [6]-[10]. The ELCC of 
a generator can be defined in a number of ways, which will yield very similar results [11]. One 
definition is the amount by which the system’s load can increase (when the generator is added to 
the system), while maintaining the same system reliability (as measured by the LOLP and 
LOLE) [12]. An alternative definition is the amount of a different generating technology that can 
be replaced by the new generator without making the system less reliable [5]-[12].1

                                                 
1 Some authors have used the term “Equivalent Conventional Power” instead of ELCC [4]. 

 In the 
context of a renewable generator, the latter definition is more attractive because it allows the 
capacity value of a renewable generator to be measured in terms of a conventional dispatchable 
generator. The ELCC of a renewable generator equals the power capacity of the conventional 
generator that yields to the same LOLE as the system with the renewable resource. For example, 
a 100 MW wind generator may have a capacity value that is equivalent to a 30 MW natural-gas-
fired combustion turbine. 
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The steps used to calculate the ELCC of a CSP generator2

1. For a given set of conventional generators, the LOLE of the system without the CSP plant 
is calculated using the following formula: 

 are as follows: 

1
                         (1)

T

i i
i

LOLE P( G L )
=

= <∑  

where T is the total number of hours of study, Gi represents the available conventional 
capacity in hour i, and Li is the amount of load. P(Gi < Li) indicates the probability of 
available generating capacity being less than demand, which is the LOLP in each hour. 
Adding these LOLPs together gives the LOLE. 

2. The CSP plant is added to the system and the LOLE is recalculated. This is shown in (2) 
as LOLECSP, where Ci is the output of the CSP plant in hour i. Since the CSP plant has 
been added to the system, LOLECSP will be lower than LOLE (indicating a more reliable 
system with lower LOLPs). 

1
                         (2)

T

CSP i i i
i

LOLE P( G C L )
=

= + <∑  

3. The CSP plant is “removed” from the system and a conventional generator is added. The 
LOLE of the new system, which is denoted as LOLEGen is computed as: 

1
                         (3)

T

Gen i i i
i

LOLE P( G X L )
=

= + <∑  

where Xi is the available generating capacity in hour i from the added conventional 
generator. This added conventional generator is assumed to have a fixed EFOR, but the 
nameplate capacity of the plant is adjusted until the LOLE of the system with the CSP 
plant and the conventional generator are equal; i.e., until LOLECSP = LOLEGen. Once the 
two LOLEs are made equal to one another, we can say that the capacity value of the CSP 
plant is equivalent to the capacity value of the conventional generator. 

An important difference between renewable resources, such as CSP plants, and conventional 
generators is the cause of unavailability. While CSP plants will experience mechanical failures, 
they are unavailable mostly due to a lack of solar resource. 

The ELCC method requires detailed system data, including EFORs of all of the generators in the 
system, generator capacities, and loads. Moreover, due to seasonal and annual weather pattern 
changes, one will typically need several years’ worth of data to accurately estimate the capacity 
value of a CSP plant. Finally, the ELCC method can be computationally expensive, due to the 
complexity of computing the hourly LOLPs. 

                                                 
2 This method can be applied to any generating resource, including non-CSP renewables. This is done by 
substituting the candidate generator, for which the ELCC is being calculated, in place of the CSP plant. 
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2.2 Approximation Methods  
Calculating capacity value using the ELCC can be a cumbersome process since the capacity of 
the added conventional generator must be adjusted iteratively to achieve equality between the 
two LOLEs. These complications have led to the development of simpler approximation 
techniques. These approximation methods reduce the computational burden by focusing on the 
hours in which the system faces a high risk of not meeting load—typically hours with high loads 
or LOLPs. 

Several studies have compared the accuracy of approximation methods and reliability-based 
approaches, such as the ELCC method, for calculating capacity value of wind and photovoltaic 
(PV) solar systems. For example, Bernow et al. [14] and El-Sayed [15] estimate the capacity 
value of a wind plant by considering only the peak-load hours. They use the average capacity 
factor of wind during peak-load hours, defined as the actual output of the plant during those 
hours divided by its nameplate capacity, as a proxy for the capacity value. Such comparisons 
have not, however, been carried out for CSP. 

Milligan and Parsons [16] calculate the capacity value of wind by considering a set of “risky” 
hours, as opposed to only peak-load hours. They introduce three different approximation 
methods, which differ based on the set of hours examined. One technique uses the average 
capacity factor during the peak-load hours, whereas another uses the capacity factor during the 
peak-LOLP hours. A third technique uses the highest-load hours but normalizes the capacity 
factors by the LOLPs. This technique places higher weight on the capacity factor of the wind 
plant during hours with high LOLPs. Milligan and Parsons have applied these techniques to the 
top 1% to 30% of hours and have shown that the approximation can approach the ELCC metric 
if a suitable number of hours are considered. Their results suggest that using the top 10% of 
hours is typically sufficient. 

Milligan and Porter [17] survey capacity valuation methods applied to wind by different utilities 
and regional transmission organizations. They note that many entities use time-based, as opposed 
to reliability-based, approximation techniques for capacity valuations. The PJM 
Interconnection,3

The following sections describe some of these approximation techniques in further detail. 

 for instance, uses the capacity factor of a wind plant between the hours 3 p.m. 
and 7 p.m. from June 1 through August 30 to calculate the plant’s capacity credit. This approach 
does not require any reliability modeling and is therefore very computationally simple. The New 
York Independent System Operator (ISO) calculates the summer and winter capacity value of its 
existing wind plants separately. The capacity factor of a wind plant between 2 p.m. and 6 p.m. in 
June, July, and August of the previous year determines its summer capacity value. The capacity 
factor between 4 p.m. and 8 p.m. in December, January, and February of the previous year 
determines its winter capacity values. Another example is the Electric Reliability Council of 
Texas (ERCOT), which uses the average output of a wind plant between 4 p.m. and 6 p.m. in 
July and August [17]. 

                                                 
3 The PJM Interconnection is a regional transmission organization in the eastern United States. 
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2.2.1 Highest-Load Hours Approximation Method 
The highest-load hours approximation method is the simplest approach that can be used to obtain 
an estimate of a generator’s capacity value. This approach uses the average capacity factor of the 
CSP plant during the highest-load hours as an approximation for the capacity value. The number 
of hours considered is important since the capacity factor can be highly sensitive to this 
parameter. This study compares three cases in which the top 10, top 100, and top 10% (or top 
876) of load hours are used. Our results indicate that considering only the top 10 load hours 
results in an approximation that is closest to the ELCC metric. It is worth contrasting this with 
capacity-factor-based approximations of the capacity value of wind. Milligan and Parsons [16] 
show that the top 10% load hours give an approximation that is closest to the ELCC. 

2.2.2 Highest Loss of Load Probability Hours Approximation Method 
The highest-LOLP hours approximation method is similar to that described in Section 2.2.1, 
except that it uses the highest-LOLP as opposed to highest-load hours. Since this technique 
requires the LOLPs of the original system to be computed, this is a more computationally 
expensive technique than an approximation based on the highest-load hours. This approximation 
also requires more system data to compute the LOLPs. This technique is, however, less 
computationally burdensome than an ELCC calculation since the LOLEs do not need to be 
iteratively recomputed in order to equate the LOLEs of the system with the CSP and 
conventional generator added. If the generating capacities and EFORs of the generators are the 
same across all of the hours of the year, then this technique will yield the same capacity value 
estimate as an approximation based on the highest-load hours. This is because, in such a case, the 
highest-LOLP hours will also be the highest-load hours. 

2.2.3 Loss-of-Load-Probability-Weighted Highest-Load Hours Approximation 
Method 

The weighted LOLP-based approximation method also uses the capacity factor of the CSP plant 
during the highest-load hours. The capacity factors are weighted, however, based on the hourly 
LOLPs. This weighting is done since the capacity provided by the CSP is especially needed 
during hours with higher LOLPs. The weights are obtained as: 

1

                        (4)i
i T

j
j

LOLPw
LOLP

=

=

∑  

where wi is the weight in hour i, iLOLP  is the LOLP in hour i, and T is the number of hours in 
the study. These weights are then used to calculate the weighted average capacity factor of the 
CSP plant in the highest-load hours as: 

1
                           (5)

T

i i
i

CV w .CF
′

=

= ∑
 

where CV is the approximated capacity value of the CSP plant, CFi is the capacity factor of the 
CSP plant in hour i, and T ′  is the number of hours used in the approximation. Our results show 
that this method yields capacity value approximations that are closest to the ELCC metric. 
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3 Concentrating Solar Power Model 

Unlike wind or solar PV, a CSP plant with TES is a partially dispatchable generation technology. 
This is because when TES is incorporated into a CSP plant, the plant operator has the option 
(within the capacity limits of the TES system) of using solar energy to either drive the steam 
turbine in the powerblock or to store the thermal energy instead. Since stored energy can 
supplement the output of a CSP plant during a system shortage event, the capacity value of a 
CSP plant will depend on its dispatch. Capacity value estimations involving conventional 
generators assume that the plants will always be operated in an “optimal” fashion. Thus, we must 
model the dispatch decisions made by the CSP operator to capture these effects. We assume that 
the CSP plant will be operated to maximize revenues, based on wholesale market price signals. 
As such, we base our model on that developed by Sioshansi and Denholm [19], which assumes 
that the CSP plant is operated to maximize revenues from energy sales. We also consider a case, 
which we discuss in Section 6.2, in which the CSP plant participates in an energy and capacity 
market, and the plant is operated to maximize the sum of energy and capacity payments. It 
should be noted that these are not the only markets in which a CSP plant could participate. 
Sioshansi and Denholm [19] study CSP participating in energy and ancillary service markets. 
Moreover, in some cases, such as if the CSP plant has sold its energy through a forward contract, 
the plant will not necessarily adjust its output based on spot market price signals. As such, there 
are other operational scenarios that would yield different dispatch decisions and capacity values 
from what we derive based on these models. 

Figure 1 provides a schematic of a parabolic trough CSP plant including the three main 
components (solar field, TES, and power block).  The modeling of each of the components and 
the system as a whole is described in more detail in the following paragraphs. 

 

Figure 1. Schematic of a parabolic trough CSP plant with TES 

Our optimization model consists of two main parts. The first part is based on the Solar Advisor 
Model (SAM), a software program that simulates the dynamics of a CSP plant [20]. SAM takes 
weather data, including solar radiation and ambient temperature, for each of the locations as an 
input and is used to determine how much thermal energy is collected by the solar field of the 
CSP plant in each hour. SAM also accounts for temperature effects on the efficiency of the solar 
field in collecting solar thermal energy. These data are then used as an input to the mixed-integer 
program (MIP), which is the second part of our model. The MIP model takes the solar field 
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output as given and determines how much net energy to put into storage and deliver to the 
powerblock in each hour to maximize revenues. 

In order to give the formulation of the general MIP model, which can model both CSP plants 
with and without TES, we first define the following model parameters: 

s : Charging power capacity of TES (MW-t)

d : Discharging power capacity of TES (MW-t)
urs of storage
urly TES energy losses (%)

: Ηο
: Ηο

η 
ρ  

 

+

Roundtrip TES efficiency losses (%)
P  HTF pump parasitic function

 Rated thermal capacity of powerblock (MW-t)
τ  Minimum and maximum operating level of powerblock, 

           respectively 

:
h

-

(.) :

τ , :

φ : 

τ

(% of capacity)
SU : Powerblock startup energy (% of capacity)
u : Powerblock minimum up time
f(.) : Powerblock heat rate function
P  Powerblock parasitic function
c : Variable generation cost ($/MWh-e

b(.) :
)

SF  : Energy from solar field in hour  (MWh-t)

M  Market-clearing price of energy in hour  ($/MWh-e)
t
e
t

t

: t

 

We also define the following decision variables of the model: 

:  Storage level of TES at the end of hour  (MWh-t)
:  Energy put into TES in hour  (MWh-t)
:  Energy taken out of TES in hour  (MWh-t)
:  Electric energy sold in hour  (MWh-e)
:  Energy put into

t

t

t

t

t

l t
s t
d t
e t
τ  powerblock in hour  (MWh-t)

:  Binary variable indicating powerblock is up in hour 
 : Binary variable indicating powerblock is started in hour 

t

t

t
u t
r t
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The formulation of the model is then as follows: 

           e
t t

t T
max ( M c ).e ,

∈

−∑     (6) 

1s.t. lt t t t.l s d ,ρ −= + −   t T∀ ∈   (7) 
0 lt s ,η.≤ ≤     t T∀ ∈   (8) 
0  ts s ,≤ ≤     t T∀ ∈   (9) 
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 t t t. .u . .uτ τ τ τ τ− +≤ ≤   t T∀ ∈   (13) 
rt t t 1u u −≥ −     t T∀ ∈   (14) 

  
t

t j
j t u

u r
= −

≥ ∑     t T∀ ∈   (15) 

0 1t tu ,r { , }∈     t T∀ ∈   (16) 
 

The objective function (6) maximizes revenues from energy sales. Constraint (7) is a flow-
balance constraint that determines the amount of energy in storage at the end of hour t as a 
function of the amount of energy in storage at the end of hour t-1 and hour t charge and 
discharge decisions. The term ρ, which multiplies the storage level at the end of hour t-1, 
captures heat losses that will naturally occur within the TES system. These losses are assumed to 
be 0.031% based on tests conducted at the Solar Two CSP Plant in California [21]-[22]. 
Constraints (8) – (10) set power and energy restrictions on TES charging and discharging. Note 
that by setting the parameter η, which represents the number of hours of storage in the TES 
system, at zero, this model can simulate a CSP plant without TES. Constraint (11) requires total 
thermal energy used by the CSP plant in any hour to be no greater than the energy collected by 
the solar field. Total thermal energy used by the CSP plant consists of the sum of net energy 
charged into storage and energy delivered to the powerblock. The term φ in this constraint 
captures first-law roundtrip efficiency losses when energy is put through the storage cycle. These 
losses, which we assume to be 1.5% [19], account for energy losses in an indirect TES system 
due to temperature differences of the heat-transfer fluid (HTF) going into and out of TES. 
Constraint (12) defines the amount of electric energy produced by the CSP plant in terms of the 
efficiency of the powerblock and parasitic loads of various CSP plant components. The heat rate 
function f(.) in constraint (12) represents the powerblock’s efficiency in converting thermal 
energy to electricity. The functions Ph(.) and Pb(.) represent HTF pump and powerblock 
parasitics, respectively. We assume in this analysis that the powerblock is wet-cooled, which 
implies that temperature will have a negligible effect on the efficiency of the plant. A dry-cooled 
powerblock could be modeled by multiplying f(.) by a temperature-based correction factor [19]. 
All of these functions are approximated as being piecewise-linear, which guarantee the linearity 
of the MIP. Constraint (13) sets power capacity restrictions when the CSP plant is online. 
Constraint (14) defines the powerblock startup variable in terms of the online variables, while 
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constraint (15) ensures that the minimum up-time requirement is met. Constraint (16) is imposed 
to ensure the integrality of commitment and startup variables. 

Although different CSP technologies, including parabolic troughs, power towers, and Stirling 
dish systems exist, our analysis focuses on parabolic troughs. Nevertheless, this model is 
sufficiently general to simulate other CSP technologies. Parabolic trough CSP systems consist of 
three separate but interrelated parts: the solar field, the powerblock, and the TES system. As 
such, these three components can be sized differently, each of which can affect the operation and 
capacity value of the plant. The size of the solar field is typically measured either based on the 
area that the field covers or by using the concept of the solar multiple (SM). The SM reflects the 
relative size of the solar field. A plant with an SM of 1 is sized to provide sufficient thermal 
energy to operate the powerblock at its rated capacity under reference conditions. We measure 
the size of the solar field using the SM and consider a range of solar field sizes. The size of the 
TES is measured based on its power and energy capacity. We assume that the power capacity of 
the TES system is such that the powerblock can operate at its rated capacity using energy from 
TES only. The energy capacity of TES is typically measured by the number of megawatt-hours 
of thermal energy (MWh-t) that the system can store or by the number of hours of storage. We 
use the latter convention and define hours of storage as the number of hours that storage can be 
charged at its power capacity, which is also reflected in constraint (8) of the model. Defining 
hours of storage in terms of charging or discharging hours will be nearly identical because of the 
high roundtrip efficiency of the TES system. The size of the powerblock is typically measured 
based on its rated output, measured in megawatts of electricity (MW-e). Since the solar field and 
TES are sized relative to the powerblock size, we hold the capacity of the powerblock fixed at 
110 MW-e. Moreover, we base the operating characteristics of the CSP plant on the baseline 
CSP system modeled in SAM version 2.0. This system assumes that the powerblock can be 
operated at up to 115% of its design capacity, which yields a maximum output of about 120 
MW-e net of parasitic loads. We also assume that the powerblock has a 6% EFOR, based on the 
system modeled in SAM. 

Although our analysis assumes a parabolic trough CSP plant, our results can provide bounds on 
the capacity value of other CSP technologies. One technology currently under development is a 
salt tower CSP plant with direct TES. Such a plant would put all of the thermal energy collected 
by the solar field into a storage tank first, from which energy can then be fed into the 
powerblock. Such a design completely decouples solar energy collection from electricity 
generation, which makes the technology potentially more flexible than parabolic trough systems. 
The added flexibility from direct storage implies that salt tower plants should have better 
performance and capacity values than our estimates assuming a parabolic trough system with 
indirect TES. Parabolic trough developers are considering salt-HTF systems, which will also 
benefit from the added flexibility and improved performance of direct storage. 

In order to simplify the analysis, we assume that the CSP operator knows future weather and 
price patterns with perfect foresight in optimizing the dispatch of the plant. We further assume 
that the operation of the CSP plant is optimized 24 hours at a time, using a 48-hour optimization 
horizon. This 48-hour horizon is used to ensure that energy is kept in storage at the end of each 
day if it would provide value on the following day. The operation and profits of CSP plants have 
been shown to be relatively insensitive to these two assumptions [19]. 



10 

4 Data Requirements 

This study focuses on the sites in the western United States listed in Table 1. Although the sites 
are not “optimized” for particular market conditions, they have relatively good solar resources 
and cover several states in the Southwest. 

Table 1. Location of CSP Plants 

CSP Site Coordinates 
California – Death Valley 36.03o N, 117.45o W 

California – Imperial Valley 33.65o N, 116.05o W 
Arizona 32.57o N, 112.45o W 
Nevada 36.55o N, 116.45o W 

New Mexico 34.35o N, 107.35o W 
 

The ELCC metric and approximation techniques described in Section 2.2 are used to estimate the 
capacity value of a CSP plant with and without TES during the years 1998–2005. These capacity 
value estimates will be highly sensitive to the coincidence between loads and solar resource, so 
accurate system data is vital for these calculations. Data requirements and sources used for this 
analysis are listed below. 

1. Conventional generator data 
This analysis uses the rated capacity and EFOR of each generator in the Western 
Electricity Coordinating Council (WECC) region.4

The conventional generator used as the benchmark unit in the ELCC calculation is a 
natural-gas-fired combustion turbine with an EFOR of 7%, which is based on the EFOR 
reported in GADS. 

 The rated capacities are obtained from 
Form 860 (Annual Electric Generator Report) data filed with the U.S. Department of 
Energy’s Energy Information Administration (EIA) [24]. The EIA data specifies a winter 
and summer capacity, which capture the effect of ambient temperature on the maximum 
operating point of thermal generators. The EIA data also specify the prime mover and 
generating fuel of each generator. These data are combined with the North American 
Electric Reliability Corporation’s (NERC’s) Generating Availability Data System 
(GADS) to estimate the EFOR of each generator [25]. The GADS data give historical 
average EFORs for generators based on generating capacity and technology. 

2. Hourly load data 
Hourly historical WECC load data for the years 1998–2005 are obtained from Form 714 
filings with the Federal Energy Regulatory Commission (FERC) [26]. The FERC data 
includes load reports for nearly all of the load-serving entities (LSEs) and utilities in the 
WECC, although some smaller municipalities and cooperatives are not reflected in the 
data. One issue with these load data is that LSEs do not always properly account for 
daylight savings time in their reports. As such, we also conduct a sensitivity analysis, 
which is described in Section 5.2, in which we shift all loads forward and backward one 
hour to bound the potential effect of misreported load data. 

                                                 
4 WECC is one of the three U.S. interconnected grids and is largely isolated from the other two interconnects—
ERCOT and the Eastern Interconnect. 
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3. CSP generation profile 
In order to provide the most robust capacity value estimates, multiple years of CSP 
generation data is needed. Since no CSP plants are operating at the exact study locations,5 
we model the operation of a CSP plant using the optimization model developed by 
Sioshansi and Denholm [19]. Data requirements for the model include hourly weather 
and historical energy price data for each location. Hourly weather data are obtained from 
the National Solar Radiation Data Base.6

                                                 
5 The Nevada Solar One, SEGS, and Saguaro CSP plants are near the study locations; however, we opt to use the 
same modeled data for purposes of comparison. 

 For the two CSP plants in California, the 
California ISO market-clearing price of energy for the SP15 zone is used for the energy 
price in the optimization model (both of the plants studied are located in southern 
California, which the SP15 zone covers). For CSP plants in Arizona, Nevada, and New 
Mexico, load lambda data for Arizona Public Service (APS), Nevada Power (NP), and 
PNM (the largest utility in New Mexico) are used, respectively. The load lambda data are 
obtained from Form 714 filing with FERC [26]. Since load lambda data for APS in the 
year 1999 is not available, capacity values for the Arizona site are not calculated for this 
year. 

6 These data are available for download at http://rredc.nrel.gov/solar/old_data/nsrdb/. 
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5 Capacity Value of a Concentrating Solar Power Plant without 
Thermal Energy Storage 

We begin by first computing capacity values of CSP plants without TES. These calculations use 
CSP generation patterns, which are optimized using the model described in equations (6) – (16) 
in the ELCC and capacity factor calculations. Since we hold the size of the powerblock fixed, the 
SM is the only size parameter that is adjusted in the plants that we simulate. Figure 2 summarizes 
the average (over the eight years studied) annual capacity values obtained based on the ELCC 
method. The capacity values are all normalized by the maximum net output of the CSP plant, 
which is 120 MW-e.7

Figure 2 shows that the SM has a direct impact on the capacity value of the CSP plant. This is 
because a CSP plant with a small solar field will often operate below its rated capacity, reducing 
its capacity value. As the solar field size increases, more thermal energy will be available during 
such hours, increasing the capacity value. On the other hand, a large solar field will lead to 
greater capital costs and if the CSP plant does not have TES, excess thermal energy that would 
exceed the powerblock rating will be wasted [19]. Sioshansi and Denholm [19] provide estimates 
of the amount of solar thermal energy wasted by a CSP plant without TES, as a function of solar 
field size. While the range of SMs shown is 1.0–3.0, the typical range of SMs for plants with 
storage is closer to 1.3–1.5. The optimal solar field size for a CSP plant without TES will depend 
on the relative capital cost of the components and the incremental value of the added energy and 
capacity value. If the CSP plant is coupled with TES, on the other hand, excess energy that 
would exceed the powerblock rating could be stored and used in later hours. This can make 
investments in larger solar fields reasonable and also increase the capacity and energy value of 
the plant. Selecting an appropriate or optimal solar field size requires an in-depth economic 
analysis.  

 

                                                 
7 The same normalizing is done for all of the capacity value estimates in this report. 
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Figure 2. Average annual capacity value of a CSP plant with no TES in different locations 

Figure 2 also shows that the rank ordering of the locations, in terms of capacity value, can vary 
as a function of solar field size. This is because adjusting the solar field size will change the 
operation of the CSP plants. In some cases, increasing the SM will allow the powerblock to start 
up during a high-LOLP hour when it would otherwise not be able to with a smaller solar field 
due to minimum-load constraints on the powerblock. For instance, with an SM of 1.4 or less, the 
Death Valley location has the highest capacity value, whereas the Arizona location has the 
highest capacity value with an SM of 1.5 or greater. 

Figure 2 represents average annual capacity values over the eight years of study. Capacity values 
can, however, vary significantly from year to year. This is also true for conventional generators, 
since a forced outage during a high-LOLP hour would yield a low capacity value in the year in 
which it occurs. Figure 3 shows capacity values for a CSP plant at the New Mexico location over 
the eight individual years. The differences in annual capacity values reinforce the fact that 
several years of generation data are required to provide a robust capacity value estimate for CSP. 
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Figure 3. Annual capacity value of a CSP plant with no TES at the New Mexico location 

Figure 3 shows that with an SM of 1.0, the capacity value of the CSP plant in the year 2000 is 
more than four times greater than that in the year 2004. In order to better understand the reason 
behind this, the operations of the CSP plant during the highest-LOLP hours in those two years 
need to be compared. In the year 2000, the highest-LOLP hours occur on August 1. Figure 4 
shows the hourly output of the CSP plant and LOLPs on this day and shows that the plant has an 
average output of about 85 MW-e during the highest-LOLP hours. Since the output of the CSP is 
correlated with the LOLPs, a high capacity value for the plant can be expected. Figure 5 shows 
the amount of thermal solar energy collected by the solar field, which reflects the amount of 
solar irradiance, and load data. As can be seen in Figure 5, load data is strongly correlated with 
solar energy. This correlation is reasonable during a summer day due to the fact that summer 
loads are driven by cooling needs, which will be correlated with solar availability. 
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Figure 4. Hourly LOLPs and dispatch of a CSP plant with no TES at the New Mexico location with 

an SM of 1.0 on August 1, 2000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

100

200

300

400

500

600

700

800

900

1,000

Hour

D
ire

ct
 N

or
m

al
 Ir

ra
di

an
ce

 (W
/m

2 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
60

70

80

90

100

110

120

Lo
ad

 (G
W

)

 

 
Load
Solar Radiation

 
Figure 5. Hourly loads and solar radiation at the New Mexico location on August 1, 2000 

Figure 6 shows the operations of the CSP plant on August 10, 2004, which is the day with the 
highest LOLPs of that year. The figure shows that CSP generation is not correlated with LOLPs 
in this case. Hence, the capacity value of the CSP plant is relatively lower in 2004 compared to 
2000. Figure 7 shows the amount of thermal solar energy collected by the solar field and load 
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data for the day. Unlike the case shown in Figure 5, electricity demand is less correlated with 
solar energy, which causes lower capacity value in 2004. 
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Figure 6. Hourly LOLPs and dispatch of a CSP plan with no TES at the New Mexico location with 

an SM of 1.0 on August 10, 2004 
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Figure 7. Hourly loads and solar radiation at the New Mexico location on August 10, 2004 

Due to computational complexity and data requirements of the ELCC method, using an 
approximation method to estimate the capacity value of a CSP plant may be preferred. Doing so 
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can significantly reduce the computational time of the estimation but may affect the accuracy of 
the results. We compare the ELCC calculations to three approximation techniques that are based 
on the capacity factor of the plant. The first two use the highest-load and highest-LOLP hours of 
the year, whereas the third uses the highest-load hours but weighs the capacity factors by the 
hourly LOLPs. These three techniques are referred to as the “Top Loads,” “Top LOLP,” and 
“Top Weighted” techniques, hereafter. Figures 8 through 10 show the average annual capacity 
values of a CSP plant at the Imperial Valley location, based on the three approximation 
techniques. The figures show the capacity value estimates when considering the top 10, top 100, 
and top 10% of hours of each year, respectively. 
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Figure 8. Annual average capacity value of a CSP plant with no TES at the Imperial Valley location 

using the ELCC metric and approximation techniques that select the top 10 hours 
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Figure 9. Annual average capacity value of a CSP plant with no TES at the Imperial Valley location 

using the ELCC metric and approximation techniques that select the top 100 hours 
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Figure 10. Annual average capacity value of a CSP plant with no TES at the Imperial Valley 

location using the ELCC metric and approximation techniques that select the top 10% of hours 
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Comparing Figures 8 through 10 shows that using an approximation method that considers only 
the top 10 hours of each year yields a capacity value estimate that is closest to the ELCC metric. 
The figures also show that the “Top Weighted” approximation tends to have greater accuracy. 
Similar results are obtained for the other sites. This is demonstrated in Figures 11 through 14, 
which compare the three approximation techniques when considering only the top 10 hours of 
each year to the ELCC calculation for the other locations. 
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Figure 11. Annual average capacity value of a CSP plant with no TES at the New Mexico location 

using the ELCC metric and approximation techniques that select the top 10 hours 
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Figure 12. Annual average capacity value of a CSP plant with no TES at the Death Valley location 

using the ELCC metric and approximation techniques that select the top 10 hours 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
10

20

30

40

50

60

70

80

90

100

SM

N
or

m
al

iz
ed

 C
ap

ac
ity

 V
al

ue
 (%

)

 

 

ELCC
Top Weighted
Top LOLP
Top Load

 
Figure 13. Annual average capacity value of a CSP plant with no TES at the Nevada location using 

the ELCC metric and approximation techniques that select the top 10 hours 
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Figure 14. Annual average capacity value of a CSP plant with no TES at the Arizona location using 

the ELCC metric and approximation techniques that select the top 10 hours 
 

5.1 Effect of Expected Forced Outage Rates on Concentrating Solar Power 
Capacity Value 

Our analysis thus far is based on modeling a system in which the conventional generator set 
varies from year to year. This is because we only model conventional generators that were in 
operation in each year, and this generator set changes from year to year as a result of generator 
construction and retirements. Moreover, the EFORs that are reported in the NERC GADS 
database are annual values, which will also vary from year to year depending on how many 
outages actually occurred. We use these annual EFORs to capture the fact that outage rates can 
vary from year to year. These differences in the conventional generator mix and EFORs can 
contribute to the differences in the annual capacity values of the CSP plants, which are shown in 
Figure 3. Figure 15 compares the average annual ELCC of a CSP plant at the Imperial Valley 
location in cases in which these parameters vary to a case in which these parameters are held 
constant. In the cases in which the parameters are held constant, we use the conventional 
generator mix that was installed in 2005 and EFORs that are averaged over the eight study years. 
Figure 15 shows that the ELCC values are nearly identical, with very little differences for 
smaller-sized CSP plants. The other locations have very similar results. As such, we can 
conclude that variations in the mix and reliability of other generators will have a negligible 
impact on the capacity value of a CSP plant. 
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Figure 15. Average annual capacity value of a CSP plant with no TES at the Imperial Valley 
location based on ELCC metric with constant and varying conventional generator characteristics 

 
5.2 Effect of Load Errors on Concentrating Solar Power Capacity Value 
As noted before, another issue with our capacity value estimates is that some utilities do not 
properly account for daylight savings time in reporting their hourly loads in FERC Form 714 
filings. As such, it is possible that the simulated output of the CSP plant could be offset from the 
system loads and LOLPs. Since the capacity value of CSP is highly dependent on the correlation 
between solar resource availability and load, this potential mismatch in the data can lead to 
different capacity values than what we have estimated thus far. In order to bound the effect of 
misreported load data, we conduct the same ELCC calculations but shift the loads forward and 
backward one hour. Figure 16 shows average annual ELCC values for a CSP plant at the 
Imperial Valley location when the system loads are shifted in this way, and it compares them to 
the base case in which the reported loads are used without shifting. The figure shows that this 
shifting in the loads can reduce the estimated capacity value of a CSP plant by up to 5%; the 
other locations have similar results. The ELCC is reduced regardless of whether the load is 
shifted forward or backward, which suggests that most of the loads reported in the Form 714 data 
are correct. This is because solar resource and CSP generation will have some correlation with 
system loads, and this correlation is maximized when the loads are not shifted. 
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Figure 16. Average annual capacity value of a CSP plant with no TES at the Imperial Valley 
location based on ELCC metric with loads shifted 

 
5.3 Effect of Sub-Hourly Variability on Concentrating Solar Power Capacity 

Value 
Our analysis thus far is based on using hourly solar data and modeled CSP generation to 
calculate ELCCs and capacity factors. Solar radiation can have noticeable sub-hourly variation 
due to passing cloud cover. Sub-hourly variation may impact the capacity value and integration 
costs of many renewable resources, such as wind and solar PV. CSP may not suffer from this 
issue as much, however, since the HTF of a CSP plant will have some thermal inertia, which can 
maintain output during a brief reduction in solar radiation. Indeed, a CSP plant with direct TES 
will not suffer from short-term transients at all since the powerblock is fed by the TES system 
and not directly from the solar field. 

In order to determine the effect of sub-hourly variability on the capacity value of CSP, we 
compare our ELCC calculations when CSP output is modeled using one-minute and hourly data. 
We use one-minute solar data for a CSP plant located around the Nevada One site in Boulder 
City, Nevada. The coordinates of the modeled location are 35.80o N, 114.97o W. We use one-
minute weather data from the year 2007 and compare a case in which the CSP plant is modeled 
using the one-minute data to a case in which hourly averages of the one-minute data are used 
instead. SAM and the CSP dispatch model are both adapted to model one-minute operations by 
appropriate scaling of the model variables and parameters. The same hourly conventional 
generator and load data are used in both cases; thus, any differences in the ELCC estimates are 
solely due to the one-minute weather data as opposed to hourly averages. Since the loads are 
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assumed constant during each hour, these ELCC estimates will not capture sub-hourly load 
variations and potential correlation between these and solar radiation patterns. 

Figure 17 shows the ELCC estimates for the CSP plant as a function of the solar field size, using 
the one-minute and hourly average data. The results show that the hourly average data will 
provide a close approximation of the ELCC if one-minute data is used. The maximum difference 
in the ELCC between the one-minute and hourly average data is 5.8%. For most plant 
configurations, the hourly average data tends to overestimate the ELCC. This is because with 
one-minute data, subhourly variations in solar radiation can keep the powerblock from running 
above its minimum operating point. These variations are not fully captured when the one-minute 
data is averaged. The differences in the estimated ELCCs are maximized for plants with an SM 
between 2.4 and 2.8. This is because plants with this configuration have more time periods in 
which solar radiation variability can prevent the powerblock from starting up, which is not 
captured without hourly data. Despite these issues, the small difference in the ELCC values 
suggest that hourly data can provide relatively good capacity value estimates if sub-hourly data is 
not available or too computationally intensive to work with. 
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Figure 17. Capacity value of a CSP plant with no TES at the Boulder City, Nevada, location based 

on ELCC metric while using hourly and one-minute interval solar data 

 



25 

6 Capacity Value of a Concentrating Solar Power Plant with 
Thermal Energy Storage 

A major benefit of coupling CSP with TES is that TES will make the CSP plant more 
dispatchable. This is because TES allows the CSP plant to store excess energy collected by the 
solar field when it is not needed and discharge that energy later when solar resources are lower. 
Our results in Section 5 clearly show that the ability of a CSP plant to generate electricity in 
critical peak hours with high loads or LOLPs has a significant impact on capacity value. 
Therefore, adding TES to a CSP plant can increase its capacity value by allowing it to generate 
electricity during critical periods when solar resources are not available. As suggested earlier, 
adding TES to a CSP plant can also make a higher SM more economic since excess thermal solar 
energy collected by the solar field will not be wasted and can be stored and later used. 

Estimating the capacity value of a CSP plant is more complicated when it has a TES system. 
This is because a proper capacity value estimate must not only account for how much energy the 
plant generates each hour but also how much energy it could produce using energy in storage. 
One must account for energy in storage because if a system shortage event occurs, the CSP plant 
would, in principle, use energy in storage to help support the system. Modeling energy in storage 
is difficult because of the energy-limited nature of energy storage. Namely, if energy in TES is 
used in hour t, then it cannot be used in any hour s > t. A previous capacity value estimation 
technique for energy storage technologies was developed by Tuohy and O’Malley [23] and 
applied to pumped hydroelectric storage (PHS). Their technique uses operational data to 
determine the maximum potential output of the PHS device in each hour if the energy in storage 
is discharged at maximum capacity (based on the available energy in storage). The capacity 
value of the PHS device is then estimated from the maximum potential output data using a 
capacity-factor-based approximation technique. 

We apply a similar approach to estimate the capacity value of the CSP plant with TES. As in the 
case without TES, we assume that the operation of the CSP plant and TES is optimized to 
maximize the revenues that the CSP plant receives. Once the operation of the CSP plant is 
established, we can determine the maximum potential output of the CSP plant by first computing 
the maximum amount of thermal energy that can be delivered from the solar field and TES to the 
power block in each hour as: 

1min{ . , .min{ , . } . .(1 )}                          (17)t t t tSF d l SU uµτ τ τ φ ρ τ+
−= + − −  

Equation (17) defines the maximum thermal energy that can be delivered to the powerblock in 
each hour ( t

µτ ) as the minimum of the powerblock’s rated capacity ( .+τ τ ) and the sum of 
thermal energy collected by the solar field and the amount of energy available in TES 
( 1.min{ , . }−+t tSF d lφ ρ ). Equation (17) assumes that if the powerblock is offline it can be 
committed within the hour in case of a system shortage event [27]. We can also define how much 
of the t

µτ  MWh-t is taken from TES as: 

                                                                                        (18)t t td SFµ µτ= −  
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Finally, the maximum potential output of the CSP plant, et
µ , is given by: 

e ( ) ( ) ( ( ))                                                          (19)t t h t b tf P d P fµ µ µ µτ τ= − −  

Once we determine the maximum potential output, we estimate the capacity value using the top 
weighted approximation technique considering the 10 highest-load hours of each year since our 
results in Section 5 show this to be the most accurate approximation. 

We model the operations of the CSP plant under two different market settings. The first is an 
energy-only market, in which the CSP plant only receives payments for the electricity that it 
supplies to the market. The operation of the CSP plant in the energy-only market setting is 
optimized using the model given in Section 3 and is represented by objective function (6) and 
constraints (7) through (16). The other market setting that we examine is one in which the CSP 
plant can receive energy and capacity payments. In this case the optimization model must be 
changed to co-optimize the sum of energy and capacity payments. Further details of the capacity 
payment model are given in Section 6.2. 

6.1 Capacity Value of a Concentrating Solar Power Plant with Thermal Energy 
Storage in an Energy-Only Market 

Figures 18 through 22 summarize the average annual capacity value of CSP plants at the 
different locations that we study. The figures show that the capacity values are typically 
increasing with the SM and the hours of TES in the CSP plant, although this relationship is not 
perfectly monotonic. At all of the locations, adding some TES increases the capacity value of the 
plant above the no-TES case. For instance, a CSP plant at the New Mexico location with an SM 
of 1.5 and no TES has a capacity value of about 78 MW-e. Adding one hour of TES to this plant 
addresses many of the days on which solar and load are not well correlated and increases its 
capacity value by 47% to 115 MW-e. 
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Figure 18. Average annual capacity value of a CSP plant with TES at the Imperial Valley location 

under an energy-only market setting 
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Figure 19. Average annual capacity value of a CSP plant with TES at the New Mexico location 

under an energy-only market setting 
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Figure 20. Average annual capacity value of a CSP plant with TES at the Death Valley location 

under an energy-only market setting 
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Figure 21. Average annual capacity value of a CSP plant with TES at the Nevada location under an 

energy-only market setting 
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Figure 22. Average annual capacity value of a CSP plant with TES at the Arizona location under an 

energy-only market setting 

In some cases, however, adding an incremental hour of TES or increasing the solar field size may 
cause a slight reduction in the capacity value of a plant. This is because different CSP plant 
configurations will yield different operational decisions, and in some cases a larger CSP plant 
may have less energy in TES during a high-LOLP hour. For example, a CSP plant at the Nevada 
location with four hours of TES and an SM of 2.2 has a capacity value of 117 MW-e in 1999. 
The same CSP plant with an SM of 2.7 would have a lower capacity value of only 95 MW-e in 
1999. This difference in the capacity value is due to less energy being in the TES of the larger 
CSP plant on July 12, which is the day with 5 of the 10 highest hourly LOLPs of the year. The 
larger CSP plant has less energy in storage because the larger solar field provided sufficient 
energy to operate the powerblock above its minimum operating point in the afternoon of the 
previous day. The smaller solar field of the CSP plant with an SM of 2.2 could not meet this 
minimum-load constraint, and as such the output of the solar field was stored. Thus, the CSP 
plant with an SM of 2.2 can, on average, generate up to 74 MW-e during the five highest-LOLP 
hours on July 12. The larger CSP plant with an SM of 2.7 can only generate up to an average of 
54 MW-e during these hours. Figure 23 shows the amount of energy in storage and energy 
collected by the solar field in each hour on July 12 for these two CSP plant configurations. It is 
important to note that due to weather patterns on this particular day, the solar field only collects 
solar energy during hour 18—the output of the field is zero in the remaining hours. 
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Figure 23. LOLP, energy from solar field and energy in storage for a CSP plant at the Nevada 
location with four hours of TES and different SM values on July 12, 1999 

 

Adding TES can also, in some cases, reduce the capacity value of the CSP plant, although this is 
less typical. For example, a CSP plant at the Death Valley location with an SM of 2.7 and one 
hour of TES has a capacity value of 79 MW-e in 1999. Increasing TES by one hour for the same 
CSP plant reduces its capacity value to 75 MW-e. The reduction in capacity value stems from the 
fact that energy prices are not necessarily correlated with hours with highest LOLPs, as 
suggested by Figure 24, which is a scatter plot of California ISO energy prices and LOLPs in the 
year 1999. The operation of both of the CSP plants on July 12, which is the day on which the 
highest LOLPs of the year occur, is shown in Figure 25. 
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Figure 24. LOLP versus energy price for the Death Valley location in year 1999 

Note: The x-axis used to represent LOLPs has a logarithmic scale. 

 
Figure 25. LOLP, energy from solar field and energy in storage for a CSP plant at the Death Valley 

location with an SM of 2.7 and different TES sizes on July 12, 1999 
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Figure 25 shows that in hour 16, during which the LOLP is the highest, the larger CSP plant has 
less energy in storage compared to the smaller CSP plant. This reduces the capacity value of the 
larger CSP plant. The reason behind these operations is that in hours 12 through 15 of the day, 
the larger CSP plant will use energy in TES to generate electricity since energy prices are higher 
in these hours than in hours during which the highest LOLPs occur. The smaller CSP cannot do 
so since its smaller TES system does not have sufficient energy in storage to operate above its 
minimum generation point during these hours. These operational differences leave the smaller 
CSP plant with more energy in TES during hour 16, which yield the higher capacity value. 

6.2 Capacity Value of a Concentrating Solar Power Plant with Thermal Energy 
Storage in a Capacity Market 

In Section 6.1 we estimate the capacity value of a CSP plant with TES in an energy-only market. 
The results there suggest that adding TES to a CSP plant will tend to increase the capacity value 
of the plant, although this relationship is not monotonic. This is because energy prices and 
LOLPs will not always be perfectly correlated, and there can be high-LOLP hours that have 
lower energy prices than other hours with lower LOLPs. An example of this is demonstrated in 
Figure 25. An alternative market design that could help reduce the impact of such price and 
LOLP patterns is an energy and capacity market. Under such a market design, the CSP plant 
receives both payments for electricity that it generates, as well as the capacity that it provides the 
system. Many electricity markets have moved toward adopting capacity markets. Even in 
systems that do not have an explicit capacity market, such as the APS, NP, and PNM service 
territories, a model that maximizes the sum of energy and capacity payments may be more 
appropriate. This is because such integrated utilities would likely operate a CSP plant to 
minimize its overall energy supply costs—which would be akin to our energy revenue 
maximization. However, such utilities would also likely adjust the operation of their plants to 
have more energy available in TES during anticipated system shortage events. 

The introduction of a capacity market tends to increase the capacity value of a CSP plant since 
capacity payments typically have performance requirements that are related to the capacity value 
of a generator. Most capacity markets impose financial penalties on generators that do not meet 
the performance requirements. Although the specific performance requirements differ from 
market to market, they are typically related to how much firm capacity a generator has available 
during system shortage events. Our capacity market model is based on the forward capacity 
market (FCM) used by ISO New England, although the modeling framework is sufficiently 
general that it can be adapted to model other markets as well. 

6.2.1 Capacity Market Procedures 
The objective of a capacity market is to encourage enough generating capacity to enter the 
system so that reliability requirements are met. This objective is met by a forward capacity 
auction (FCA).8

                                                 
8 These auctions are held three years in advance for ISO New England’s FCM. 

 Resources that participate and are selected in the FCA are eligible to receive 
capacity payments throughout the capacity commitment period based on their capacity 
commitment obligations. Capacity payments are subject to certain performance requirements, 
however. Performance requirements are set so that the capacity resources contribute to system 
reliability during hours in which shortage events could occur. The definition of shortage events 
will differ between capacity markets. Some markets, such as the FCM, define shortage events as 
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periods during which reserves (spinning and non-spinning reserves) fall below certain levels. 
This definition does not necessarily imply that supply is less than demand during the shortage 
event hours. For instance, if the reserve level falls to 1%, generating capacity will still be greater 
than demand, but due to low reserve levels the probability of having a capacity deficiency is 
high. Based on this definition, there is a one-to-one relationship between shortage event hours 
and the hourly LOLPs. In this study, the 10 hours of each year with the highest LOLPs are 
defined as shortage event hours. 

A generator that fails to provide its contracted capacity during a shortage event hour will incur 
financial penalties. The FCM sets penalties based on the cost of replacement capacity. We 
assume that the capacity market uses the cost of a natural-gas-fired combustion turbine, which 
we assume to be $671/kW in 2008 dollars, to set the penalties. This cost is then translated into an 
annualized cost of $73.81/kW-year, using an 11% capital charge rate. We assume that the 
capacity market imposes a penalty that is equal to half of this annualized cost, which is reflective 
of the penalties imposed in the FCM. We use consumer price index data to deflate the cost of the 
combustion turbine to previous-year dollars. 

6.2.2 Optimization Model 
In order to determine the operations of a CSP plant in an energy- and capacity-market setting, 
our model must be adjusted to maximize the sum of energy and capacity payments and net of 
any capacity penalties. We follow a similar approach to that used in Section 6.1 and add 
variables to our optimization model that determine the maximum potential generation from the 
CSP plant in each hour (based on energy in TES and collected by the solar field). The difference 
between the firm capacity sold and this maximum potential generation is the shortfall from the 
capacity commitment, and these shortfalls are penalized in the objective function to reflect 
capacity penalties. In order to give the formulation of the model, we define the following 
parameters: 

: Market clearing price of capacity ($/MW-year)
: Penalty factor for unserved capacity requirements  

: Set of  hours during which shortage events occur

cM
PF
H

 

We also define the following variables: 

: Firm capacity sold

e : Maximum potential net electric energy (MWh-e) produced by powerblock in each hour
sold

t

C
µ

: Maximum potential thermal energy taken out of storage (MWh-t) in each hour

: Maximum potential total thermal energy (MWh-t) fed to powerblock in each hour

: Shortfall from capacity commit

t

t
short
t

d

C

µ

µτ

ment in each hour
 

The formulation of the model is then given by: 

max   
short

e c c t
t t sold

t T t H sold

C
( M c ).e M .C ( M .PF. ),

C∈ ∈

− + −∑ ∑  (20) 
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s.t.  (7)-(16)  
e   short

t sold tC C µ≥ −    t T∀ ∈    (21) 

1   t td .lµ ρ −≤     t T∀ ∈    (22) 
  t t t t.d SU . r SFµ µφ τ τ.− + + ≤   t T∀ ∈    (23) 

 e  t t h t b tf ( ) P ( d ) P ( f ( ))µ µ µ µτ τ= − −  t T∀ ∈    (24) 

t t t. .u . .uµτ τ τ τ τ− +≤ ≤    t T∀ ∈    (25) 
 

Objective function (20) maximizes the sum of net energy and capacity revenues. The last term in 
the objective function corresponds to penalties associated with shortfalls from capacity 
commitments. Constraints (7) through (16), which are from the original energy-only model, are 
included since the same underlying constraints on the operation of the CSP plant apply. 
Constraint (21) defines the hourly capacity commitment shortfall as the difference between firm 
capacity sold and the maximum potential net electrical generation of the CSP plant. Constraint 
(22) restricts the potential thermal energy taken out of storage (MWh-t) in each hour, based on 
the ending storage level of the previous hour. Constraint (23) limits the total amount of potential 
thermal energy used in the CSP plant to not be greater than the energy collected by the solar 
field. Constraint (24) defines the maximum potential output of the CSP plant in each hour. 
Finally, constraint (25) imposes restrictions on potential capacity of the CSP plant when the 
powerblock is online. 

Because the penalty term in the objective function is non-linear in the variables, we solve this 
model by fixing the value of Csold and solving the model iteratively until finding a maximum. For 
the cases that we consider, selling 120 MW-e of capacity (the maximum net output of the CSP 
plant) maximizes CSP revenues. 

6.2.3 Results 
The model, given by objective function (20) and constraints (7) through (16) and (21) through 
(25), is used to determine the optimized operation of the CSP plant in each hour. We then apply 
the same capacity-factor-based approximation technique used in Section 6.1 to estimate the 
capacity value of the plant. Figures 26 through 30 summarize the average annual capacity value 
of the CSP plants at the different locations. 
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Figure 26. Average annual capacity value of a CSP plant with TES at the Imperial Valley location 

under an energy and capacity market setting 
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Figure 27. Average annual capacity value of a CSP plant with TES at the New Mexico location 

under an energy and capacity market setting 
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Figure 28. Average annual capacity value of a CSP plant with TES at the Death Valley location 

under an energy and capacity market setting 
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Figure 29. Average annual capacity value of a CSP plant with TES at the Nevada location under an 

energy and capacity market setting9

                                                 
9 The unusual result for Nevada (compared to the other locations) is due to a day in 1999 where an SM of less than 
2.7 was insufficient to meet the minimum generation requirement during one 3-hour period of high LOLP. This 
demonstrates the need to examine performance over a large period of time to examine the impact of variability on 
resource adequacy. 
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Figure 30. Average annual capacity value of a CSP plant with TES at the Arizona location under an 

energy and capacity market setting 

Figures 26 through 30 show the benefits of implementing a capacity payment scheme, as 
opposed to an energy-only market. Adding capacity payments tends to slightly increase the 
capacity value of the CSP plant. Moreover, the capacity value is more monotonic in the size of 
the plant. There are still, however, some cases in which increasing the size of a CSP plant can 
result in a slight reduction in the capacity value. Even when the capacity payment is added, there 
may still be high-LOLP hours in which the value of energy (when accounting for the energy 
price and capacity penalty) is lower than other hours with lower LOLPs. However, these cases 
are rare and their magnitude (in terms of capacity value reductions) is relatively small. 

More broadly, contrasting these results with the energy-only market design, and Figure 23 in 
particular, demonstrates the benefit of capacity payments (or co-optimizing the energy and 
capacity value of a CSP plant) in improving the system benefits of CSP. Figure 23 shows that the 
larger CSP plant has a lower capacity value because of poor correlation between energy prices 
and LOLPs and the lack of solar resource during high-LOLP hours. If a CSP plant can anticipate 
potential high-LOLP periods or shortage events, the total value of the plant to the system can be 
drastically increased by slightly adjusting plant operations. 
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7 Conclusions 

This study estimates the capacity value of a CSP plant at a variety of locations within the WECC, 
while accounting for rational dispatch behavior of a CSP operator. This is done by optimizing the 
operation of the CSP plant and by using standard reliability-based capacity value estimation 
techniques. Although the ELCC metric is the most accurate estimation technique, we show that 
capacity-factor-based approximation methods can closely estimate the ELCC value. 

When introducing TES, the capacity value of the CSP plant is more difficult to estimate since 
one must account for energy in storage. We apply the capacity-factor-based technique used by 
Tuohy and O’Malley [23] under two different market settings: an energy-only market and an 
energy and capacity market. Our results show that adding TES to a CSP plant can increase its 
capacity value significantly at all of the locations. Adding a single hour of TES significantly 
increases the capacity value above the no-TES case, in most cases to above 90%. Although 
additional hours of TES increase the capacity value of the plant, their marginal benefit is less 
than the first hour of TES. Nevertheless, Sioshansi and Denholm [19] show that a greater number 
of hours of TES can have incremental energy and ancillary service benefits. Since energy prices, 
LOLPs, and solar resource will not be perfectly correlated, the use of capacity payments (or co-
optimization of energy and capacity value) can significantly increase the value of a CSP plant to 
the power system compared to an energy-only market. 

The capacity value estimates we provide examine a single CSP plant, which will have a marginal 
effect on the rest of the system. Clearly, changes in the generation mix or load patterns could 
affect the capacity value of a CSP plant. Adding more CSP (or PV) plants, especially if they are 
concentrated at similar locations in the system, can reduce the marginal capacity value of 
additional CSP capacity. Adding TES to a CSP plant can alleviate this reduction in the marginal 
capacity value, however, since it gives the CSP plant additional flexibility in dispatching its 
generation. 
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