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ABSTRACT 

Photoluminescence (PL) imaging is used to detect areas 
in multi-crystalline silicon that appear dark in band-to-band 
imaging due to high recombination. Steady-state PL 
intensity can be correlated to effective minority-carrier 
lifetime, and its temperature dependence can provide 
additional lifetime-limiting defect information. An area of 
high defect density has been laser cut from a multi-
crystalline silicon solar cell. Both band-to-band and defect-
band PL imaging have been collected as a function of 
temperature from ~85 to 350 K. Band-to-band 
luminescence is collected by an InGaAs camera using a 
1200-nm short-pass filter, while defect band luminescence 
is collected using a 1350-nm long pass filter. The defect 
band luminescence is characterized by cathodo-
luminescence. Small pieces from adjacent areas within the 
same wafer are measured by deep-level transient 
spectroscopy (DLTS). DLTS detects a minority-carrier 
electron trap level with an activation energy of 0.45 eV on 
the sample that contained defects as seen by imaging. 

INTRODUCTION 

Photoluminescence (PL) imaging of multi-crystalline 
silicon can quickly characterize wafers and cells to detect 
areas containing defects such as dense regions of grain 
boundaries and dislocation/defect clusters. [1-8] For band-
to-band radiative recombination, defect areas are 
relatively dark due to non-radiative or sub-bandgap defect 
recombination. Some defects can be revealed and 
characterized directly by sub-bandgap radiative 
transitions. Silicon is known to have such sub-bandgap 
states with radiative emissions in the ~1250–1550 nm 
wavelength range. [9-12] 

EXPERIMENT 

Band-to-band PL and defect band emissions are imaged 
using a FLIR SC2500 InGaAs camera with sensitivity to 
detect photons with wavelengths from 0.9 to 1.7 µm. The 
camera contains a lock-in detection option to improve the 
signal-to-noise ratio. For defect band emission imaging, a 
long-pass filter with a cut-off wavelength at 1350 nm is 
used to block band-to-band PL. The light source is 
composed of four 810-nm laser diodes with engineered 
diffusers to spread out the light over the sample. The 
intensity is near that of one sun, or ~100 mW/cm2. Defect 

band PL is collected when pulsing the 810-nm laser diode 
excitation at about 7 Hz. Figure 1 shows both band-to-
band PL imaging (top) and defect band emission imaging 
(bottom) of part of a multi-crystalline silicon solar cell. 

 

 
Figure 1 PL images of a portion of a finished multi-
crystalline silicon solar cell showing band-to-band PL 
(top) and defect band emission (bottom). The red 
circled area contains a high-defect-density region, 
while the blue circle represents a relatively defect-free 
area. 
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In Fig. 1, the circled areas were cut out of the wafer using 
a Q-switched Nd:YAG pulsed laser doubled to 532 nm 
wavelength. Laser damage was smoothed by sanding the 
edges of the ~1-cm-diameter cut pieces. The blue area is 
intended to be a relatively defect-free area, while the red 
area contains a high-defect-density area. The bottom 
image shows sub-bandgap defect band luminescence 
when using a 1350-nm long-pass filter in addition to long-
pass RG1000 Schott glass filters used to block reflected 
810-nm laser diode light. The red circled area contains 
high emissions of the sub-bandgap luminescence. A plot 
of the current vs. voltage for these cut out pieces is shown 
in Fig. 2. The piece containing the defect area (red curve) 
shows diode breakdown in reverse bias at a reduced 
voltage compared to the piece from the relatively defect-
free area (blue curve). 

 
Figure 2 Current vs. voltage curves for the laser-cut 
regions. The red curve represents the piece 
containing the high-defect-density region, while the 
blue curve represents the relatively defect-free piece. 

PL imaging of the high-defect-density red circle area of 
Fig.1 is shown in Fig. 3. Images at selected temperatures 
are shown for both band-to-band imaging (left column) 
and defect band imaging (right column). The sample was 
cooled in a cryostat using liquid nitrogen.  A laser diode 
with an 810-nm wavelength and approximately one-sun 
intensity was used to illuminate the sample. The FLIR 
InGaAs camera was used to collect the images as 
temperature was varied. A relatively defect-free area is 
circled in blue on the lowest temperature band-to-band PL 
image. The average PL intensity within this area is plotted 
as a function of temperature and represented by the blue 
circle points in Fig. 4. The red outlined rectangular area of 
Fig. 3 represents a high-defect-density region, and this 
area is averaged and represented by the red square 
markers in the plots of Fig. 4. For the defect band images 
of Fig. 3, a green triangle roughly outlines the high-defect 
area. The average defect band intensity is also plotted in 
Fig. 4 using green triangle markers, which are referenced 
to the right axis. 

 

 

 

 

 
Figure 3 PL imaging at selected temperatures 
performed on the red cut-out piece from Fig 1. The left 
column shows band-to-band PL, while the right 
column shows sub-bandgap defect band emissions. 
The red outlined rectangular area contains high defect 
density, and the blue circular area represents a 
relatively defect-free area. The green triangle is used 
to define average defect band emissions. 
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Figure 4 Average PL intensities (band-to-band on left 
axis and defect band on right axis) of the areas 
defined in Fig. 3 are plotted as a function of 
temperature (top). The band-to-band intensities are 
divided by the temperature-dependent B-coefficient 
for silicon in the bottom graph.  The bottom plot also 
shows the defect band intensities divided by a 
temperature-dependent B-coefficient factor. 

The band-to-band PL intensities for both the defect and 
defect-free areas are shown to increase with temperature 
in the top graph of Fig. 4. The defect band intensity, 
however, is shown to decrease with increasing 
temperature. The B-coefficient for radiative recombination 
in silicon has a known temperature dependence. [13,14] 
The average band-to-band PL intensity can account for 
this variation by dividing the PL values by the B-
coefficient. The results are plotted on the bottom graph of 
Fig. 4. There is now a near-linear increase in band-to-
band PL with temperature. This trend is due to the 
temperature dependence of the minority-carrier lifetime, as 
shown in Fig. 5. Minority-carrier lifetime has been 
measured on this cut-out area of the finished cell by the 
open-circuit voltage decay technique. [15,16] When 

compared over the same temperature range, the factor of 
increase in the average PL intensity is comparable to the 
factor of increase in lifetime, such that dividing PL intensity 
by lifetime yields a roughly flat, temperature-independent 
set of values. 

 
Figure 5 Temperature-dependent minority-carrier 
lifetime of the blue-circled area of Fig. 1 as measured 
by open-circuit voltage decay. 

As shown in Fig. 4, the defect band points are divided by 
an equivalent B-coefficient factor based on temperature-
dependent bandgap [17,18], whose values similarly 
decrease with temperature like those of the band-to-band 
PL B-coefficient. The defect band PL intensity data shows 
a change in slope at approximately 210 K (top graph in 
Fig. 4). The temperature-dependent, bandgap-based 
corrected data then shows a peak at this value (bottom 
graph of Fig. 4), which suggests a defect signature. 

To further characterize the band-to-band PL and defect 
band emissions, we have performed cathodo-
luminescence (CL) mapping to collect high-resolution 
spatial and spectral data.  CL was measured on a roughly 
200 µm x 200 µm defect-containing area from the red 
circled piece of Fig. 1. The sample is cooled to 
approximately 78 K. Figure 6 shows the CL mapping 
results for band-to-band transitions near 1130 nm (top 
image) and for defect band transitions near 1400 nm 
(lower image). The top image shows a dark line 
representing a grain boundary or dislocation where 
recombination through impurity and/or defect states is 
high. In the lower image, this same dark feature is evident, 
and sub-bandgap emissions are revealed very near to this 
line. Spectral data is gathered at three points in the vicinity 
of this defect area. The first point, p1 (shown in blue), 
represents an area where defect band emissions are very 
weak. The corresponding spectrum shown in the bottom 
graph of Fig. 6 shows a peak centered at ~1100 nm for the 
band-to-band radiative transition but no sub-bandgap 
signal. The other points, p2 and p3 (shown in red and 
orange in Fig. 6), correspond to areas where defect band 
emission is relatively high. The spectrums corresponding 
to these spots show peaks of defect band emissions in the 
1300–1600 nm range.   
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Figure 6 Cathodoluminescence mapping is performed 
on a roughly 200 µm x 200 µm defect-containing area 
from the red circled piece of Fig. 1. The top image 
shows intensities at ~1130 nm, while the lower image 
represents defect band intensities with wavelengths in 
the 1300–1600 nm range. The bottom graph shows 
spectrums from the points labeled in the defect band 
image. 

A small, roughly 1 mm x 2 mm sample was cleaved from a 
nearby defect region for deep-level transient spectroscopy 

(DLTS). A sample of this size or smaller is required for 
DLTS due to limitations on the value of capacitance for 
this measurement. Figure 7 shows band-to-band 
electroluminescence imaging [19,20] (top) and defect 
band emissions (bottom) when a forward bias is applied to 
this sample. This piece shows similar defect structures to 
the neighboring piece used for temperature-dependent 
imaging. 

 

 
Figure 7 Electroluminescence images acquired with 
forward bias show band-to-band emissions in the top 
image and defect band emission in the bottom image. 
The top image is partially obscured due to the large 
probe pin contacting the grid line. 

DLTS data was collected using a reverse bias of 5 V and 
filling pulses to 0.2 V forward bias. A positive peak, 
corresponding to a minority-carrier electron trap, was 
evident. Analysis of the DLTS data is used to generate the 
Arrhenius plot shown in Fig. 8., where the DLTS-detected 
peak corresponds to a defect level with an activation 
energy of 0.45 eV. A similarly prepared and sized sample 
from a defect-free area did not show a discernible peak 
when also measured by DLTS. 



5 

 
Figure 8 DLTS data from the sample shown in Fig. 7 is 
analyzed to construct an Arrhenius plot. The slope 
corresponds to an activation energy of 0.45 eV, while 
the intercept relates to a capture cross section of 
1.2x10-12 cm2. 

SUMMARY 

Temperature-dependent PL imaging was collected on 
samples from a multi-crystalline silicon solar cell. A defect-
containing region was compared to a relatively defect-free 
region using both band-to-band PL and defect band 
emissions. The temperature dependence of the band-to-
band PL is due to the temperature variations of the B-
coefficient for radiative recombination and minority carrier 
lifetime. The temperature dependence of the defect band 
emissions shows a potential defect signature. CL mapping 
showed the defect band spectrum had a peak in the 
1300–1600 nm range. DLTS was used to measure a 
minority-carrier electron trap with an activation energy of 
0.45 eV on a defect-containing sample. 
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