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Abstract — Wind forecasting is an important consideration in 

integrating large amounts of wind power into the electricity grid. 
The wind power forecast error distribution assumed can have a 
large impact on the confidence intervals produced in wind power 
forecasting.  In this work we examine the shape of the persistence 
model error distribution for ten different wind plants in the 
Electric Reliability Council of Texas (ERCOT) system over 
multiple timescales. Comparisons are made between the 
experimental distribution shape and that of the normal 
distribution. The shape of the distribution is found to change 
significantly with the length of the forecasting timescale.  The 
Cauchy distribution is proposed as a model distribution for the 
forecast errors and model parameters are fitted.  Finally, the 
differences in confidence intervals obtained using the Cauchy 
distribution and the normal distribution are compared. 

 

 
Index Terms—Wind power generation, wind energy, 

stochastic systems, error probability, forecasting 

I.  INTRODUCTION 
ith  the increasing amounts of wind generation being 

added into the electricity system, the importance of 
being able to accurately forecast the wind power output for 
future time stages is also increasing.  More accurate wind 
power forecasts can lead to economic efficiency in the unit 
commitment and dispatch process, as fewer reserves must be 
kept, or deployed, in order to compensate for changes in the 
wind power output.  Although most wind power forecasts are 
currently given as point forecasts, a more useful approach 
involves producing interval forecasts.  Interval forecasts can 
complement the point forecast by providing bounds on the 
expected future value with associated probabilities.  This can 
be a very important consideration in the commitment and 
dispatching of generating units.  For example, Fabbri et al. 
reported on the cost  associated with supplemental regulation 
reserves required because of forecasting errors in the Spanish 
electricity market [1].  They found that the total annual cost of 
wind forecast errors for a single wind plant ranged from 
€15,000-18,000 per MW of installed capacity, depending on 
the forecasting time frame.  They also observed that these 
costs decline with increasing installed capacity, demonstrating 
the benefits of geographical diversity in wind plant placement. 
  As a further illustration of the importance of wind forecasting 
errors, consider a system in which there is expected to be 1000 
MW of total load with a point forecast of 100 MW of wind 
                                                           

The authors are with the National Renewable Energy Laboratory, Golden, 
CO 8041 USA (email: bri-mathias.hodge@nrel.gov, 
michael.milligan@nrel.gov) 

power for the next time period.  Now we assume in this 
situation that the marginal producer is a 50 MW gas turbine 
producing at only 40% of capacity; that is 20 MW.  Using 
only the point forecast we do not know whether the 30 MW of 
capacity available in the marginal gas turbine will be sufficient 
if the wind power forecast is inaccurate.  If we use an interval 
forecast that specifies the 95% confidence lower bound for the 
wind power output to be 85 MW, the spinning reserve 
capacity in the marginal gas turbine should be sufficient to 
handle any up regulation.  However, if the lower 95% 
confidence interval for the forecast is only 40 MW, the system 
operator would mostly likely bring more reserves online to 
handle a lower wind output situation. 

The production of these forecast confidence intervals is 
often calculated using an assumed error distribution on the 
point forecast.  The errors are often assumed to follow a 
normal distribution [2-5], though Weibull [6] and Beta [7] 
distributions have also been utilized. Lange studied the 
distribution of wind power forecast errors for timescales 
between 6 and 48 hours ahead with a particular focus on the 
additional errors created from converting wind speed forecasts 
created by numerical weather prediction to wind power output 
[8].  The study demonstrates that while the NWP errors are 
well represented by a Gaussian curve, the power forecast error 
distributions exhibit both skewness and excess kurtosis.  
Focken et al. investigated the smoothing of forecast errors for 
multiple wind plants at timescales from 6 to 48 hours ahead 
[9].  They determined that geographical diversity of wind 
plants and ensemble forecasts could reduce the forecast errors, 
with increased benefits for increased wind plant distance.  
Bludszuweit et al. examined the forecast error distribution of 
the persistence model and find that the distribution is “fat-
tailed” and should not be modeled using the normal 
distribution [7].  They measure variable kurtosis values 
between different time scales (with a minimum of ten-minute 
averaged output data), and model the error distributions using 
a beta function.  This function was then applied to the sizing 
of an energy storage system that will act to smooth wind 
power output. 

Previous studies have examined the distribution of wind 
power forecast errors, but have tended to look at timescales of 
six hours or more.  In this work we examine the forecast error 
distributions for a number of different timescales, ranging 
from one minute to three hours, demonstrating that the normal 
distribution is unsuitable to represent the error distributions at 
these smaller timescales.  We then examine the differences in 
distribution shape with regard to timescale.  A number of 
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different distribution types are then fitted to sample time series 
and a new distribution is found to outperform those reported in 
the literature.  Finally this new distribution is applied to the 
problem of generating forecast error confidence intervals. 

The remainder of the paper is organized as follows.  In 
Section II the methods and data used in this study are detailed.  
Section III reports on the results of analyzing the forecast error 
over a number of timescales, and demonstrates the 
effectiveness of modeling the observed forecast errors with a 
Cauchy distribution. Conclusions are then drawn and future 
areas for examination outlined in Section IV. 

II.  METHODS AND DATA 

In this section we describe some of the important methods 
utilized in the study.  Section II-A contains information on the 
datasets analyzed.  The persistence model is described in 
Section II-B, and Section II-C discusses the differences 
between a pair of methods for data aggregation.  Background 
information on the statistical distributions discussed in the 
work is given in Section II-D. 

A.  Data Utilized 

In this study we have utilized data from the Electric 
Reliability Council of Texas (ERCOT) interconnection area in 
the United States.  The dataset used is from the year 2009 and 
contains one minute average power output for ten different 
wind plants ranging in size from 30 MW to 215 MW.  In 
addition, we have also included a series composed of the 
combined output of the ten wind plants with a total capacity of 
approximately 940 MW.  This aggregated ERCOT-wide time 
series is very useful for helping to identify trends that may not 
be apparent in the individual wind plant data. Additionally, 
this time series is more representative of the patterns noticed 
at the Independent System Operator (ISO) level where the 
geographic diversity of a number of wind plants tends to 
smooth the data.  Two main subsets of the data were used: a 
winter period and a summer period.  The winter period 
consists of the months of January until April and the summer 
period is comprised of June until September. 

B.  Persistence Model Forecasting 

There have been a number of statistical techniques 
developed for the forecasting of time series data, but none are 
as widely applicable, and surprisingly effective, as the 
persistence model.  While a simple approach, the persistence 
model is the baseline against which all other forecasting 
methods must be compared.   Equation (1) shows the 

persistence model, where P̂ is the forecast power output, 

)(tP is the measured power output at time t , and k is the 

forecast delay. 

)1()()|(ˆ tPtktP =+  

One issue with the use of the persistence model is the choice 
of the time delay between the observation and forecast.  For 
longer forecast time periods, it is reasonable to assume that the 
previous point can be measured and relayed with sufficient 
time allowed to make the forecast for the next period.  

However, as the forecast period decreases the importance of 
this market closure delay increases.  However, in this work we 
have assumed no delay in the forecast and thus every forecast 
is simply the output at the previous time point. It is important 
to note that the forecast errors have been standardized as a 
fraction of the wind plant installed capacity, creating forecast 
errors contained within the interval [-1,1]. 

C.  Mean Values versus Point Values in Data Aggregation 

One of the goals of the current study is to examine the 
changes in forecast errors of the same data set over a number 
of different timescales.  Since the basic wind power data is at 
the minute timescale, we need to aggregate the data set in 
order to examine forecast errors for five minute, fifteen 
minute, one hour and three hour time periods.  There are two 
basic ways that one could turn the minute data into data a 
longer timescale; either using point values and simply 
removing values not coincident with the desired time steps, or 
use the mean of the values for the previous time period.  As 
may be seen from Fig. 1 the point method produces Root 
Mean Squared Forecast Error (RMSFE) values that are 
substantially higher at all of the timescales under 
consideration for all of the individual wind plants as well as 
the aggregated output. 

 
Fig. 1.  Increase in RMSFE for point periods as a percentage of the RMSSFE 
found using the mean value period with the persistence model without a 
forecast delay.  These values were obtained for the four month winter period. 
 

Fig. 1 represents the values obtained using the persistence 
method with no time lag over a four month period starting at 
the beginning of the year.  For this reason we have used the 
averaged minutely values over the previous time period in the 
subsequent analysis.  For the sake of comparison the RMSFE 
values for each wind plant using the mean values at each time 
period length are shown in Fig. 2. 
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Fig. 2.  RMSFE found using the mean values for each wind plant during the 
summer period.  Note the log-log scale of the plot. 

 

D.  Statistical Distributions 

The probability density function is used to describe the 
range of values that a random variable can obtain, and the 
likelihood that a sample falls in a particular interval.  In this 
work the primary focus is on two particular distributions: the 
normal (or Gaussian) distribution and the Cauchy-Lorentz 
Distribution.  The beta distribution family, where the 
distribution can vary along the interval (0,1) based on the 
values of two shape parameters α and β, will also be discussed 
along with the Weibull distribution; which is a continuous 
distribution with two parameters relating to shape and scale, 
denoted by k and λ respectively.  Besides the standard 
deviation and mean, we will apply two other statistical 
measures to the characterization of the forecast error 
distributions.  Skewness is a measure of the asymmetry of the 
probability distribution.  This is demonstrated in Fig. 3 by the 
Weibull distribution that is slightly positively skewed.  
Skewness is the third standardized moment, as shown in (2). 
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where γ is the skewness, X is the random variable, σ is the 
standard deviation and μ is the mean. 

Kurtosis is a measure of the magnitude of the peak of the 
distribution, or conversely how fat-tailed the distribution is, 
and is the fourth standardized moment, defined in (3). 
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where κ is the kurtosis and ε is the normalized forecast error. 
 A distribution with a high kurtosis is known as leptokurtic 

and it describes a distribution where more of the variance is 
due to a lesser number of large deviations rather than the very 
frequent small deviations.  The Cauchy distribution in Fig. 3 

displays high kurtosis compared to the normal distribution, 
possessing a more pronounced peak, slimmer shoulders and 
longer tails.  The difference between the kurtosis of a sample 
distribution and that of the normal distribution is known as the 
excess kurtosis.  In the subsequent analysis the term kurtosis 
will be treated synonymously with excess kurtosis since we 
use the normal distribution as a baseline for the comparison of 
distributions. 

 
Fig. 3.  Illustration of the different probability distributions on the x-interval 
[0,1].  Blue is the normal distribution with mean = 0.5 and standard deviation 
= 0.2.  Red is the beta distribution with shape parameters α = β =5.  The 
Weibull distribution is shown in green with k = 5 and λ = 0.5. The Cauchy 
distribution is in black with xo = 0.5 and γ = 0.05. 

III.  RESULTS 

Having established the importance of wind power 
forecasting error distributions and described the relevant 
statistical background, we now characterize the distributions 
for the datasets under consideration.  In Sections III-A and III-
B we examine the forecast error distribution shapes and use a 
pair of graphical techniques to compare the resulting 
distributions to the normal distribution.  In Sections III-C and 
III-D we use a pair of numerical techniques to examine the 
forecast error distribution shapes.  After ruling out the normal 
distribution as a valid model for the sample distributions, 
Section III-E endeavors to identify a more accurate model 
distribution.  Finally, in Section III-F we apply the results of 
the new model to the problem of generating wind forecast 
error confidence intervals. 

A.  Histograms 

In order to examine the distributions of the persistence 
forecast errors, histograms of the data were first created and 
analyzed.  The number of bins used exceeded the number 
needed according to Scott’s rule [10] in all cases and a value 
of n = 300 was found to work well over all of the timescales.  
An examination of the sample histograms provided in Fig. 4 
and Fig. 5 show examples of leptokurtic distributions at two 
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different timescales.  The sample distributions have more 
pronounced peaks, steeper shoulders and fatter tails than the 
normal distributions generated using the sample means and 
standard deviations.  Distributions are shown from both 
summer and winter four-month time periods. 

 
Fig. 4.  Histogram of five minute persistence forecast error for wind plant #3 
during the four month winter period. γ = -2.14, κ = 151.25.  The blue line 
represents a normal distribution with the same mean and standard deviation.  
The black line is an approximate fit to the binned data. 

 
Fig. 5.  Histogram of one hour persistence forecast error for wind plant #8 
during the four month summer period. γ = -0.02, κ = 6.18.  The blue line 
represents a normal distribution with the same mean and standard deviation.  
The black line is an approximate fit to the binned data. 

B.  Normal Quantile-Quantile Plots 

The quantile-quantile (Q-Q) plot is a means by which two 
distributions can be graphically compared.  Though the 
histograms shown in the previous section seem to indicate that 
the forecast error distributions are not normal over the 
timescales considered, the use of normal Q-Q plots can 
provide additional assurance.  When the quantiles of the 
sampled quantity are compared with the quantiles of a normal 
distribution they should follow a linear pattern and 
approximately lie on the line y = x if the two distributions are 
similar. 

The normal Q-Q plot in Fig. 6 shows the one minute 
forecast error distributions for wind plant #1.  The non-normal 
nature of the distribution is immediately apparent from the 
non-linear nature of the quantile comparison, with 
significantly arched patterns suggesting a high degree of 
kurtosis, as confirmed by numerical calculation. 

 
Fig. 6.  Normal Quantile-Quantile plot for wind plant #1 – one minute 
persistence forecast error for the four month summer period. γ = -0.45, κ = 
1717.81. 
 

Fig. 7 shows a normal Q-Q plot of the one hour forecast 
error for wind plant #6. The plotted values are much more 
linear than those found in the previous plot, but still exhibit 
noticeable deviations.  The distribution is also leptokurtic, as 
evidenced by the kurtosis value calculated. 

 
Fig. 7.  Normal Quantile-Quantile plot for the wind plant #6 – one hour 
average persistence forecast error for the four month summer period. 
γ = -0.08, κ = 8.04. 
 

Finally, Fig. 8 is an example of a normal Q-Q plot where 
the distribution is close to normal.  The plotted points are very 
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close to linear and the small kurtosis value confirms the visual 
assessment. 

 
Fig. 8.  Normal Quantile-Quantile plot for the combined ERCOT data – three 
hour average persistence forecast error for the four month summer period. 
γ = 0.02, κ = 0.82. 

C.  Kurtosis of the Forecast Errors 

One of the more interesting findings to come from 
examining the kurtosis values for the distribution of 
persistence forecasting errors over different timescales is the 
trend of decreasing kurtosis with larger timescales.  As may be 
seen in Table I and Fig. 9, the kurtosis values have a strong 
decreasing trend with increasing timescale. 
 

TABLE I 
KURTOSIS VALUES FOR PERSISTENCE FORECAST ERROR WITH NO TIME LAG 

OVER A FOUR MONTH SUMMER PERIOD AT DIFFERENT TIME SCALES 

 
 1 Minute 5 Minute 15 Minute 1 Hour 3 Hour 

#1 1,717.89 328.43 163.59 39.50 25.07 
#2 210.06 62.61 34.09 8.24 3.42 
#3 46.61 42.17 29.05 9.33 2.34 
#4 122.11 51.94 30.63 7.61 2.23 
#5 595.13 69.88 31.87 9.30 2.65 
#6 900.03 137.24 34.84 8.04 2.16 
#7 79.91 27.79 19.69 5.16 1.72 
#8 50.72 51.31 28.08 6.18 1.13 
#9 119.07 37.23 18.41 6.23 1.99 

#10 328.18 81.80 38.93 5.14 1.39 
ERCOT 149.12 16.32 7.85 2.51 0.82 

 
It must be noted that the increasing timescale also 

corresponds to an increasing number of values used in the 
calculation of the time series values, due to the mean values 
used in the analysis.  This trend can be interpreted to be a 
result of the central limit theorem because as the timescale 
increases so do the number of factors that may act on the wind 
power output values.  This would also helps to explain why 
the aggregated ERCOT data’s kurtosis values are far lower 
than simply the mean of the values for all of the individual 
wind plants in the summer data.  However, the opposite effect 
is observed in the winter data, with the ERCOT forecast error 

distribution kurtosis values consistently larger than the mean 
values for the individual wind plants, as seen in the distinct 
purple line in Fig. 9. 

 
Fig. 9.  Kurtosis values for persistence forecast error distributions for the 
winter time period.  Note the log – log scale of the plot. 

D.  Skewness of the Forecast Errors 

In addition to the strength of the peak, the symmetry of the 
distributions is another very important aspect of the forecast 
error distribution characterization.  The skewness values of the 
forecast error distributions for the various wind plants and 
timescales are shown in Table II.  The trends in the data with 
respect to timescale are much weaker than in the kurtosis 
values; however, there is a weak trend toward more symmetric 
distributions with increasing time.  In general, most of the 
skewness values are relatively minor, suggesting that the 
distribution of errors is close to symmetric.  Similar to the 
kurtosis values for the summer period, the combined ERCOT 
data shows more Gaussian behavior than the individual wind 
plant mean skewness values alone would suggest. 
 

TABLE II 
SKEWNESS VALUES FOR PERSISTENCE FORECAST ERROR WITH NO TIME LAG 

OVER A FOUR MONTH SUMMER PERIOD AT DIFFERENT TIME SCALES 

 
 1 Minute 5 Minute 15 Minute 1 Hour 3 Hour 

#1 -0.44 -0.48 -0.11 0.35 1.13 
#2 -0.75 -0.08 0.94 0.63 0.44 
#3 0.00 -0.40 0.06 0.06 0.16 
#4 -0.40 1.56 1.48 0.56 0.18 
#5 4.21 1.67 1.03 0.50 0.00 
#6 -4.26 -0.92 0.06 -0.08 -0.12 
#7 -0.15 0.48 0.61 0.13 -0.03 
#8 0.14 -0.06 -0.48 -0.02 0.02 
#9 -0.25 -0.20 0.07 -0.08 -0.17 
#10 -1.07 0.10 0.26 -0.24 0.00 

ERCOT 0.25 0.01 -0.07 0.05 0.02 

 

E.  Distribution Fitting 

Having established that the normal distribution is a poor fit 
for the persistence forecast error distributions at the timescales 
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under study, the next step in generating better forecasting 
intervals is to find a model that can more accurately represent 
the observed distributions.  To accomplish this goal we have 
chosen three different model distributions that resemble those 
observed in the data.  The Beta [7] and Weibull [6] 
distributions have been previously suggested in the literature, 
however, the Cauchy distribution appeared to be the most 
natural fit to the authors.  In order to accommodate the fitting 
of the Beta and Weibull distributions, which are supported 
only on the intervals [0,1] and [0,∞) respectively, the forecast 
errors were converted from the [-1,1] interval to lie on the 
(0,1) interval.  The distributions models were fit to the 
observed data using a maximum-likelihood optimization 
routine fitdist from the MASS package in the R statistical 
software environment [11]. 

 
Fig. 10.  Illustration of the fitted probability distributions on the x-interval 
[0,1] for wind plant #8  using hour average data for the winter time period. 
Blue is the beta distribution with shape parameters α = 25.2414 and β = 
25.2692.   The Weibull distribution is shown in green with k = 7.1940 and λ = 
0.5285. The Cauchy distribution is in red with xo = 0.4996 and γ = 0.0215. 

 
The log-likelihood values for the fitted distributions indicate 

that the Cauchy distribution is a better fit for the forecast error 
distributions for a majority of the wind plants at all timescales.  
The Cauchy distribution fit was better than the Beta and 
Weibull distributions in 89% and 95% of the 55 cases, 
respectively.  One such example is shown in Fig. 10, where 
the model distributions are compared to the histogram of the 
forecast error distribution for wind plant #8 at the hour 
timescale.  In this case the Cauchy distribution represents a 
20.24 % and 16.12% improvement over the Weibull and Beta 
distributions, respectively, in terms of the optimized log-
likelihood values.  For the ERCOT case at the 15 minute 
timescale the Cauchy distribution represents a 54.39 % and 
36.19% improvement over the Weibull and Beta distributions, 
respectively, in terms of the optimized log-likelihood values. 

 
Fig. 11.  Illustration of the fitted probability distributions on the x-interval 
[0,1] for combined ERCOT data  using 15 minute average data for the winter 
time period. Blue is the beta distribution with shape parameters α = 82.0833 
and β = 82.1398.   The Weibull distribution is shown in green with k = 9.4390 
and λ = 0.5160. The Cauchy distribution is in red with xo = 0.4999 and γ = 
0.0069. 

F.  Forecast Probability Intervals 

Thus far we have characterized the distribution of forecast 
errors for the persistence model over a number of timescales.  
We have also identified a distribution model that can represent 
the distribution of errors more accurately than the Gaussian 
distribution, the beta distribution and the Weibull distribution.  
But what are the practical implications of these findings on 
wind forecasting? 

Fig. 12 shows the ERCOT data power forecast at 15 minute 
intervals along with 90% and 95% confidence intervals 
created using both a Cauchy distribution fit to the data and a 
normal distribution based on the data’s mean and standard 
deviation values.  The confidence intervals were created 
through 10,000 draws from each distribution.  It is interesting 
to see that the Cauchy distribution produces a tighter interval 
for the 90% confidence values than the normal distribution.  
However, while the difference between the 90% and 95% 
confidence intervals for the normal distribution is relatively 
minor, there is a large difference for the Cauchy distribution. 
In fact, the 95% confidence interval for the Cauchy 
distribution is broader than for the normal distribution.  This 
interesting result can be explained by examining the shapes of 
the respective distributions.  While the Cauchy distribution 
produces more instances close to the mean than the normal 
distribution, it also has fat tails that indicate large deviations at 
the ends of the distribution, leading to narrow bounds for 
lower percentage confidence intervals and very wide bounds 
at high percentage confidence intervals. For the ERCOT 15 
minute series shown in Figure 12, the 90% confidence interval 
band for the Cauchy distribution is 18.62% of total capacity, 
while for the normal distribution it is 25.32% of total capacity.  
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The 95% confidence interval spans 30.42% of the capacity for 
the normal distribution and 38.35% for the Cauchy 
distribution. 

 
Fig.12.  Plot of the wind power forecasts and associated forecast confidence 
intervals for the combined ERCOT output during a section of the winter 
period.  The black line represents the power forecast.  The normal distribution 
confidence intervals at 90% and 95% are shown in light blue and blue 
respectively.  The Cauchy distribution confidence intervals at 90% and 95% 
are shown in red and dark red. 

 
It is a slightly different story for the wind plant #5 hour 

series shown in Fig. 13, the result of a more platykurtic 
Cauchy distribution.  The 90% confidence interval for the 
Cauchy distribution is nearly identical to the 95% confidence 
interval for the normal distribution.  Once again the difference 
between the 90% and 95% confidence intervals for the Cauchy 
distribution is much wider than for the normal distribution due 
to the heavy tails.  The Cauchy distribution 90% confidence 
interval is 36.86% of total capacity, while for the normal 
distribution it is 30.56% of total capacity.  The 95% 
confidence interval for the normal distribution spans 36.39% 
of the capacity and 76.36% for the Cauchy distribution. 

The results indicate that the normal distribution can 
overestimate the range of values for lower percentage 
confidence intervals, while underestimating the range for 
higher percentage confidence intervals.  This difference can 
have important consequences in the determination of operating 
reserve levels necessary in systems with high wind 
penetration.  More accurate modeling of the true wind power 
output confidence intervals with a Cauchy, or other, 
distribution can lead to economic savings through more 
efficient operating reserve allotment and operation.  The 
confidence intervals chosen during operations may differ both 
by the balancing authority in question and the time of day.  
The current state of the system will guide the choice of 
confidence intervals and knowing the large marginal 
differences in the Cauchy distribution for confidence intervals 
above 90% can help inform the decision making process to 
ensure economic and reliable system operation. 

 
Fig. 13.  Plot of the wind power forecasts and associated forecast confidence 
intervals for wind plant #5 output during a section of the winter period.  The 
black line represents the power forecast.  The normal distribution confidence 
intervals at 90% and 95% are shown in light blue and blue respectively.  The 
Cauchy distribution confidence intervals at 90% and 95% are shown in red 
and dark red. 

IV.  CONCLUSION 

In this work we have examined the shape of wind power 
forecast error distributions through a statistical analysis.  The 
distributions were found to differ greatly from the commonly 
assumed normal distribution, and the kurtosis of the 
distribution was found to vary with timescale.  The Cauchy 
distribution has been proposed as a means of representing the 
forecast error distributions and was compared with some of 
the other distributions used in the literature.  Finally, the effect 
that the new forecast error distribution model has on the 
calculation of wind power forecast confidence intervals was 
illustrated. 

The current work suggests a number of directions for 
further examination. The analysis can be expanded to include 
more sources of wind power output data, as well as data at 
even smaller time scales.  One possible caveat to the current 
work is that the wind power data sets are taken from the bus 
level and so they may include instances of wind curtailment 
that may skew the ends of the error distributions. The 
examination of the forecast error distributions at differing 
geographic scales would also be an interesting extension of the 
current work.  The effect of forecasting lag within the 
persistence model is another area for further study.  The 
examination of forecast error distributions for more 
sophisticated forecasting models, such as ARMA and ARIMA 
models, is also planned. 

The current work also has applicability beyond the field of 
wind forecasting.  The analysis found in this study could be 
used in the development of methods for the scaling down of 
wind power data.  The quality of wind power output data is an 
important concern in wind integration studies.  In cases where 
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the wind data available is at a higher timescale than desired for 
the study, conditioning of the data is necessary in order to 
obtain data at the correct time scale.  The findings from using 
the persistence model are especially relevant in this case 
because it represents what can be expected in the next time 
frame without any statistical transformation.  The use of the 
Cauchy distribution to create data for the smaller scale time 
points in a scaling down effort could lead to the use of more 
representative wind power data in these studies. 
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