

### Investigation of Oil Conditioning, Real-time Monitoring and Oil Sample Analysis for Wind Turbine Gearboxes

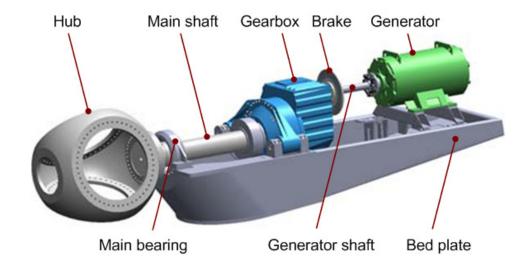


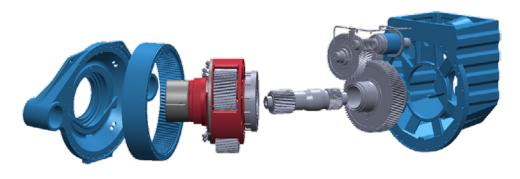
Shawn Sheng Senior Engineer, NREL/NWTC

AWEA Project Performance and Reliability Workshop January 12-13, 2011 San Diego, California

NREL/PR-5000-50301

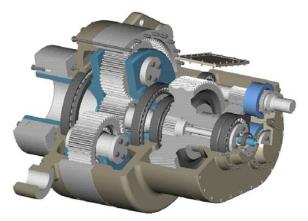
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


### Outline


- Introduction
  - Condition monitoring (CM) for wind turbines
  - Wind turbine gearbox
  - Oil conditioning and real-time monitoring
  - Oil sample analysis
- Case Study
  - Dynamometer test setup
  - Results
- Observations and Recommendations for Practice



## **CM for Wind Turbines**


- Drivetrain
  - Main bearing
  - Gearbox
  - Generator
- Typical CM Techniques
  - Acoustic Emission or Vibration
  - Oil
- Rationale
  - Different failure modes require different monitoring techniques
  - Examples: subsurface cracks in gear and bearing components, water in lubrication oil



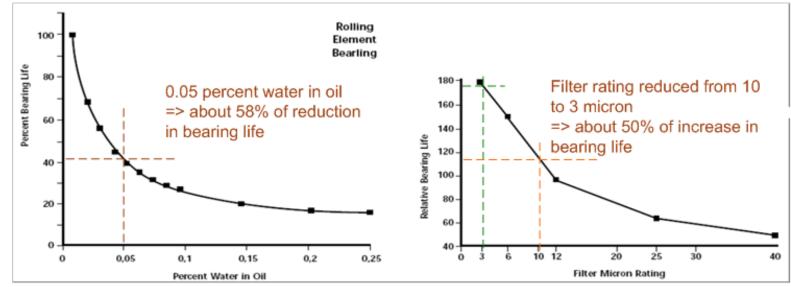


### Wind Turbine Gearbox

- Oil-based techniques
  - Gearbox only
- Main components
  - Gears
  - Bearings
  - Oil
- Some failure symptoms<sup>[1-3]</sup>



- Oil contamination: dirt, wear debris, water, wrong oil, etc.
- Oil degradation: additives depletion, oxidation, base stock breakdown, etc.
- Oil and lubrication system performance parameter change: temperature, pressure, etc.
- Elevated vibrations: misalignment, imbalance, subsurface and surface cracks, etc.


#### **Real-time Oil Condition Monitoring**

#### Objectives

- Monitor lubricant contamination and degradation
- Detect gear and bearing components deterioration
- Lubrication system functionality monitoring
- Typical Practices
  - Particle counts: total counts, ferrous and nonferrous in different size bins
  - Oil condition: acidic level, water content, etc.
  - Temperature and pressure (normally part of turbine SCADA system)

#### **Oil Conditioning**

- Objective
  - Keep oil dry and clean<sup>[4]</sup>



- Typical Practices<sup>[1,2,5]</sup>
  - Pre-filter: remove initial contaminations in new oil
  - Inline filter: remove large particles normally down to 10  $\mu m$
  - Offline filter: remove fine particles normally down to 3  $\mu m$
  - Breather for moisture and contamination prevention
  - Heat exchanger for lubricant temperature control

### **Oil Sample Analysis**

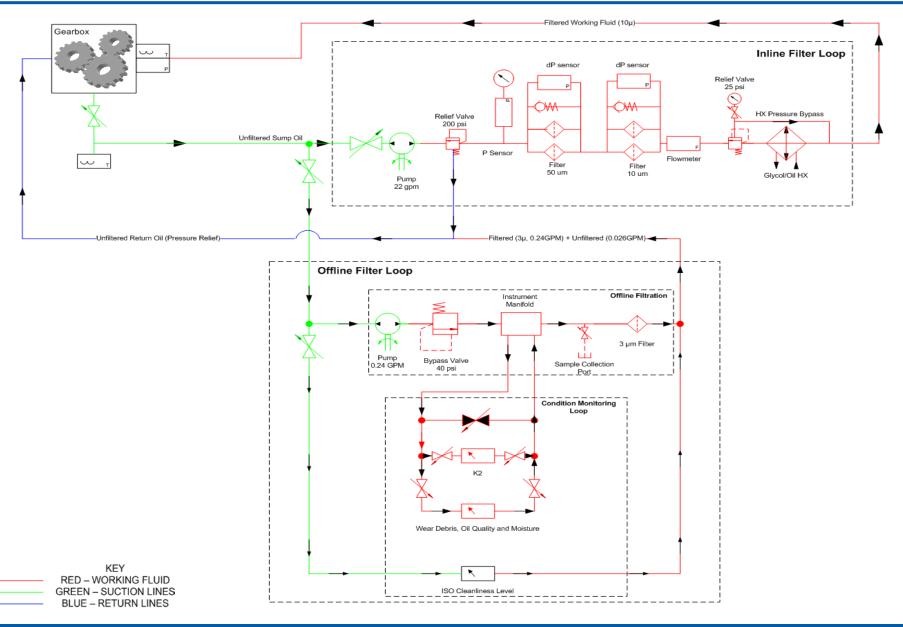
#### Objectives

- Monitor parameters not covered by real-time instruments
- Elemental analysis to pinpoint failed components
- Assist root cause analysis
- Evaluate the functionality of conditioning devices
- Typical Parameters<sup>[6]</sup>
  - Particle counts
  - Water content
  - Total acid number
  - Viscosity
  - Particle element identification

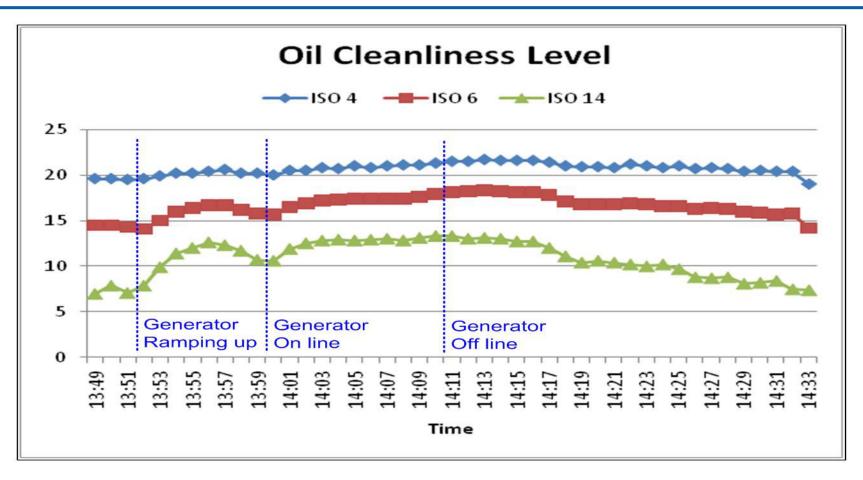
### **Dynamometer Test Setup**

#### Oil Conditioning

- Pre-filter new oil with a 3 µm filter
- Inline filter loop two stage filtration: 50  $\mu m$  and 10  $\mu m$
- Offline filter loop continuous filtration: 3 µm
- Breather
- Heat exchanger

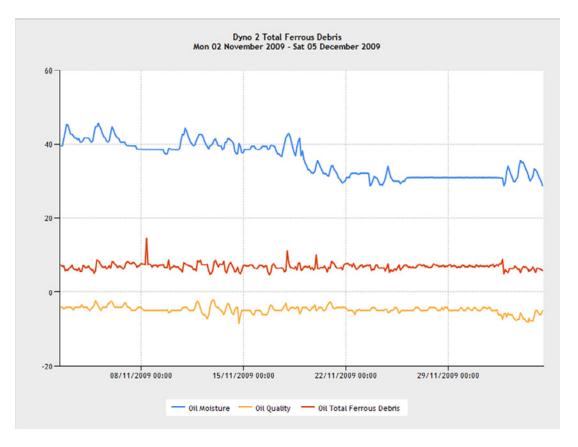

#### Real-time Monitoring

- Inline filter loop: particle counts, greater than 300  $\mu\text{m},$  sensor K1 in later slides
- Offline filter loop
  - 。 ISO 4406 (1999) cleanliness level
  - Particle counts: greater than 45/50 µm for ferrous and 135/150 µm for nonferrous, each type divided into five bins, sensors K2 and K3 in later slides
  - Oil condition (total ferrous debris, temperature and relative moisture, quality: reflect changes caused by water and acid levels)


#### Periodic oil sample analysis

Beyond typical practices mentioned earlier

### **Test Setup: Lubrication Diagram**

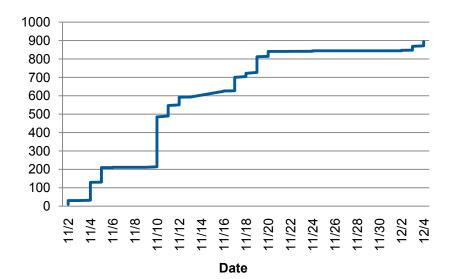


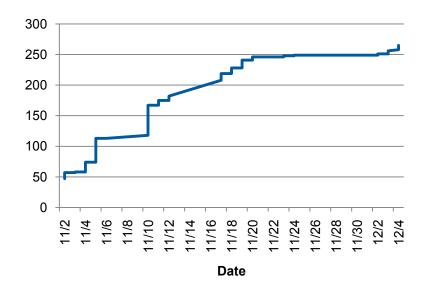

#### **Results: Oil Cleanliness Level**

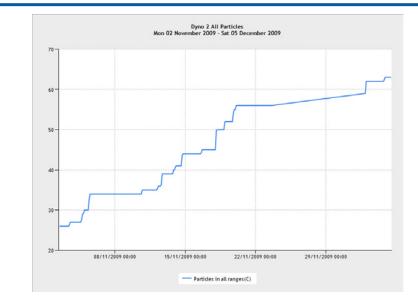


- Increases when generator speed ramps up
- Decreases during generator shutdown and the use of a continuously functional lubricant filtration system
- Potentially useful for controlling the run-in of gearboxes

### **Results: Oil Condition**

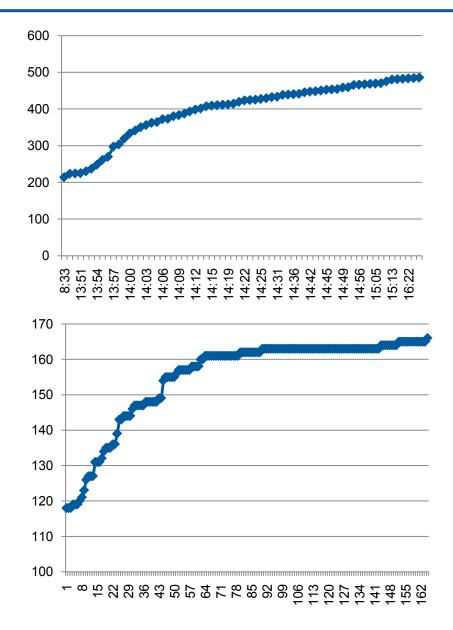


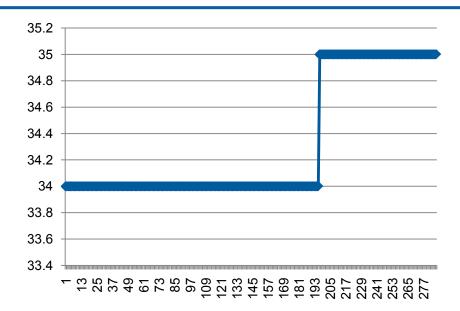


#### Units


- Moisture %
- Quality customized unit, 0 (new oil) to 100 (worst quality)
- Total ferrous debris ppm

- Results did not show substantial changes
  - Might be due to the short operational time and mild operational conditions

### **Results: Particle Counts**

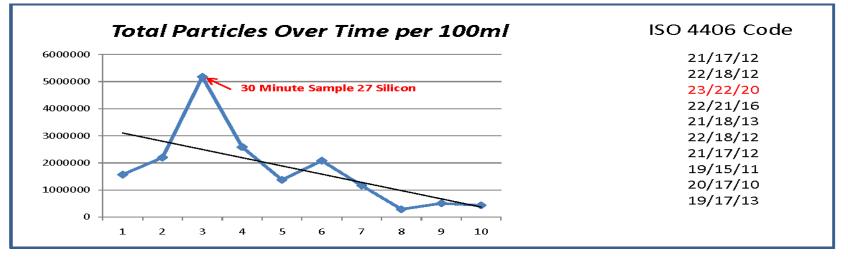





- Throughout the test period
- K1 (left top), K2 (left bottom) and K3 (right top)
- Trends are similar, though particle counts vary

#### **Results: Particle Counts (Cont.)**





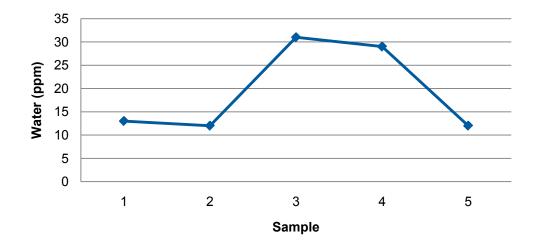

- Throughout the 25% rated load test
- K1 (left top), K2 (left bottom) and K3 (right top)
- Horizontal axis corresponds to time
- Results affected by sensor locations

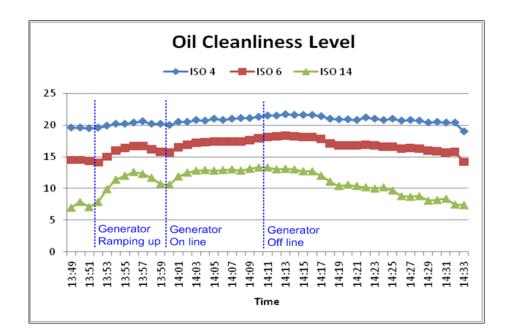
### **Results: Oil Sample Analysis**

#### Particle counts: important to identify particle types<sup>[7]</sup>



#### Element identification


|                |       |      |      |      |      | _    |      |
|----------------|-------|------|------|------|------|------|------|
| Metals         |       |      |      |      |      |      |      |
| Iron ppm       | 2     | <1   | 1    | 1    | 1    | 1    | 1    |
| Aluminum ppm   | 4     | <1   | <1   | <1   | <1   | <1   | <1   |
| Chromium ppm   | 4     | <1   | <1   | <1   | <1   | <1   | <1   |
| Copper ppm     | 2     | <1   | 1    | 1    | 1    | 1    | 1    |
| Lead ppm       | 1     | <1   | 1    | 1    | 1    | 1    | 1    |
| Tin ppm        | 4     | <1   | <1   | <1   | <1   | <1   | <1   |
| Nickel ppm     | 4     | <1   | <1   | <1   | <1   | <1   | <1   |
| Silver ppm     | 4.5   | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| Silicon ppm    | 20    | <1   | 3    | 4    | 3    | 3    | 5    |
| Sodium ppm     |       | <2   | <2   | <2   | <2   | <2   | <2   |
| Boron ppm      |       | <1   | 2    | 2    | 1    | 1    | 1    |
| Zinc ppm       |       | 1    | 21   | 24   | 24   | 24   | 29   |
| Phosphorus ppm | 1 1   | 4    | 31   | 38   | 31   | 31   | 54   |
| Calcium ppm    |       | 11   | 24   | 27   | 23   | 24   | 24   |
| Magnesium ppm  |       | <1   | <1   | <1   | 1    | <1   | <1   |
| Barium ppm     |       | 3    | 8    | 9    | 6    | 7    | 7    |
| Molybdenum ppm |       | <1   | 11   | 12   | 11   | 11   | 12   |
| Potassium ppm  |       | <3   | <3   | <3   | <3   | <3   | <3   |
|                | · / · |      |      |      |      | -    |      |


Reference Limits

#### Analysis Results

#### **Performance Evaluation: Oil Conditioning**

- Water:
  - Reference oil: 52
    ppm
  - All samples: less than 32 ppm
- ISO Cleanliness Level
  - Dropped after the test at one loading level is completed with the filtration system left running
- Breather and filter are doing their jobs





#### **Observations**

- ISO 4406 cleanliness level measurement appears useful for controlling run-in of wind turbine gearboxes
- Particle count appears effective for monitoring machine and oil condition, but is affected by sensor mounting locations
- If location is appropriate, similar trends in particle counts between the offline filter loop and the inline filter loop can be obtained
- Periodic oil sample analysis potentially helps pinpoint failure components and root causes
- Particle counts obtained through oil sample analysis need attention on identifying particle types
- Oil conditioning equipment is useful to keep oil dry and clean

### **Recommendations for Practice**

- Combine oil with vibration or acoustic emission-based techniques
- Take care of not only symptoms, but also root causes
- Oil Conditioning:
  - Pre-filter, inline and offline filters, breather and heat exchanger
- Real-time Monitoring
  - At minimum, monitor particle counts in either inline or offline filter loop
- Oil sample analysis
  - Regular sampling to monitor key parameters: particle counts, viscosity, water, total acid number
  - In-depth analysis when real time instruments indicate abnormal scenarios: elemental spectroscopy

#### References

- 1. M. Graf, "Wind Turbine Gearbox Lubrication: Performance, Selection and Cleanliness", 2009 Wind Turbine Condition Monitoring Workshop, Oct. 8-9, 2009, Broomfield, CO.
- 2. J. Stover, "The Roadmap to Effective Contamination Control in Wind Turbines", 2009 Wind Turbine Condition Monitoring Workshop, Oct. 8-9, 2009, Broomfield, CO.
- 3. A. Toms, "Machinery Failure and Maintenance Concepts", presented at the GapTOPS CBM training course, Nov. 16-18, 2010, Pensacola, FL.
- 4. E. Ioannides, E. Beghini, G. Bergling, J. Goodall Wuttkowski and B. Jacobson, "Cleanliness and its importance to bearing performance", Lubrication Engineering, 49(9), pp. 657-663.
- 5. R. Errichello and J. Muller, "Oil Cleanliness in Wind Turbine Gearboxes", Machinery Lubrication, July/August, 2002, pp. 34-40.
- 6. D. Troyer and J. Fitch, Oil Analysis Basics, Noria Corporation, Tulsa, OK, 2001.
- 7. W. Herguth, "Gearbox Reliability Collaborative Dynamometer Test Results", NREL GRC All Member Meeting, Feb. 2-3, 2010, Golden, CO.

# Thank you!

