

General Building Assessment Procedure

- 1. Collect architectural and construction drawings to determine the layout of the internal zones and construction of all exterior surfaces; walls, floors, roof, ceiling, etc.
- 2. Sketch out the current building envelope layout and internal zone layout.
- 3. Walk around the building and look for noticeable infiltration.
 - Record temperatures in different locations and note the size of obvious infiltration points.
- 4. During the site assessment, record information on the following:
 - ➢ Roof:
 - Roof construction and insulation thickness
 - Roof age and warranty
 - Roof condition including signs of leaks,
 - membrane holes, or damaged insulation
 - ➤ Walls:
 - Wall construction and insulation thickness
 - Wall condition and noticeable infiltration points that can be sealed
 - ➢ Windows:
 - Window to wall ratio on each façade
 - Window size and dimensions
 - Window framing and type of thermal break
 - Window type (double pained, single pained, etc.)
 - Record visible transmittance
 - Solar heat gain coefficient
 - Tinting and tint color
 - · Center of glass U value
 - General window condition
 - Window operation
 - External window shades/overhangs
 - Interior window blinds
 - Floors and ceilings:
 - Floor construction
 - Wall construction

- 5. Light an incense stick and run it slowly along door jams, window frames, and vents to determine the level of air flow. Where there seem to be drafts or a lot of air movement, record this observation on the building sketch.
- 6. Use a thermal imaging camera to take pictures of building envelop elements and identify locations with insufficient insulation or excess heat loss or gain.
- 7. Compile a summary of the observations made, documenting all areas of concern with a digital camera.

Site Assessment Tools

- 1. Use a camera to document areas of concern and record window to wall ratios.
- 2. Use a thermometer or thermal imaging camera to record temperatures.
- 3. Use a flashlight and ladder for accessing roof insulation.
- 4. Use a tape measure to determine the amount of insulation that's been installed.
- 5. Use an incense stick to determine the direction of air flow.

Building Toolkit							
Tape measure or ruler	Incense stick and lighter						
Flashlight	Digital camera						
Ladder	Thermometer						

Source: NREL

		ii Energy a		ecommendations* for Medium Office—Building Envelope						
Item	Component		Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5	Climate Zone 6	Climate Zone 7	Climate Zone 8
			(warmest)							(coolest)
Roof	Insulation entirely above deck	R-value ft²·F·h/Btu	R-20 c.i.	R-25 c.i.	R-25 c.i.	R-30 c.i.	R-30 c.i.	R-30 c.i.	R-35 c.i.	R-35 c.i.
		R-value K∙m²/W	R-3.5 c.i.	R-4.4 c.i.	R-4.4 c.i.	5.3 c.i.	5.3 c.i.	5.3 c.i.	6.2 c.i.	6.2 c.i.
	Solar reflectance		0.69	0.69	0.69	NR	NR	NR	NR	NR
	Emittance		0.87	0.87	0.87	NR	NR	NR	NR	NR
Walls- exterior	Steel framed	R-value ft ² ·F·h/Btu	R-13.0 + R-7.5 c.i.	R-13.0 + R-7.5 c.i.	R-13.0 + R-7.5 c.i.	R-13.0 + R-7.5 c.i.	R-13.0 + R-15.6 c.i.	R-13.0 + R-18.8 c.i.	R-13.0 + R-18.8 c.i.	R-13.0 + R-18.8 c.i.
		R-value K∙m²/W	R-2.3 + R-1.3 c.i.	R-2.3 + R-1.3 c.i.	R-2.3 + R-1.3 c.i.	R-2.3 + R-1.3 c.i.	R-2.3 + R-2.7 c.i.	R-2.3 + R-3.3 c.i.	R-2.3 + R-3.3 c.i.	R-2.3 + R-3.3 c.i.
Slabs	Heated	R-value ft ² ·F·h/Btu	NR	NR	NR	R-10.0 for 24 in.	R-10.0 for 24 in.	R-15.0 for 24 in.	R-15.0 for 24 in.	R-20.0 for 24 in.
		R-value K∙m²/W	NR	NR	NR	R-10.0 for 24 in.	R-10.0 for 24 in.	R-15.0 for 24 in.	R-15.0 for 24 in.	R-20.0 for 24 in.
Vertical glazing	Thermal transmittance	U-factor Btu/h·ft ² ·F	0.51	0.51	0.51	0.44	0.44	0.42	0.31	0.31
		U-factor W/m²⋅K	2.89	2.89	2.89	2.5	2.5	2.38	1.76	1.76
	Solar heat gain coeffi- cient (SHGC)		0.25	0.25	0.25	0.26	0.26	0.35	0.40	0.40
	Exterior sun control (south only)		PF>0.5	PF>0.5	PF>0.5	PF>0.5	PF>0.5	NR	NR	NR

Table 1. Final Energy Savings Recommendations* for Medium Office—Building Envelope¹

Source: Pacific Northwest National Laboratory

* Implementation of these energy measures could allow a new midsize office building to achieve 50% energy savings relative to a building that just meets ANSI/ASHRAE/IESNA Standard 90.1-2004. Insulation requirements (R-value) increase and the corresponding thermal transmittance (U-factor) decreases as the climate gets colder. Recommendations are based on steel stud construction with curtain wall style windows.

¹ Thornton, B.; Wang, W.; Lane, M.; Rosenburg, M.; Liu, B. *Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings*. PNNL-18774. Prepared by Pacific Northwest National Laboratory for U.S. Dept. of Energy. www.pnl.gov/main/publications/external/technical_reports/PNNL-19004.pdf. September 2009.

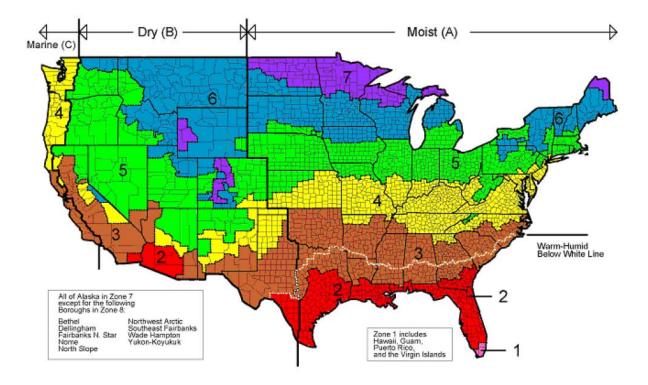


Figure 1. DOE-developed climate zone map.² Illustration from Pacific Northwest National Laboratory

The sixteen cities representing the climate zones are:

1A: Miami, Florida (hot, humid)

- 2A: Houston, Texas (hot, humid)
- 2B: Phoenix, Arizona (hot, dry)
- 3A: Atlanta, Georgia (hot, humid)
- 3B-CA: Los Angeles, California (hot, dry)
- 3B-other: Las Vegas, Nevada (hot, dry)
- 3C: San Francisco, California (marine)
- 4A: Baltimore, Maryland (mild, humid)
- 4B: Albuquerque, New Mexico (mild, dry)
- 4C: Seattle, Washington (marine)
 5A: Chicago, Illinois (cold, humid)
 5B: Denver, Colorado (cold, dry)
 6A: Minneapolis, Minnesota (cold, humid)
 6B: Helena, Montana (cold, dry)
 7: Duluth, Minnesota (very cold)
 8: Fairbanks, Alaska (extreme cold)

² Thornton, B.; Wang, W.; Lane, M.; Rosenburg, M.; Liu, B. *Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings*. PNNL-18774. Prepared by Pacific Northwest National Laboratory for U.S. Dept. of Energy. www.pnl.gov/main/publications/external/technical_reports/PNNL-19004.pdf. September 2009.

National Renewable Energy Laboratory

1617 Cole Boulevard, Golden, Colorado 80401-3305 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

NREL/FS-7A20-50115 • June 2011