

Business Case for CNG in Municipal Fleets

Clean Cities Webinar

Caley Johnson Fuel/Vehicle Market Analyst NREL

July 27, 2010

NREL/PR-7A2-48981

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Agenda

- Why municipal fleets?
- Assessing investment profitability
- VICE model
- Base-case scenario
- Pressing questions for fleet owners

Why municipal fleets?

- Transit buses, refuse trucks, and school buses
- Circular routes lead to CNG station!
- Municipal governments value some CNG attributes that many businesses don't
 - Long-term cost-effectiveness (instead of just short-term)
 - Consistent operating costs
 - Increased energy and climate security
 - Reduced local air and noise pollution
- Future report to cover delivery trucks and taxi cabs

Assessing project profitability

- Look at discounted cash-flow of initial investment and future payback/savings
- Discount expenses and savings incurred in the future because money is worth more now than later (because you can invest it now)
- Discount rate is set at what you could make from alternative investments at similar risk

Discount Rate	6%										
Year	0	1	2	3	4	5	6	7	8	9	10
Annual Cash											
Flow	-\$1,000,000	\$200,000	\$200,000	\$200,000	\$200,000	\$200,000	\$200,000	\$200,000	\$200,000	\$200,000	\$200,000
Discount Factor	1.00	0.94	0.89	0.84	0.79	0.75	0.70	0.67	0.63	0.59	0.56
Discounted Cash Flow	-\$1,000,000	\$ 188,679	\$ 177,999	\$ 167,924	\$ 158,419	\$ 149,452	\$ 140,992	\$ 133,011	\$ 125,482	\$ 118,380	\$ 111,679
Cumulative Cash		, ,	. ,	. ,	. ,	, ,	, ,	, ,	, ,	. ,	, ,
Flow	-\$1,000,000	-\$811,321	- \$633,321	-\$465,398	-\$306,979	-\$157,527	-\$16,535	\$116,476	\$241,959	\$360,338	\$472,017
NPV	\$ 472,017	note: npv v	would be \$1	1,000,000 if	not discoun	ted					

Assessing project profitability 2

- Most common metrics are payback period, net present value, or percent return on investment (ROI)
- ROI= discount rate when NPV=0

Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model

- Contrasts the cash flow for CNG infrastructure, vehicles, and fuel with that of a diesel fleet
- Determines discounted payback period, NPV, and ROI
- Assesses finances for transit, refuse, school fleets, and mixes thereof
- Discount rate for municipal governments is assumed to be 6% because that is what municipal bonds cost them
- Excel-based and I can send you a copy

VICE input/output screen shot

С	D		E	F	G	Н	- I	J	K	L	М	N	0	P	Q	R	S	T
Cell Name	Value	Unit			1	2	3	4	5	6	1	7 8	9	10	11	12	13	14
					Scenario	Fleet Type	Avg. VMT	FE CNG (IIIpDGE)	FE Diesel	Efficiency Loss	Incrementa Cost	Realized Fed Veh Incentive	Average Vehicle Life	Monthly CNG Use (DGE)	Station Cost	Monthly Maintenance Costs	Monthly Electricity Costs	Hosslers or Attendants Needed
Fleet_Inputs	1	1: Ti	ransit B	uses														
					1	Transit Buses	35,286	3.02	3.27	7.6%	\$ 50,502	\$ 32,000	15	97,288	\$ 2,981,385	\$ 17,114	\$ 15,814	0
					2	School Buses	12,000	6.13	7.00	12.5%	\$ 31,376	\$ 25,101	15	16,327	\$ 1,328,252	\$ 9,007	\$ 2,323	0
					3	Trash Trucks	25,000	2.51	2.80	10.5%	\$ 30,295	\$ 24,236	12	83,134	\$ 2,282,750	\$ 15,909	\$ 11,395	0
					4	1/2 Transit, 1/2 School	23,643	4.57	5.14	10.0%	\$ 40,939	\$ 28,550	15	43,078	\$ 1,802,527	\$ 12,012	\$ 6,040	0
					5	1/2 Transit, 1/2 Trash	30,143	2.76	3.04	9.0%	\$ 40,399	\$ 28,118	14	90,872	\$ 2,375,523	\$ 16,579	\$ 14,861	0
					0	1/2 School, 1/2 Trash	10,500	4.32	4.90	11.5%	3 30,030 C 27,201	\$ 24,000 c 27,112	14	35,724	\$ 1,714,307	\$ 11,210 ¢ 12,011	\$ 5,029 c 7.010	0
							24,055	J.00	4.30	10.2 /0	0 37,331	Q 21,112	14	51,051	a 1,303,730	9 12,311	φ 1,21J	0
No Vehicles		100 Vehi	icles															
Tax Incentive		80% % of	flnc (80%														
Realized_Incentive	\$ 32,	000 \$	-		Scenario	Fleet Type	NPV	Payback Period										
Inc_Cost	\$ 18,	502 \$																
CNG_Maint_Costs	\$ 0	.52 \$/mi	ile	\$ 0.52	1	1: Transit Buses	\$ 16,309,283	3.6										
CNG_Price	\$ 1	.18 \$/D0	GE	\$ 1.18	2	2: School Buses	\$ 743,227	11.5										
CNG_Inflation	1	<mark>.6%</mark> % p	er year	1.6%	3	3: Trash Trucks	\$ 11,033,736	2.6										
Excise_Tax_Credit	\$ 0	.55 \$/D0	GE	\$ 0.55	4	4: 1/2 Transit, 1/2 School	\$ 5,458,700	5.6										
Monthly_CNG_Use	97,	288 DGE	E/month	1	5	5: 1/2 Transit, 1/2 Trash	\$ 14,356,471	2.9										
Diesel_Maint	\$ 0	<mark>.52</mark> \$/mi	ile	\$ 0.52	6	6: 1/2 School, 1/2 Trash	\$ 4,034,214	5.4]						
Diesel_Price	\$ 2	<mark>56</mark> \$/ga	illon	\$2.56	7	7: 1/3 Each	\$ 6,769,920	4.4										
Diesel_Inflation	5	<mark>.6%</mark> %/y	ear	5.6%														
Diesel_tax_exempt	\$ 0	<mark>.38</mark> \$ pe	er gallo	\$ 0.38														
Monthly_diesel_used	89,	924 gallo	ons															
ROR		<mark>6%</mark> %		6%														
GGE_DGE_Conv	0	.904 DGE	Es per	0.904														
CNG_Station_Salv		2 <mark>0%</mark> % of	f origin	20%														
Garage_Cost	\$	-		Y=(No_Ve	hicles*375	0)+40000												
Hossler_Cost	\$ 4,	167		\$ 4,167														

Base Case- Fleet Parameters

- Base case is an average or common value
- Allows a benchmark from where we can test the effect of changing one parameter.

Scen-	Elect Type	Avg.	FE Diesel	FE CNG	Incremental	Vehicle Life	
ario	Fleet Type	VMT	(mpg)	(mpDGE)	Cost		
1	Transit Buses	35,286	3.27	3.02	\$50,502	15	
2	School Buses	12,000	7.00	6.13	\$31,376	15	
3	Refuse Trucks	25,000	2.80	2.51	\$30,295	12	
4	1/2 Transit, 1/2 School	23,643	5.14	4.57	\$40,939	15	
5	1/2 Transit, 1/2 Refuse	30,143	3.04	2.76	\$40,399	14	
6	1/2 School, 1/2 Refuse	18,500	4.90	4.32	\$30,836	14	
7	1/3 Each	24,095	4.36	3.88	\$37,391	14	

Seven modeled fleets and their parameters

Numerous data sources

- Most published, a few from interviews
- Tried to get multiple sources and take average
- Mixed fleets are simply averaged

Base Case- Station Parameters

- Equations developed from Rob Adams' (Marathon Technical Services) cost calculator
- Replicates buffered fast-fill station
 - Applicable to time-fill scenarios because compression (not storage) is the bulk of the cost
- Fleets determine refueling window and expected throughput

Base Case- Fuel Costs

- Savings from fuel costs are what pays back the investment in a station and vehicles
- Per-DGE saving increase further into the future

Profitability of Base Case

Minimum Number of Vehicles to Have a Positive NPV or 6% ROR

Type of Vehicle	# of Vehicles			
Transit Buses	11			
School Buses	68			
Refuse Trucks	14			
1/2 Transit, 1/2 School	26			
1/2 Transit, 1/2 Refuse	12			
1/2 School, 1/2 Refuse	32			
1/3 Each	22			

With the base case established, we can see what effect specific changes have on project profitability.

Most important question is wrapped up into all answers:

• How many vehicles do I need to make the project profitable?

Three question categories:

- Variations in fuel expenditures
- Changes in Upfront Costs
- Changes in Operating Costs

How many miles per year do I need to drive my vehicles to break even?

What if diesel prices change?

Great question, given the volatility of diesel prices

What happens as my vehicle efficiency changes?

Not much, except for in school buses

What if I don't get the tax incentives?

- Some of the tax incentives are under debate in Congress
- Tax incentives need to be passed along to municipal governments—an uncertain proposition

Payback Period (Years) with Various Tax Credits Missing

Fleet (100	All	No Fuel	No Vehicle	No Station	No
Vehicles)	Credits	Credit	Credit	Credit	Credits
Transit Buses	3.6	5.9	5.5	3.6	9.1
School Buses	11.5	≥15.0	≥15.0	11.8	≥15.0
Refuse Trucks	2.6	4.6	4.8	2.7	7.8

- Station tax credit (\$50K) doesn't matter much
- Fuel (\$0.55/gal diesel) and vehicle (≤\$32K/vehicle) credits make a big difference
 - Fuel credit matters most for transit buses
 - Vehicle credit matters most for refuse trucks
- There are synergies between the three credits

What happens if the price of my station changes?

Big difference for refuse/transit fleets less than 75 vehicles Can bring school fleets to a reasonable payback period

What happens as my vehicle incremental cost changes?

- Grants effectively reduce the incremental cost
- Asymmetrical changes because subsidy covers most of difference between zero and base case

What happens if my vehicle maintenance costs change?

- Both CNG and diesel maintenance costs start at \$0.50 per mile
- Asymmetrical—reducing CNG maintenance costs is more important if it is more expensive than diesel to begin with
- Can make school bus fleet profitable

Conclusion

Very Profitable

Resilient Fleets

 Large (>75 vehicle) transit or refuse fleets

- Diesel drops below \$2.25/gal
- CNG vehicle maintenance costs increase 50%

Profitable* unless:

- VMT drops below 26,000 miles per year (transit) or 14,000 miles per year (refuse)
- Vehicle incremental costs double
- Various combinations of the above

Marginal Fleets

 All school bus fleets
 Small (<75 vehicle) transit or refuse fleets

Precipitous drop in profitability if:

- Transit or refuse fleet drops below 30 vehicles
- School bus VMT drops below 10,000 miles per bus

No-CNG Fleets

- Low annual fuel use
- Access to unusually inexpensive diesel
- Exceptionally high CNG vehicle and infrastructure costs

Not Profitable

Not Profitable

*A payback of less than 5 years

Caley Johnson 303-275-3607 caley.johnson@nrel.gov

Business Case for CNG in Municipal Fleets report at: <u>www.afdc.energy.gov/afdc/pdfs/47919.pdf</u>

Supplemental Slides

What if I receive an FTA grant?

• FTA can pay for 80% of a diesel bus or 83% of a CNG bus

