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ENUMERATING A DIVERSE SET OF BUILDING DESIGNS USING DISCRETE
 
OPTIMIZATION
 

Elaine T. Hale1 and Nicholas L. Long1
 

1National Renewable Energy Laboratory, Golden, CO
 

ABSTRACT 
Numerical optimization is a powerful method for iden­

tifying energy-efficient building designs. Automating the 
search process facilitates the evaluation of many more op­
tions than is possible with one-off parametric simulation 
runs. However, input data uncertainties and qualitative as­
pects of building design work against standard optimiza­
tion formulations that return a single, so-called optimal 
design. 

This paper presents a method for harnessing a discrete 
optimization algorithm to obtain significantly different, 
economically viable building designs that satisfy an en­
ergy efficiency goal. The method is demonstrated using 
NREL’s first-generation building analysis platform, Opt­
E-Plus, and two example problems. We discuss the infor­
mation content of the results, and the computational effort 
required by the algorithm. 

INTRODUCTION 
Building design is a multidisciplinary endeavor with 

qualitative and quantitative aspects. Input data, espe­
cially costs and long-term characteristics of equipment 
use and performance, are highly uncertain. Nonetheless, 
professional and governmental organizations provide de­
sign guidance (through standards and voluntary guides) to 
improve energy efficiency cost effectively. 

Because of ambitious energy efficiency goals, this guid­
ance is often informed by sophisticated design and anal­
ysis methods that rely on simulation engines. One ap­
proach, which has been used to provide guidance for Ad­
vanced Energy Design Guides at the 50% energy savings 
level, is numerical optimization, which automatically gen­
erates numerous candidate designs in search of a single 
optimal design (Hale et al. 2009; Leach et al. 2009). Can­
didate designs are evaluated using EnergyPlus, because it 
can be used in parallel on Linux cluster computers and has 
a comprehensive set of modeling features (Crawley et al. 
2008). 

However, it is widely appreciated that there is no single 
best design for a given building type in a given location. 
Different owners and occupants have different values and 
resources (Papamichael and Protzen 1993). Thus, the pur­
pose of this paper is to present a method to harness numer­
ical optimization to identify a number of good designs that 
can be evaluated by a project’s stakeholders. 

The core idea is to run multiple optimization searches, 
each with a significantly modified search space. The mod­

ifications are designed to extract information about which 
design strategies are necessary to reach the energy effi­
ciency goal, which are optional, and which can be used 
to compensate for others that have been excluded from a 
given search. For instance, if plug and process loads can­
not be reduced from their baseline values, perhaps a more 
efficient HVAC system can make up the gap. An impor­
tant property of the generated solutions is that they are 
significantly different from one another. 

The optimization literature, including the subfield of 
optimal building design, focuses primarily on searches 
for a single optimal solution (Bouchlaghem and Lether­
man 1990; Christensen, Barker, and Horowitz 2004; Wet­
ter 2001; Wright, Loosemore, and Farmani 2002). Sig­
nificant deviations that come closer to what this work is 
trying to do include algorithms for finding feasible solu­
tions (Bonami et al. 2009), and combinatorial optimiza­
tion algorithms that find the k-best solutions to a given 
problem, that is, in the course of identifying the optimal 
solution, they keep track of and report the k−1 runners-up 
as measured by objective function value (Hamacher and 
Queryranne 1985; Piper and Zoltners 1976). The work 
described in this paper differs from feasible solution al­
gorithms in that solutions with better objective values are 
preferred, and from the k-best solution algorithms in that 
it further requires the solutions found to be significantly 
different from one another. 

The algorithm presented in this paper, and the informa­
tion that can be extracted from it, are highly influenced 
by the building energy analysis platform used by the au­
thors. The optimization problem formulation embedded 
in the platform is described in the next section. An algo­
rithm for finding multiple, diverse designs that all satisfy 
an energy efficiency (or other goal) follows in the AL­
GORITHM section. Numerical results, discussion, and 
conclusions follow. 

SETTING 
The analysis platform solves bi-objective building de­

sign problems over a set of discrete options called energy 
design measures (EDMs) (Ellis et al. 2006). Most often, 
the two objectives are to minimize an energy metric and an 
economic metric. The search starts at a baseline building 
and proceeds by constructing numerous candidate designs 
through the addition and removal of EDMs. By default, all 
designs are plotted on a graph of the two objective func­
tions. The minimum cost designs at every level of en­
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ergy use comprise the minimum cost curve. The portion 
of the curve containing designs that are more energy effi­
cient than the minimum cost building is the Pareto front, 
which is the set of designs for which one objective cannot 
be improved without reducing performance with respect 
to the other objective. 

Credit: Elaine T. Hale/NREL 

Figure 1: EDM selection and editing 

The set of EDMs to optimize over is chosen through a 
graphical user interface (GUI), a portion of which is de­
picted in Figure 1. The EDMs are grouped into functional 
categories that implicitly define a disjunctive constraint, 
that is, exactly one EDM from each category must be in­
cluded in each design (although some EDMs may have 
no meaning in a given design, for instance, skylight con­
struction in a design with no skylights installed). Every 
category includes a baseline selection that is either de­
fined explicitly in the EDM tree or in the baseline building 
model, or is implicitly defined as null. Figure 1 shows the 
EDM selections for skylight amounts used in the full scale 
example. The baseline selection is 0% skylight coverage. 

The design optimization problem embodied in the anal­
ysis platform can be expressed mathematically as: 

∗ x = arg{min f (x), g(x)|xi ∈ {0, . . . ,ni} ⊂ Z} (1)
x 

where xi represents the EDM selection for category i, 
xi = 0 is the baseline selection for category i, ni is the 
number of non-baseline selections in category i, f (x) is 
the economic objective function, and g(x) is the energy 
efficiency objective function. 

In what follows, it sometimes makes sense to group 
multiple EDM categories together to form a superset we 
call a design strategy. For instance, daylighting controls 
and skylights could together comprise a daylighting strat­
egy. Such supersets fit into the framework of Equation 1 
once all combinations of the EDMs in the individual cat­
egories are enumerated. There is still one baseline option 
with all categories set to baseline. All other possibilities 
(for instance, 2% skylight coverage and no daylighting 
controls) are assigned a nonzero integer. 

ALGORITHM 
We now present an algorithm that uses a discrete opti­

mization solver to enumerate solutions that all (a) meet a 
single quantitative goal, and (b) are qualitatively different. 
The algorithm relies on the assumptions: 

1. The decision variables are discrete, 

xi ∈ {0,1, . . . ,ni} ⊂ Z, i = 1, . . . ,N, (2) 

with x = 0 representing a baseline decision. To 
obtain diverse solutions (qualitatively different), we 
further require each variable to represent a distinct 
type of decision. 

2. There is a hard constraint 

g(x) ≤ 0,g(x) ∈ R, (3) 

whose satisfaction indicates feasibility (for instance, 
meeting an energy efficiency goal). 

3. There is a search algorithm 

0 ∗P(x ,x ,J,K) ∈ D ⊂ ZN (4) 

as described in Algorithm 1. Any combinatorial or 
discrete optimization solver that can handle inequal­
ity constraints and/or bicriteria problems should be 
satisfactory. 

In our setting, solutions are building designs defined by 
EDM selections, g(x) represents an energy savings goal, 
and our secondary objective f (x) is a cost metric, usually 
a lifecycle cost that accounts for capital, maintenance, and 
energy costs accumulated over an analysis period. 

0Algorithm 1 Search Algorithm P(x ,x ∗ ,J, K) 

Require: x0, starting point 
Require: x ∗, reference feasible point 
Require: J,K ⊂ {1, . . . ,N}, J ∩ K = 0/ 

0 0Require: x = 0, x = x ∗ = 0J K K
return x 

Ensure: xJ = 0, xK = x ∗ 
K 

Ensure: g(x) ≤ 0 if possible, otherwise, x = argming(x) 
Ensure: x = argmin f (x) s.t. g(x) ≤ max{0, ming(x)}, 

that is, x minimizes a secondary objective 

The enumeration of alternative designs begins after run­
ning the first search, P(0,0,0/ ,0/ ), and proceeds recur­
sively. In short, for a given design x ∗ that satisfies the hard 

∗constraint, each strategy used in that design ({i|xi > 0}) is 
iteratively removed from consideration (set to zero), and 
the search algorithm is warm-started from the resulting 
point. We thereby generate new candidate designs that 
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hopefully satisfy the hard constraint (energy efficiency 
goal) while minimizing a secondary objective (lifecycle 
cost) over a reduced search space, and are qualitatively 
different from the original feasible point in that the new 
point has xi = 0 but the original point has xi > 0. This 
idea is expressed in Algorithm 2. 

Algorithm 2 runIteration(x ∗ ,J,K,P) 
Require: x ∗ = P(·, ·,J,K), x ∗ 

J = 0, x ∗ 
K > 0 

for j ∈ {i|x ∗ > 0}− K doi
 
Ĵ = J ∪{ j}

x0 = x ∗
 

0
x = 0j 
0x̂ = P(x ,x ∗ , Ĵ, K)
 

if g(x̂) ≤ 0 then
 
queueIteration( ̂x,Ĵ,P)
 

else 
K = K ∪{ j}

end if
 
end for
 
setUninitializedKsInQueue(K)
 
(x ∗ ,J,K,P) = popIterationQueue()
 
runIteration(x ∗ ,J,K,P)
 

Algorithm 2 naturally leads to a tree structure of results, 
with the optimal decision over the full search space (the 
solution returned by P(0,0, 0/ ,0/)) as the root node. Each 
level in the tree is associated with a certain number of 
strategies turned off, that is, a certain cardinality in the set 
J. The root node has J = 0/ , its children have |J| = 1, etc. 
However, there can be multiple paths to the same search, 
so our implementation does not queue searches whose J, 
K, x ∗ 

K signature matches an existing search. This breaks 
the tree structure; see Figure 2. Future work includes re­
structuring the algorithm to more accurately reflect the 
structure of the enumerated set of solutions. 

The solution returned by P(0,0, 0/ ,0/) (Node 0 in Fig­
ure 2) is the optimal solution over the full search space, 
since for that search all elements are allowed to vary over 
their full domain. It is therefore guaranteed to have the 
best objective function value compared to all other solu­
tions found by the algorithm, as subsequent searches ex­
plicitly reduce the size of the search space. Recall, how­
ever, that the objective function is not the absolute mea­
sure of goodness for a given design. Building designs are 
generally subject to multiple quantitative and qualitative 
criteria that are difficult, if not impossible, to capture in a 
single quantitative metric. 

Running a search with decision variable xi set to 0 nec­
essarily leads to one of two conclusions (in the context of 
Algorithm 2): either strategy i is not required to reach the 
goal, and we can continue to look for more designs that 
have xi = 0; or strategy i is required to meet the goal. In 

the latter case, to make sure that each search results in a 
reduction of the subsequent search spaces, we add index 
i to the set K. Then grandchildren of the point x ∗ have xi 
set equal to the value of that index in the parent search. 
This convention is overly rigid—the optimal decision for 
xi will certainly be nonzero, but may not be equal to that 
of its parent. Nonetheless, this is the heuristic used in our 
current code. 

Our implementation of Algorithm 2 saves all the items 
0listed (x ∗ , x , x̂,J,K) plus the objective function values and 

a pointer to even more information about each saved de­
sign. Keeping x0 enables us to report perturbation infor­
mation about individual strategies. In particular, we re­
port the difference in key metrics between feasible designs 
(x ∗), and those designs with one strategy removed (x0). 
This provides the information needed to answer questions 
like: What happens if we take an energy efficient design 
and remove the daylighting infrastructure? What is the 
quantitative difference in energy efficiency? cost? This 
type of data tells us which strategies are valuable with re­
gards to energy, power demand, and water savings per in­
vestment dollar. Example perturbation data are provided 
in Table 2. 

NUMERICAL RESULTS 
We now demonstrate Algorithm 2 in the context of 

energy-efficient building design. 

ILLUSTRATIVE EXAMPLE 
The first example is a 100 m2 office building located in 

St. Louis, Missouri, subject to a few design strategies. 
The baseline building was generated using Opt-E-Plus, 
with ASHRAE Standards 90.1-2004, and 62.1-2004 au­
tomatically applied (ASHRAE 2004a; ASHRAE 2004b). 
A design is considered feasible if it has a net site energy 
savings of 20%. The net site energy use of the baseline 
building is 770 MJ/m2y, and the analysis period used to 
calculate life cycle cost is 10 years. We use Opt-E-Plus’s 
sequential search algorithm as P (Andersen, Christensen, 
and Horowitz 2006; Ellis et al. 2006). 

The strategies available to meet the energy efficiency 
goal are: 

Plug load density reduction (PLD). One EDM cate­
gory. Baseline and reduced value, respectively: 8.07 
W/m2, 2.69 W/m2. 

Lighting power density reduction (LPD). One EDM 
category. Baseline and reduced value, respectively: 
14.0 W/m2, 11.0 W/m2. 

Daylighting (DL). Two EDM categories. Daylighting 
controls can be installed with a set point of 400 lux. 
Tubular daylighting devices (TDDs) can be installed 
at a density of 18.58 m2/device. 
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Table 1: Alternative illustrative example designs. Strategies used and summary metrics. A strategy is “included” if at 
least one EDM category in the strategy is set to a non-baseline value. 

PV Lifetime Capital Peak Energy 
Included Strategies Energy Cost Cost Demand Savings 

Node PLD LPD DL AR MJ/m2y $/m2 $/m2 kW % 

0 X X X 0.0 552 454 4.70 21.3 
1 X X 59.0 681 579 4.79 20.0 
2 X X 0.2 555 455 4.82 20.0 
3 X X 49.9 662 561 5.18 20.0 
4 X 70.7 707 605 4.82 20.0 
5 X X 126.2 814 715 4.95 20.0 
6 X X 84.1 725 627 4.91 20.0 
7 149.4 877 772 5.61 19.4 
8 149.4 877 772 5.61 19.4 
9 X 122.9 818 715 5.37 20.0 

10 X 78.9 724 623 5.34 20.0 

x̄ 81.0 727 625 5.10 
100σ/ ̄x 65 16 18 6.6 

Aspect ratio (AR). One EDM category. The building 
can be stretched to an aspect ratio of 1:4 along ei­
ther axis. The baseline building has an aspect ratio 
of 1:1. 

In addition, up to 30% of the roof area not covered by 
TDDs can be covered with photovoltaic (PV) panels (10% 
efficient, 90% inverter efficiency). During sequential 
search, 30% PV coverage is simply another EDM. How­
ever, when alternative designs are being enumerated, if 
PV is required to reach the energy savings goal, the actual 
amount of PV is dialed back so that the resulting build­
ing just meets the goal. Also, PV is always available as 
a search option—it is not enabled and disabled like the 
other strategies. 

The alternative designs found by the enumeration al­
gorithm are depicted in Figure 2 and listed in Table 1. 
The initial point found by the search over the full space is 
represented by node 00. Three strategies are used in that 
point: plug load density reduction, lighting power den­
sity reduction, and daylighting. The algorithm removes 
those strategies in turn, and finds that none is necessary 
to reach the efficiency goal. However, reaching the goal 
now requires some PV. Going further down the tree, we 
can see, for instance, that with the lighting power density 
at baseline value, and no daylighting infrastructure avail­
able, Node 06 is able to meet the goal after it changes the 
aspect ratio and includes PV. The goal cannot be met if 
all three strategies used in the optimal point are removed 
from consideration. 

Table 1 provides additional summary information about 

the alternative designs. In addition to a diversity of strate­
gies used to meet the energy efficiency goal, other metrics 
vary significantly. For instance, the standard deviation of 
the capital cost intensities is 18% of the mean value, and 
the standard deviation of peak electricity demand is 6.6% 
of the mean value. Echoing comments made in the AL­
GORITHM section, node 00 has the lowest lifetime cost, 
that is, the lowest objective function value, but a given de­
cision maker may be just as interested in reducing peak 
demand, or in keeping plug load levels at their baseline 
value. 

For this small example, the computational impact of 
enumerating multiple feasible designs is modest. The 
original search required 71 EnergyPlus simulations, at 
about 30 s each on a Dell Latitude XT and a Linux clus­
ter computer. Subsequent searches required fewer simu­
lations total, and were able to reuse simulations from pre­
vious searches. On average, there were 14.7 total sim­
ulations and 6.4 new simulations per alternative design 
search. However, there were 11 additional searches, so 
the extra computational effort was about the same as do­
ing the original search over the full space. In return, the 
enumeration provided nine new designs (nodes 7 and 8 are 
identical), of which eight met the energy efficiency goal. 

FULL SCALE EXAMPLE 
A partial run of Algorithm 2 was completed for an 

example taken from recent work on grocery store de­
sign (Leach et al. 2009). A fourteen zone prototypical 
grocery store model was instantiated in sixteen locations 
by applying ASHRAE Standard 90.1-2004 and ASHRAE 

4



Credit: Elaine T. Hale/NREL 

Figure 2: Diverse solutions for the illustrative example. 
Nodes represent designs, arcs represent the paths to get 
from the optimal design to the alternative designs. De­
signs marked in gold include photovoltaic (PV) panels. 
Designs marked with octagons were not able to reach the 
20% energy efficiency goal, even with 30% of the roof cov­
ered with PV. 

Standards 62.1-1999 (ASHRAE 2004a; ASHRAE 1999). 
Those baseline models were then optimized with an over­
all goal of 50% net site energy savings at minimum life 
cycle cost with an analysis period of five years. Here we 
optimize and then enumerate alternative designs for the 
baseline building in San Francisco, California. The EDMs 
are grouped into fourteen strategies: 

Infiltration (IN). One EDM category that combines air 
barrier and vestibule EDMs. Four options including 
baseline. 

Elec. Lighting (LPD). One EDM category that ad­
dresses lighting power density. Three options includ­
ing baseline. 

Daylighting (DL). Two EDM categories: daylighting 
controls and skylights. One daylighting control set 
point (500 lux) and three skylight amounts (2%, 3%, 
and 4%) available, for a total of eight options includ­
ing baseline. 

Window Area (WA). One EDM category that adjusts the 

south-facing glazing amount. Two options: baseline 
and 50% less glazing than baseline. 

Wall Insulation (WI). One EDM category. Eight op­
tions including baseline. 

Roof Insulation (RI). One EDM category. Fourteen op­
tions including baseline. Four options include a cool 
roof membrane as the top layer. 

Fenestration Types (FT). Two EDM categories. One for 
south-facing glazing type; the other for skylight type. 
There are eight options for south-facing glazing, and 
ten for skylights. 

HVAC. One EDM category. Twelve options including 
baseline arise from varying the coefficient of perfor­
mance (COP), fan efficiency, and economizers. 

Demand Control Ventilation (DCV). One EDM cate­
gory. Two options including baseline. 

Energy Recovery Ventilation (ERV). One EDM cate­
gory. Three options including baseline: no ERV, 
50% effective ERV, and 70% effective ERV. 

Frozen Food Cases (FFC). One EDM category provid­
ing six types of frozen food case, including baseline. 

Ice Cream Cases (ICC). One EDM category providing 
six types of ice cream case, including baseline. 

Meat Cases (MC). One EDM category providing eight 
types of refrigerated meat cases, including baseline. 

Dairy/Deli Cases (DDC). One EDM category providing 
five types of refrigerated dairy/deli cases, including 
baseline. 

As in the illustrative example, PV is treated separately 
from the other EDMs—it is always available, and is used 
to make up the difference to the energy efficiency goal 
when necessary. 

For this large-scale example, the additional computa­
tional burden of enumerating a diverse set of designs was 
significant. Each EnergyPlus run required about 12 min of 
simulation time (averaged over runs completed on a Dell 
Precision, 4-core desktop and a Linux cluster computer), 
and 5.5 MB of hard drive space. We were unable to run 
Algorithm 2 to completion because the memory require­
ments became too large for one desktop computer as we 
approached 75,000 EnergyPlus simulations. The original 
search (to find the overall optimal point) required 2,938 
EnergyPlus simulations. The enumeration algorithm fin­
ished ten iterations, started another, and ran 73 searches to 
completion. Eleven searches derived from the root node; 
63 searches had two strategies set to zero; just one search 
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in the third level (|J| = 3) ran to completion. On aver­
age, each additional search required 962 new simulations. 
Thus, the effort of one full-space search is approximately 
equivalent to that of three reduced-space searches, a re­
sult significantly worse than the ratio of 11:1 seen in the 
previous example. 

The goal of design enumeration was largely accom­
plished despite the computational drawbacks just de­
scribed. A total of 69 feasible designs were generated. 
The optimal point over the full search space used eleven of 
the fourteen energy efficiency strategies. The remaining 
three (roof insulation, fenestration type, and DCV) came 
into play in subsequent searches, once one or more of the 
original eleven strategies were eliminated. 

Table 2 summarizes the energy efficiency strategies 
used in this example from the perturbation perspective. 
Each search for an alternative design produces a start­
ing point x0 that is the same as the initial feasible point 
x ∗ except that one strategy has been removed (set to the 
baseline value). Therefore, differences in the perfor­
mance of x0 and x ∗ shows the value or lack thereof of 
the strategy. The metrics reported in Table 2 are calcu­

0lated by subtracting the metric for x ∗ from that of x . 
In other words, we report metric(without the strategy) − 
metric(with the strategy). The first entry in the table, 
Dairy/Deli Cases, is therefore a strategy that always saves 
energy and lifetime cost, but requires more up front cap­
ital. On the other hand, Electric Lighting is a winner all 
around—it cost less up front and saves energy. 

The last two columns of Table 2 are an estimate of how 
much PV is required to match the energy savings of the 
given strategy. In one sense it is a simple unit conversion 
of the EUI Savings columns. However, it does provide a 
way to visualize the value of an energy efficiency mea­
sure, as in, “I can daylight my store”, or “I could add 24 
to 369 m2 of PV panels to achieve similar carbon dioxide 
emission reductions.” 

DISCUSSION 
Overall, the proposed algorithm accomplishes its goal: 

it is able to identify multiple energy-efficient building de­
signs that all satisfy a specific energy efficiency goal, and 
are significantly different from one another. In addition, 
perturbation data help identify high-value design strate­
gies. Research continues on how to communicate these 
results to potential users. 

One communication problem that is tied up with the 
organization of the algorithm is EDM hiding. In partic­
ular, because the algorithm operates on EDM categories 
as a whole (or even bundled with other categories) it is 
not immediately clear which EDMs are present in each 
design. In some sense it is an easy matter to remedy 
this situation—simply create larger tables that list all the 
EDMs. On the other hand, such verbose information be­

comes hard to absorb. Ideally, decisions in a given cat­
egory would be grouped into meaningful levels. Then a 
strategy could be implemented at the baseline level, level 
1, level 2, etc. We expect to investigate this idea after a 
more natural data structure for the algorithm as a whole is 
identified. 

The computational issues encountered for the full-
scale example could be mitigated by stopping sequential 
searches soon after the energy efficiency goal is met. For 
illustration purposes, see Figure 3, which depicts the full 
space search’s Pareto front in black, and the reduced space 
searches’ Pareto fronts in purple. The search highlighted 
by the orange circle didn’t really need to run—the starting 
point meets the 50% energy savings goal. In other cases, 
when some search is required because the starting point 
is not feasible, it may be worth the computational time 
and memory savings to stop the search early even though 
this may preclude finding the actual optimal point for that 
search. An even better solution to this problem would be 
to use an optimization algorithm that directly solves the 
problem at hand, {min f (x)|g(x) ≤ 0}, rather than adapt­
ing a bi-objective solver for the purpose, as such an algo­
rithm should be equipped with better stopping criteria. 

CONCLUSION 

An algorithm for generating a number of feasible solu­
tions to a combinatorial optimization problem in approxi­
mate rank order of objective function value was presented. 
If each decision variable represents a distinct aspect of the 
problem, the set of decisions so generated will be diverse 
in that they will be qualitatively different from one an­
other. One-off perturbations of feasible points are also 
generated, and provide valuable information concerning 
the individual strategies that compose the overall problem. 

Numerical results for energy-efficient building design 
problems suggest that the additional computational effort 
is modest for small problems. For larger problems, the 
additional effort can be considerable. Stopping searches 
short once a feasible solution has been found, or using 
a more appropriate search algorithm, should remedy the 
situation to a large extent. 
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Table 2: Grocery store perturbation data 

EUI Savings Lifetime Cost Capital Cost Equivalent PV 
(MJ/m2yr) Savings ($/m2) Savings ($/m2) (m2) 

Strategy Count min max min max min max min max 

Dairy/Deli Cases 1 626.2 626.2 40.56 40.56 −9.87 −9.87 4501 4501 
Daylighting 8 3.4 51.4 −14.90 1.27 −21.12 0.11 24 369 
DCV 1 33.0 33.0 −5.37 −5.37 −4.66 −4.66 238 238 
Elec. Lighting 5 30.7 64.9 9.94 14.6 0.97 2.31 221 467 
ERV 9 118.6 193.8 −1.60 3.94 −7.42 −7.27 853 1393 
Fenestration Type 2 4.3 10.1 −2.33 −0.48 −1.12 −0.92 31 72 
Frozen Food Cases 1 232.3 232.3 13.75 13.75 −12.23 −12.23 1670 1670 
HVAC 9 46.9 193.1 3.82 14.88 −3.68 −0.87 337 1388 
Ice Cream Cases 9 57.5 60.7 8.91 9.24 2.87 2.9 413 436 
Infiltration 4 24.6 40.7 0.95 5.27 −0.75 2.1 177 292 
Meat Cases 9 118.5 132.2 0.09 1.01 −8.14 −8.08 852 950 
Wall Insulation 8 −0.1 42.6 −0.34 1.33 −1.23 0 −1 306 
Window Area 7 −3.6 35.3 5.25 10.06 5.58 8.41 −26 254 
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NOMENCLATURE 
0/ the empty set 
∈ the entity on the left is an element of 

the set on the right 
⊂ the set on the left is a subset of the set 

on the right 
R the set of all real numbers 
Z the set of all integers 
f (x) ∈ R, objective function over x 
g(x) ∈ R, sometimes objective function, 

sometimes hard constraint over x 
ni ∈ Z, number of non-baseline decisions 

available for variable xi 
x ∈ D ⊂ ZN , vector of integer decision 

variables 
x ∗ feasible point used as the seed for an 

alternative design iteration 
x̂ best point found by a reduced space 

search, may or may not be feasible 
x0 starting point for a reduced space 

search 
xi ith element of x 
xJ components of x whose indices are in J 
COP coefficient of performance 
EDM energy design measure 
D the domain of x, D1 × D2 ×·· ·× DN 
Di the domain of xi, {0,1, . . . ,ni}
GUI graphical user interface 
J set of indices, a subset of {1, . . . , N}
|J| the cardinality of J 
K set of indices, a subset of {1, . . . , N}
N number of integer decision variables 
P search algorithm 
PV photovoltaics 
T DD tubular daylight device 
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