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Make variable and unpredictable renewable resources dispatchable by:

o Reducing transmission costs for remote wind resources
o Taking advantage of arbitrage opportunities
o Allowing “baseloading” with renewable resources
o Providing grid services such as spinning reserve

The Potential Value of Energy Storage 

Source: Denholm, Paul. (October 2006). “Creating Baseload Wind Power Systems Using Advanced Compressed Air Energy Storage Concepts.” 
Poster presented at the University of Colorado Energy Initiative/NREL Symposium. http://www.nrel.gov/docs/fy07osti/40674.pdf

http://www.nrel.gov/docs/fy07osti/40674.pdf�
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Objective
Evaluate the economic viability of using hydrogen for utility-scale energy 
storage applications in comparison with other electricity storage technologies

Study Framework
Basic energy arbitrage economic analysis

o Lifecycle costs including initial investment, operating costs, and future 
replacement costs

o Results presented as levelized cost of delivered energy ($/kWh)

Benchmark against competing technologies on an “apples to apples” basis
o Batteries
o Pumped hydro 
o Compressed air energy storage

Energy Arbitrage—The Focus of This Analysis
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Energy Storage Scenario

Nominal storage volume is 300 MWh (50 MW, 6 hours)
o Electricity is produced from the storage system during 6 peak hours (1 to 7 pm) 

on weekdays
o Electricity is purchased during off-peak hours to charge the system 

Electricity source: excess wind/off-peak grid electricity 
o Assumed steady and unlimited supply during off-peak hours (18 hours on 

weekdays and 24 hours on weekends)
o Assumed fixed purchase price of off-peak/renewable electricity
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Analysis Framework and Assumptions

Major Assumptions
o The storage system is not large enough to affect grid peak or off-peak electricity 

prices
o No taxes or transmission charges are included in the analysis
o The supply of off-peak and/or renewable electricity is unlimited
o Costs are presented in $2008

Timeframes
o High cost or “current” technology 
o Mid-range cost

o Some installations exist 
o Some cost reductions for bulk manufacturing and system integration have been realized
o Installations are assumed in the near future: 3 to 5 years

o Low-range cost 
o Estimates for fully mature technologies and facility experience

Cost Analysis Performed Using the HOMER Model (HOMER Energy, 
www.homerenergy.com)

o Distributed power cost optimization model for conventional and renewable energy 
technologies

o Results are presented as levelized cost of energy: $/kWh or $/kg for hydrogen
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Study Framework—Facility Life Economic Analysis

Financial Assumptions
o 40-year plant life (Some equipment will be replaced at more frequent intervals.)

o 10% after-tax internal rate of return

o 100% equity financing

Cost Assumptions
o Electricity is purchased from the grid during off-peak hours at 3.8¢/kWh (base 

case); sensitivity cases at 2.5¢/kWh and 6¢/kWh

o Natural gas is purchased at $7/mmBtu (base case); sensitivity cases at 
$5/mmBtu and $9/mmBtu for the CAES system
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Concept:

Hydrogen for Energy Storage 

Two scenarios of production of excess hydrogen for vehicle use:
o “Slipstream” of about 1,400 kg additional hydrogen per day from aboveground 

storage tanks (5 tanker trucks per day) 
o 500 kg/h (12,000 kg/day) additional hydrogen continuously fed to a pipeline

Electrolyzer is only run during off-peak hours.
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Hydrogen Scenarios—Major Assumptions

Major Assumptions
o Electrolyzer performance and 

cost based on alkaline 
electrolyzers operated at 435 
psi, 80°C

o Polymer electrolyte membrane 
(PEM) air cooled fuel cell 
operated at ~ 30 psi

o Hydrogen storage in 
aboveground steel tanks or 
geologic storage

o Hydrogen storage losses 
assumed minimal

o Compression energy not 
recovered

o Hydrogen delivery and 
dispensing not included in the 
analysis of excess hydrogen for 
vehicles 
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Batteries, Pumped Hydro, & CAES—Major Assumptions

Battery
Electricity

Pump/Compressor
/Turbine

Electricity

Air or Water 
Reservoir

Major Assumptions
o Power conversion system for 

battery round-trip efficiency is 
90%.

o Pumped hydro and CAES 
systems do not require separate 
power conversion system.

o For compressed air storage 
systems, compression heat is 
not stored. Air from the storage 
system is heated with turbine 
exhaust gas.
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Levelized Cost Comparison of Hydrogen and Competing Technologies

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

FC/ a
bo

ve
gro

un
d

FC/ g
eo

log
ic

Hyd
rog

en
 ex

pa
ns

ion
/co

mbu
sti

on
 tu

rbi
ne

NiCd b
att

ery

NaS
 ba

tte
ry

Van
ad

ium
 re

do
x b

att
ery

Pum
pe

d h
yd

ro
CAESLe

ve
liz

ed
 c

os
t o

f o
ut

pu
t e

le
ct

ric
ity

 (¢
/K

W
h)

28 24 
19 

83 

25 28 

13 10 

Hydrogen is competitive with batteries and could be competitive with CAES
and pumped hydro in locations that are not favorable for these technologies. 

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future



13

National Renewable Energy Laboratory                                                                                         
Innovation for Our Energy Future

Hydrogen Energy Storage System with Excess Hydrogen—NPC

Five tankers of excess hydrogen per day (1,400 kg/day)
o Electrolyzer and hydrogen tank slightly larger for the excess hydrogen case than for 

the case without excess hydrogen
o Hydrogen LCOE of $4.69/kg (not including tanker truck transport and dispensing)
o Compares to ~$4 for production portion of electrolysis forecourt station
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Hydrogen Energy Storage System with Excess Hydrogen—NPC

500 kg/h of excess hydrogen (12,000 kg/day)
o Electrolyzer approximately doubled in size in comparison to the case without excess 

hydrogen
o Hydrogen LCOE of $3.33/kg (not including tanker truck transport and dispensing)
o Compares to ~$7 for electrolysis at a central production facility of the same size
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Hydrogen Systems Cost Analysis

Electrolyzers and Storage—Cost values and projections based on H2A case 
studies and DOE technical and cost targets

PEM Fuel Cell—Cost values and projections based on literature review and DOE 
technical and cost targets

Hydrogen Fueled Gas Turbine—Cost and performance values and projections 
based on literature review

o High-efficiency gas turbine combusts pure oxygen and hydrogen in a combustion 
chamber to produce high-temperature steam, which drives a steam turbine. 
Efficiency = 70% (Pilavachi et al. 2009)

o Oxygen is assumed to be collected from the electrolyzer.

Existing PEM fuel cell 
costs and estimates 
for mass production 
(MP) of PEM fuel cells
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Battery Cost Analysis

Sources: Schoenung and Eyer (2008), EPRI (2007), Nakhamkin et al. (2007), Electricity Storage Association (2009)

Batteries

Nickel Cadmium
o 2003 peak power in Fairbanks Alaska (26 MW, 1/2h)

Sodium Sulfur
o Several projects for Tokyo Electric Power (up to 6 MW, 48 MWh)

Vanadium Redox
o 2005 peak power in Hokkaido Japan (4 MW, 1.5h)

o 2004 voltage-stabilization project in Castle Valley Utah (250 kW, 8h)

o 2003 load-shifting application in Currie Tasmania (200 kW, 4h)

o 2001 wind stabilization in Hokkaido Japan (170 kW, 6h)
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Compressed Air & Pumped Hydro Cost Analysis

Sources: Schoenung and Eyer(2008), EPRI (2007), Nakhamkin et al. (2007), Electricity Storage Association (2009)

Compressed Air Energy Storage
o 1991 peak power in McIntosh Alabama (110 MW, 26h)

o 1978 Huntorf Germany (290 MW spinning reserve)

Pumped Hydro
o Many installations, earliest in the U.S. in 1929; current capacity about 19,000 MW
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Round-Trip Efficiency and Electricity Price Sensitivity

Electricity price sensitivity
o Low-capital-cost, high-efficiency pumped hydro system is sensitive to electricity price
o High-capital-cost NiCd system is insensitive to electricity price
o For other storage systems, sensitivity to electricity price is roughly inversely 

proportional to round-trip efficiency 
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Cost Implications for Hydrogen Systems

Costs could be reduced by increasing the round-trip efficiency.

o Fuel cell efficiency has a bigger impact on LCOE than electrolyzer efficiency.

o ~ 0.5% change in LCOE per percent change in fuel cell efficiency

o ~ 0.2% change in LCOE per percent change in electrolyzer efficiency

Cost could be reduced if a reversible fuel cell with higher round-trip efficiency 
were developed.
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Conclusions

Hydrogen is competitive with battery technologies for this application and could 
be competitive with CAES and pumped hydro in locations that are not favorable 
for these technologies

Excess hydrogen could be produced for the transportation market.

Hydrogen has several important advantages over competing technologies, 
including:

o Hydrogen has very high storage energy density (170 kWh/m3 vs. 2.4 for CAES 
and 0.7 for pumped hydro).

o Allows for potential economic viability of aboveground storage

o Hydrogen could be co-fired in a combustion turbine with natural gas to provide 
additional flexibility for the storage system.

The major disadvantage of hydrogen energy storage is cost. 

o Research and deployment of electrolyzers and fuel cells may reduce cost 
significantly.
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Thank You

Questions?
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Hydrogen Fuel Cell with Geologic Storage—NPC
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Capital cost reductions for the fuel cell drive decrease in NPC.

Increased stack durability decreases expected replacement costs.
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Hydrogen Fuel Cell with Geologic Storage—Sensitivity

LCOE sensitivity to capital cost in proportion to other costs decreases from the 
high-cost case to the low-cost case.

High sensitivity to the cost of electricity due to relatively low round-trip efficiency 
(28% – 41%)
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Hydrogen Fuel Cell with Aboveground Storage—Sensitivity

More tanks are required for the high-cost case because of the low efficiency of 
the fuel cell.

Aboveground storage adds 6% – 18% to the LCOE.
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Hydrogen Gas Turbine with Geologic Storage—Sensitivity

Hydrogen gas turbine with geologic storage is proportionally more sensitive to 
electricity cost because of its relatively low capital cost and low round-trip 
efficiency.

 

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Steel Tank capital cost 

Fixed O&M 

Electrolyzer capital cost 

Combustion Turbine capital cost 

Electrolyzer efficiency 

Electricity price

HIGH-COST CASE

Geologic Storage capital cost 

Fixed O&M 

Electrolyzer capital cost 

Combustion Turbine capital cost 

Electrolyzer efficiency 

Electricity price 

MID-RANGE CASE

Geologic Storage capital cost 

Fixed O&M 

Electrolyzer capital cost 

Combustion Turbine capital cost 

Electrolyzer efficiency 

Electricity price 

LOW-COST CASE

Cost of Energy ($/kWh)

$0.17

$0.19

$0.26

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future



26

National Renewable Energy Laboratory                                                                                         
Innovation for Our Energy Future

Net Present Cost of Nickel Cadmium Batteries

NPC for nickel cadmium battery systems is high due to high capital cost.
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NiCd Batteries—Sensitivity
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The LCOE of Nickel cadmium battery systems is most sensitive to capital cost.
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Net Present Cost of Sodium Sulfur Batteries

Sodium sulfur battery systems have lower capital and replacement costs than 
NiCd batteries.

-$20,000,000

$30,000,000

$80,000,000

$130,000,000

$180,000,000

$230,000,000

$280,000,000

El
ec

tri
ci

ty

Ba
tte

ry

C
on

ve
rte

r

Fi
xe

d 
op

er
at

in
g

co
st

s

To
ta

l s
ys

te
m

El
ec

tri
ci

ty

Ba
tte

ry

C
on

ve
rte

r

Fi
xe

d 
op

er
at

in
g

co
st

s

To
ta

l s
ys

te
m

El
ec

tri
ci

ty

Ba
tte

ry

C
on

ve
rte

r

Fi
xe

d 
op

er
at

in
g

co
st

s

To
ta

l s
ys

te
m

N
et

 P
re

se
nt

 C
os

t

Salvage
Capital
Replacement
O&M
Electricity

High-Cost Case Mid-Range Case Low-Cost Case

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future



29

National Renewable Energy Laboratory                                                                                         
Innovation for Our Energy Future

NaS Batteries—Sensitivity
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Sodium sulfur battery systems are more sensitive to electricity price than NiCd 
batteries.
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Net Present Cost of Vanadium Redox Batteries

Electrolyte has a high initial capital cost but is assumed to last the entire 
lifespan of the facility.
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VR Batteries—Sensitivity
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Electrolyte cost was varied ± 50% due to historical volatility in vanadium prices. 
VR battery LCOE is most sensitive to the cost of the electrolyte.
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Net Present Cost of Pumped Hydro

Pumped hydro systems have relatively low capital cost and very low 
maintenance costs in comparison to hydrogen and battery systems.
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Pumped Hydro—Sensitivity
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Reservoir capital cost

Electricity price

HIGH-COST CASE

Fixed O&M

Reservoir capital cost

Electricity price

MID-RANGE CASE

Fixed O&M

Reservoir capital cost

Electricity price

LOW-COST CASE

Cost of Energy ($/kWh)

$0.11

$0.13

$0.14

Pumped hydro systems are relatively sensitive to electricity price because 
electricity is a relatively large fraction of the overall yearly cost.
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Net Present Cost of Compressed Air Energy Storage

Approximately 1/3 of the output energy from the CAES systems is derived from 
natural gas. Approximately 2/3 of the energy is supplied by stored compressed air. 
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CAES—Sensitivity
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Compressor/combustion turbine capital cost

Natural gas price
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Cavern capital cost
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Cavern capital cost
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Natural gas price

Electricity price

LOW-COST CASE

Cost of Energy ($/kWh)

$0.08

$0.10

$0.13

Assumed aboveground storage for the mid-range case to provide comparison 
to hydrogen system.
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Backup Slides—Hydrogen Systems

1. DOE (2007), Chapter 3.4; 20,000 hours for stationary PEM reformate system fuel cells 5–250 kW has been demonstrated. The goal for 
2011: “By 2011, develop a distributed generation PEM fuel cell system operating on natural gas or LPG that achieves 40% electrical 
efficiency and 40,000 hours durability at $750/kW.” Validated by 2014. Twenty thousand hours (13 years) was used for the high-cost value, 
and 40,000 hours (26 years) was used for the low-cost value.

2. Values are from Lipman et al. (2004).

3. Current technology value for stack efficiency is approximately 55% (O’Hayre et al. 2006). Value is mid-way between the high and low 
estimates.

4. Assumed stack efficiency of 60% (MYPP 2010 target for direct hydrogen fuel cells for transportation) with 2% conversion losses for 
integrated system.

System 
Component 

High-Cost Case 
Values 

Mid-Range 
Case Values 

Low-Cost Case 
Values 

Fuel cell system 
installed capital 
cost ($2008) 

$3,000/kW $813/kW $434/kW 

Stack replacement 
frequency/cost  

13 yr1/30% of 
initial capital 

cost 

15 yr/30% of 
initial capital 

cost 

26 yr1/30% of 
initial capital 

cost 

O&M costs $50/kW-yr2 $27/kW-yr $20/kW-yr2 

Fuel cell life 13 yr (20,000-
hour operation) 

15 yr (24,000-
hour operation) 

26 yr (40,000-
hour operation) 

Fuel cell system 
efficiency (LHV) 47% 53%3 58%4 
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Backup Slides—Hydrogen Systems

Hydrogen Fueled Gas Turbine—Cost values and projections based 
on literature review

Source Year Raw data Converted 
$2008/kW Notes 

Afgan and 
Carvalho (2004) 2004 750 €/kW $1,044 

From Onanda.com historical data, 
using avg euro:usd for 2004 = 1.244; 
based on simple natural gas turbine 
plant 

Phadke et al. 
(2008) 2008 $758/kW $758 Compares several coal cycles, this is 

plant for CCGT 

Siemens (2007) 2008 < $,1000 $1,000 

"Power block (equipment + 
construction): 2 hydrogen-fueled 
GTs, 2 HRSGs, 1 steam turbine, 3 
generators and all associated 
auxiliaries/controls/BOP equipment"  

Pilavachi et al. 
(2009) 2008 680 €/kW $1,001 

From Onanda.com historical data, 
using avg euro:usd for 2008 = 1.47; 
costs includes total power plant costs 
- equipment and installation 
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Backup Slides—Batteries

Cost values primarily based on two Sandia reports (2003 and 2008) 
and three EPRI reports (2003, 2006, and 2007)

 Energy 
Capacity 

Related Cost 
(Battery) 
($/kWh) 

Power 
Related Cost 
(PCS) ($/kW) 

BoP ($/kWh) Fixed O&M 
($/kW-y) 

Nickel Cadmium     
High Case1  1,570 2883 173 5.8 
Mid-Range Case2  1,380 15010 115 ($/kW) 31 
Low-Range Case4  690 144 173 5.8 
Sodium Sulfur     
High Case5  288 173 58 23 
Mid-Range Case6 226 235 115 ($/kW) 59 

Low-Range Case  
30% reduction 
from mid-range 

case3 
173 58 59 

Vanadium Redox9      
High Case7  300 1800 500 ($/kW) 54.8 
Mid-Range Case8  210 750 500 ($/kW) 54.8 

Low-Range Case8  210 

30% 
reduction 
from mid-

range case 

500 ($/kW) 54.8 
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Backup Slides—Batteries

1. Schoenung and Hassenzahl (2003). Actual costs for Fairbanks Alaska facility.
2. EPRI-DOE (2003).
3. PCS cost is derived from equation in EPRI-DOE (2003) for a programmed response 

PCS without VAR support; $/kW ($2003) = 11,500 * Vmin-0.59 where Vmin is the 
minimum discharge voltage (maximum current).

4. Schoenung and Eyer (2008).
5. Schoenung and Hassenzahl (2003), Schoenung and Eyer (2008). Replacement costs 

at $230/kWh.
6. Values from EPRI-DOE (2003), NKG Insulators Ltd, E50 peak shaving battery (50-kW 

modules).
7. Electrolyte costs are not expected to decrease in the future due to the cost of 

vanadium. Electrolyte makes up about 30% of the capital cost of the system. However, 
future improvements in the system are expected to result in some cost reduction. 
Electrolyte costs decrease from $256/kWh to $151/kWh for the future case.

8. EPRI (2007) “present day” costs. Replacement cost for cell stack only at “future” cost.
9. EPRI (2007) “future” costs. Replacement cost for cell stack only at “future” cost.
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Backup Slides—Pumped Hydro and CAES

Cost values based on literature review and existing installations
o Schoenung and Hassenzahl (2003)
o Capacity and Cost Information for 1,000-MW and Larger Pumped Hydro Installations Worldwide 

(Electricity Storage Association 2009)

 Storage System 
Including PCS 

BoP 
($/kWh) 

Fixed O&M 
($/kW-y) 

Natural Gas Heat 
Rate (Btu/kWh) 

High-cost 
case 

$3.45/kWh + 
$490/kW 58 2.9 6,000 

Mid-range 
cost case 

$34.54/kWh + 
$403/kW 0 6.9 4,000 

Low-cost 
case 

$1.15/kWh + 
$403/kW 0 6.9 3,800 

 

CAES System Costs

Pumped Hydro System Costs
 Storage System 

Including PCS BoP ($/kWh) Fixed O&M ($/kW-y) 

High-cost case $12/kWh + $1,209/kW 5 2.9 
Mid-range case $12/kWh + $1,151/kW 5 2.9 
Low-cost case $12/kWh + $888/kW 0 2.9 
 

o Schoenung and Eyer (2008)
o Nakhamkin (2007)
o van der Linden (2006)
o EPRI-DOE (2004)
o Schoenung and Hassenzahl 

(2003)
o EPRI-DOE (2003)
o EPRI (2003)
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Backup Slides—Efficiency

1. AC-to-AC roundtrip efficiency for the CAES system is defined as the 
total electricity output divided by the total energy input (electricity plus 
natural gas). 

System (Mid-Range Case @ $0.038/kWh) Roundtrip Efficiency 
(%)

Fuel cell/aboveground storage 34 (LHV)
Fuel cell/geologic storage 35 (LHV)
Hydrogen expansion/combustion turbine

48 (LHV)

CAES1 53
Nickel cadmium battery 59
Sodium sulfur battery 77
Vanadium redox battery 72
Pumped hydro 75
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Analysis Matrix

Peak 
Electricity

Spinning 
Reserve

Base 
Load

System 
Size

Compare to: 
(Management 

Strategy)

Compare to: 
(Storage 
Method)

Hydrogen 
for Base 
Loading

X X Large o Curtail wind
o Turn down 

base capacity
o Buy electricity

Pumped 
hydro
CAES

Hydrogen 
for Base 
Loading
(Rev. FC)

X X Large o Curtail wind
o Turn down 

base capacity
o Buy electricity

Pumped 
hydro
CAES

Hydrogen 
for 
Vehicles

X X Medium o Curtail wind
o Turn down 

base capacity

Batteries

Hydrogen 
for 
Vehicles
(Rev. FC)

X X Medium o Curtail wind
o Turn down 

base capacity

Batteries
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Backup Slides—Geologic storage

Table 1. Costs of Geologic Storage Cavern Development for CAES and Hydrogen 

Formation Type Air $/kWh 
($2003) 

Air $/kWh 
($2008) 

Air $/m3 
($2008) 

Hydrogen 
$/kWh1 

Solution-mined salt caverns2  1.00 1.20 2.88 0.02 
Dry-mined salt caverns2 10.00 11.50 27.60 0.16 
Rock caverns created by 
excavating comparatively 
impervious rock formations2 

30.00 35.00 84.00 0.49 

Naturally occurring porous 
rock formations (e.g., 
sandstone and fissured 
limestone) from depleted gas 
or oilfields2 

0.10 0.12 0.29 0.002 

Abandoned limestone or coal 
mines2 10.00 11.50 27.60 0.16 

Geologic storage of 
hydrogen3  N/A N/A N/A 0.30 

1Hydrogen storage cavern development cost is calculated assuming the same $/m3 as for CAES cavern development and 
energy density from Crotogino and Huebner (2008). 
2Source: EPRI (2003) and Crotogino and Huebner (2008). 
3Equation from H2A Delivery Scenario Analysis Model Version 2.02, for 41,000-kg usable storage capacity, 
www.hydrogen.energy.gov/h2a_delivery.html. 
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Backup Slides—Geologic Storage in Salt Deposits 
(Source: Casey 2009)
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Backup Slides—Geologic Storage in Depleted Oil 
and Gas Fields (Source: Born and Lord 2008)
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Backup Slides—Geologic Storage in Sedimentary 
Basins (Source: Born and Lord 2008)
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References for PEM Fuel Cell Chart
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The cost of delivered energy from the vanadium redox battery systems is most 
sensitive to the price of the electrolyte.

Vanadium Prices 1997 – 2005

Source: http://www.metalprices.com/FreeSite/Charts/v_ferro_charts.html?weight=lb#Chart5
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Source: Nakhamkin, M., and M. Chiruvolu, Available Compressed Air Energy Storage (CAES) Concepts.

Schematic for Alabama McIntosh 110-MW CAES Plant
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Benchmarking—Other Benefits and Drawbacks of 
Hydrogen Energy Storage Relative to Alternatives

System Operation
Benefits Drawbacks
Modular (can size the electrolyzer 
separately from FC to produce extra 
hydrogen)

Low electrolysis/FC round trip (AC to AC) 
efficiency (50–55%)
Even lower round-trip efficiency when 
hydrogen is used in a combustion turbine 
(<40%)

Very high energy density for compressed 
hydrogen (>100 times the energy density for 
compressed air at 120 bar ∆P, CC GT)

Hydrogen storage in geologic formations 
other than salt caverns may not be feasible

System can be fully discharged at all current 
levels

Electrolyzers and fuel cells require cooling

Cost
Benefits Drawbacks
Research has potential to drive down costs Use of precious metal catalysts for low-

temperature fuel cells
Currently high cost relative to competing 
technologies (>$1,000/kW)

Source: Crotogino and Huebner, Energy Storage in Salt Caverns / Developments and Concrete Projects for Adiabatic Compressed Air and for Hydrogen 
Storage, SMRI Spring 2008 Technical Conference, Portugal, April 2008.
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Benefits and Drawbacks of Hydrogen Energy Storage

Environmental

Benefits Drawbacks

Catalyst can be reclaimed at end of life Environmental impacts of mining and 
manufacturing of catalyst

Low round-trip efficiency increases 
emissions for conventional electricity 
and reduces replacement by 
renewables

Source: Denholm, Paul, and Gerald L. Kulcinski, Life cycle energy requirements and greenhouse gas emissions from large scale energy 
storage systems, Energy Conversion and Management, 45 (2004) 2153-2172. 
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Benefits and Drawbacks of Battery Energy Storage

System Operation
Benefits Drawbacks
Modular Battery voltage to current relationship 

limits the amount of energy that can be 
extracted, especially at high current

Mid range to high round trip efficiency 
(65%–75%)

Cost
Benefits Drawbacks
Sodium sulfur and Vanadium Redox 
battery system cost

Nickel cadmium battery system cost

High round-trip efficiency reduces 
arbitrage scenario costs

Environmental
Benefits Drawbacks

Toxic and hazardous materials
Source: EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications, 2003, EPRI, Palo Alto, CA and the U.S. 
Department of Energy, Washington, DC.
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Benefits and Drawbacks of Pumped Hydro Energy Storage

System Operation
Benefits Drawbacks
Well established and simple technology System requires large reservoir of water (or 

suitable location for reservoir)
High round-trip efficiency (70%–80%) System requires mountainous terrain

Extremely low energy density (0.7 kWh/m3)
Cost

Benefits Drawbacks
Inexpensive to build and operate

Environmental
Benefits Drawbacks
No toxic or hazardous materials Large water losses due to evaporation, 

especially in dry climates
Habitat loss due to reservoir flooding
Stream flow and fish migration disruption

Source: Denholm, Paul, and Gerald L. Kulcinski, Life cycle energy requirements and greenhouse gas emissions from large scale energy 
storage systems, Energy Conversion and Management, 45 (2004) 2153-2172. 
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Benefits and Drawbacks of Compressed Air Energy Storage

System Operation
Benefits Drawbacks
Proposed advanced designs store heat from 
compression giving theoretical efficiency of 
70%—comparable to pumped hydro

Low round-trip efficiency (54%) with waste 
heat from combustion used to heat 
expanding air—42% without
Very low storage energy density (2.4 
kWh/m3)
Must be located near suitable geologic 
caverns

Cost
Benefits Drawbacks
Low cost

Environmental
Benefits Drawbacks

Approximately 1/3 of output energy is 
derived from natural gas feed to combustion 
turbines resulting in additional GHG 
emissions

Source: Crotogino and Huebner, Energy Storage in Salt Caverns / Developments and Concrete Projects for Adiabatic Compressed Air and for 
Hydrogen Storage, SMRI Spring 2008 Technical Conference, Portugal, April 2008.
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