
National Renewable Energy Laboratory

Innovation for Our Energy Future

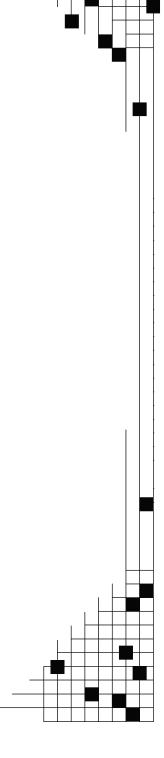
Laboratory Test Report for ThermaStor Ultra-Aire XT150H Dehumidifier

Dane Christensen and Jon Winkler

Technical Report NREL/TP-550-47215 December 2009

Laboratory Test Report for ThermaStor Ultra-Aire XT150H Dehumidifier

Dane Christensen and Jon Winkler


Prepared under Task No. BET98001

Technical Report NREL/TP-550-47215 December 2009

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

Contract No. DE-AC36-08-GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/ordering.htm</u>

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

Abstract

This report documents the measured performance of the ThermaStor Ultra-Aire XT150H Dehumidifier. The equipment is an ENERGY STAR® vapor-compression cycle wholehouse unit. Its performance was measured across a wide range of inlet air conditions and fit to a numerical model with R-squared values greater than 0.998 for electrical power consumption, sensible and latent load removal. The numerical fit was then used to implement the Zone Air Direct-Expansion (DX) Dehumidifier performance model in EnergyPlus.

The authors would like to acknowledge Jeff Tomerlin of NREL for his assistance with data collection.

Acronyms

AHAM	American Home Appliance Manufacturers
ANSI	American National Standards Institute
CFM	cubic feet per minute
DB	dry bulb
DX	direct expansion
HVAC	heating, ventilating, and air conditioning
RH	relative humidity
SCFM	standard cubic feet per minute

Contents

Abstract	i
Acronyms	
Overview	
Test Description	3
Results	
Other Observations	6
Discussion and Conclusions	
References	
Appendix A – Summary of Measured and Calculated Test Data	
Appendix B – Photos of Experimental Setup	
Appendix C – Plots of Data Fit Surfaces and Model Comparisons	
Appendix D – Plots of EnergyPlus Model Performance Comparisons	

Figures

Figure 1. XT150H technical specifications	1
Figure 2. XT150H typical installation	1
Figure 3. XT150H process schematic	2
Figure 4. Psychrometric chart showing test points	A-1
Figure 5. Photograph of Ultra-Aire XT150H test setup	B-1
Figure 6. Photograph of Ultra-Aire XT150H test setup	B-2
Figure 7. Electrical power consumption	C-1
Figure 8. Total load removal	C-2
Figure 9. Sensible load removal	C-3
Figure 10. Latent load removal	C-4
Figure 11. Efficiency	
Figure 12. EnergyPlus Model – Water Removal Rate	
Figure 13. EnergyPlus Model – Energy Factor	
· · · · · · · · · · · · · · · · · · ·	

Tables

Table 1. Summary of Measured Parameter Balances	3
Table 1. Summary of Measured Parameter Balances Table 2. Curve Fit Coefficients and Coefficient of Determination for Measured Effects of	
the Ultra-Aire XT150H Dehumidifier	4
Table 3: Curve Fit Coefficients and Coefficient of Determination for EnergyPlus	
Performance Curves for the Ultra-Aire XT150H Dehumidifier	5
Table 4. Summary of Test Data	A-2
Table 5. Summary of Test Data (continued)	A-3

Overview

The ThermaStor Ultra-Aire XT150H Dehumidifier is designed as an efficient vapor-compression cycle whole-house unit. It can be used as a stand-alone system with unique ductwork or can be incorporated into an HVAC system. It has an outdoor air inlet for optional use in dehumidifying ventilation air. The equipment was EnergyStar rated, with the best rated performance among the residential EnergyStar dehumidifiers, at the time of testing. Manufacturer Specifications from the Owner's Manual are shown in Figure 1. A depiction from the Owner's Manual of a standard installation is shown in Figure 2. Figure 3 shows a functional schematic of the refrigerant loop, air flow and condensate removal.

2. Specifications	
Model:	Ultra-Aire XT150H
	Indoor Air Quality System
Electrical:	110-120 VAC, 6.9 Amps, 60 Hz, grounded
	5
Water Removal Capacity:	150 pints/day @ 80°F, 60% RH
Operating Temp. Range:	56°F min., 100°F max.
Air Flow:	415 CFM @ 0.0" WG
	365 @ 0.4" WG
Refrigerant Charge:	2 lb., R-410.A
Duct connections:	Round 10" & 6" inlets, 10" outlet
(ovaled)	
Filter Size:	2" X 16" X 16"
Size (w/o duct collars):	37" wide X 22" high X 20 5/8" deep
Unit Weight:	134 lbs.

Figure 1. XT150H technical specifications [1]

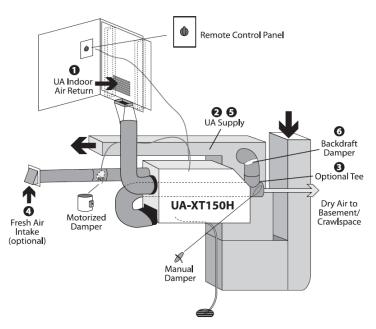


Figure 2. XT150H typical installation [1]

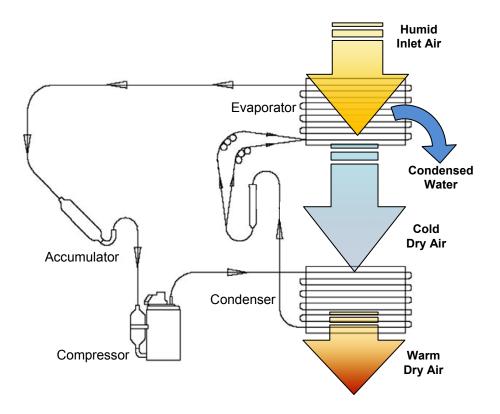


Figure 3. XT150H process schematic. An intermediate air-to-air heat exchanger, which spans the evaporator, is not shown.

Test Description

A Thermastor Ultra-Aire XT150H dehumidifier was tested at the National Renewable Energy Laboratory in the Thermal Transfer Lab with funding from DOE for the Building America program. The method of test followed ANSI/AHAM DH-1-2003, except as listed below. Air was supplied at tightly controlled psychrometric states and the performance was measured over a period of up to 50 minutes at each of 12 test conditions. These test conditions were chosen to represent some typical operating conditions, as well as to bracket those conditions for more accurate interpolation modeling. A summary of the test data is presented in Appendix A.

Inlet and outlet air flow rates were measured using laminar flow elements. An initial set of tests showed that the unit's fan drew 330 CFM at zero external static pressure drop. For subsequent tests, air flow was maintained by the lab's inlet fan to provide appropriate mass flow to the dehumidifier's return duct. Unit pressure was controlled to ambient pressure by the lab's outlet fan, to minimize potential errors from small air leaks. Air Mass Balance was defined as the ratio of instantaneous inlet air mass flow rate to instantaneous outlet air mass flow rate.

Dew point was monitored on both inlet and outlet airstreams using chilled mirror hygrometers, providing a precise measure of air humidity. Condensate flow rate was measured using a coriolis flowmeter. Condensate was also collected in a container and weighed after each test run, in accordance with ANSI/AHAM DH-1-2003. These results were recorded but not used in the ensuing analysis, for two reasons. First, condensate collection provides average condensate production rather than instantaneous. Secondly, to obtain similar accuracies to the coriolis flowmeter's, test runs needed to be quite lengthy. Use of a coriolis flowmeter allowed test times of minutes, not hours. A Moisture Mass Balance was defined as the ratio of instantaneous inlet air moisture mass flow rate to the sum of outlet air moisture mass flow rate and condensate flow rate.

Temperatures of the well-mixed inlet and outlet airstreams were measured using a thermocouple array within ductwork near the unit. Inlet and outlet static pressure were measured using pitot tubes near the unit. Enthalpy was calculated for the airstreams using ASHRAE standard formulas. Electric power was measured using a power meter. An Energy Balance was defined as the ratio of the sum of inlet air energy rate and electric power to the sum of outlet air energy and condensate energy rates.

Photos of the experimental setup are shown in Appendix B.

Instantaneous Air Mass and Energy Balances in all cases were achieved to within 0.5% and 1.6%, respectively. Instantaneous Moisture Balance was not met as closely due to moisture retention within the unit and piping systems caused by condensate surface tension, but still fell within 5%. A summary of these balances is provided in Table 1.

	Average	Minimum	Maximum	Standard Deviation
Energy Balance	0.998	0.984	1.005	0.006
Air Mass Balance	1.000	0.995	1.004	0.003
Moisture Mass Balance	1.015	0.984	1.047	0.025

Table 1. Summary of Measured Parameter Balances

Results

The experimental data was fit to a biquadratic equation. This is a typical form used to model HVAC equipment. However, in the case of a packaged dehumidifier the dry bulb and dew point temperatures of significance both refer to the dehumidifier inlet air. (Typical parameters of significance for unitary air conditioners are: indoor air dew point and outdoor air dry bulb temperature.) Six performance parameters were investigated for applicability of the model. The performance curve, a function of inlet dry bulb temperature (°C) and inlet dew point temperature (°C), is:

$$Parameter = A \times T_{DB} + B \times T_{DB}^{2} + C \times T_{Dew} + D \times T_{Dew}^{2} + E \times T_{DB} \times T_{Dew} + F \qquad (1)$$

Curve fit coefficients are shown in Table 2. Electric Power Consumption includes fan power at 0" water static pressure across the packaged unit. Since the outlet air has a higher temperature than the inlet air, Sensible Load Removal is seen to be negative at all times. The equations for Latent and Sensible Load Removal may be summed to achieve a Total Load Removal equation, the coefficients of which are shown below for convenience. (Note that "Sensible Load Removed" and "Total Load Removed" have a negative value at all operating conditions, since the outlet air is warmer than inlet air by the latent heat removed plus electric power consumed.) Further, the efficiency metrics of condensate production in pints/day and liters/kWh were fit to the same form with good correlation. This will allow efficiency comparison of dehumidifiers at conditions away from the ANSI/AHAM DH-1-2003 test point: 80°F dry bulb, 69.6°F wet bulb (64.55°F dew point, 59.8% RH).

Parameter: Coefficient	Electric Power Consumption (kW)	Total Load Removed (kW)	Sensible Load Removed (kW)	Latent Load Removed (kW)	Estimated Production (pints/day)	Efficiency (L/kWh)
A	0.000647	0.0340	0.0631	-0.0290	-1.21	-0.0845
В	0.000143	-0.000675	-0.000473	-0.000202	-0.0244	8.32E-5
С	0.00343	-0.0254	-0.166	0.140	7.87	0.279
D	0.000212	-0.000407	-0.000997	0.000589	0.0715	-0.00158
E	1.868E-5	0.000773	0.00171	-0.000935	-0.0330	-0.00169
F	0.567	-1.05	-1.79	0.741	49.8	2.059
r-squared	0.998	0.987	0.999	0.999	0.998	0.998

 Table 2. Curve Fit Coefficients and Coefficient of Determination for Measured Effects of the

 Ultra-Aire XT150H Dehumidifier

Plots of these curves and comparisons of model results to the measured data are presented in Appendix C. With R-Squared values (shown above) demonstrating close agreement of the model with measured performance, these curves are sufficient to simulate the performance of the equipment in annual simulations under full-load conditions. Cycling measurements are needed to complete the unit's model for part-load conditions.

Version 4.0.0 of EnergyPlus, an annual whole building simulation tool, includes a zone dehumidifier component model for the first time [2]. The component model simulates the thermal performance and electric power of a conventional DX dehumidifier. Performance curves

are used to scale the rating point performance to simulate various operating conditions. The rating point performance was determined using test point 13a, as shown in Appendix A. Performance curves are used to predict the water removal rate (L/day) and energy factor (L/kWh) fractions and should be approximately equal to a value of 1 at the rated operating condition. The performance curve implemented by the EnergyPlus model, a function of inlet dry bulb temperature (°C) and inlet relative humidity (0-100%), is:

$$Parameter = A + B \times T_{DB} + C \times T_{DB}^{2} + D \times RH + E \times (RH)^{2} + F \times T_{DB} \times RH$$
(2)

The model uses a cubic function to predict the part load fraction as a function of the part load ratio. The part load fraction performance curve coefficients recommended in the EnergyPlus documentation were used since part load performance was not measured during the experimental testing.

The performance curve fit coefficients are shown in Table 3. The R-squared values indicate the performance curves have accurately captured the experimental performance.

Parameter: Coefficient	Water Removal Rate Fraction	Energy Factor Fraction		
А	-1.281357458	-2.743752887		
В	0.032064893	0.114491512		
С	-0.000280794	-0.001456831		
D	0.028356002	0.053860412		
E	-0.000134939	-0.000244965		
F	0.000271496	-0.000362021		
r-squared	0.998	0.989		

 Table 3: Curve Fit Coefficients and Coefficient of Determination for EnergyPlus Performance

 Curves for the Ultra-Aire XT150H Dehumidifier

Appendix D contains plots displaying the accuracy of the model. The average relative error in the water removal rate is 1.4% with a maximum error of 3.74% and the average relative error in the energy factor is 2.67% with a maximum error of 7.46%.

Other Observations

The manufacturer's specifications were confirmed except for one. The Unit Under Test did not provide air flow at the rated 415 CFM at 0 in.H2O static pressure. Instead, 325-335 CFM was measured when the unit was presented with no pressure drop. Since an installed unit's pressure drop is installation-specific, it is not possible to include the effect of other differential pressure conditions in an annual simulation. However, the low volumetric flow rate combined with large duct sizes that would typically be used in homes requiring this dehumidifier implies that assuming a low pressure drop is not unreasonable.

Discussion and Conclusions

The ThermaStor Ultra-Aire XT150H Dehumidifier achieved its rated performance at test conditions. A numerical model was used to fit the experimental data within a small error. Therefore, it is assumed that the model is a reasonable representation of the unit and may be used in annual energy simulations.

It is clear from the plots in Appendix C that unit performance is maximized at high inlet air dew point, regardless of dry bulb temperature. It is easier for the unit to bring the evaporator coil's temperature below the dew point in those cases. At a given dew point, lower dry bulb temperatures lead to higher efficiency for the same reason – less sensible cooling is needed to bring the air to 100% relative humidity.

The dehumidifier operates by returning the heat of vaporization, which is absorbed into the refrigerant as the water condenses out of the air, back to the airstream in the form of sensible heat. The more moisture that is removed, the more sensible heat must be rejected downstream. This reheat process is ideally a balanced enthalpy exchange. However, the dehumidifier also heats the outlet air via the fan motor and compressor power. As a result, the outlet air enthalpy is increased in direct proportion to the unit's power consumption. The unit will always apply a positive sensible load in excess of the latent load removal.

The ducted outlet of the unit was extremely warm, and extra insulation had to be applied to restrict heat loss and achieve proper energy balance. This high temperature is demonstrated by the high sensible heat load (large negative sensible heat removal) from the model. Within the expected temperature range of this unit's residential usage, it is seen that the sensible load applied to the house is between 2.0 and 3.5 kW. In a home with typical loads, the central cooling system would provide sufficient dehumidification during peak periods, thus this sensible load poses little concern. It is advisable for an HVAC designer to consider the sensible heat impact of a dehumidifier on occupant comfort, particularly during shoulder seasons when the air conditioner operates in part load.

There may be opportunities for improvement in efficiency through design modifications, pending future work including inspection and analysis of the inner systems. This has not been initiated because of the desire to test cycling behavior of the unit, which will require modifications to the laboratory apparatus and adjustment of testing protocols. That work is ongoing. The controls of the dehumidifier will play a role in the thermal cycling performance and condensate re-evaporation. These effects are not yet included in the model.

References

[1] Ultra-Aire XT150H Installer's & Owner's Manual. Available at: http://www.ultra-aire.com/images/pdfs/UA-XT150H_manual.pdf. Accessed 5/15/2008.

[2] EnergyPlus is a DOE-sponsored simulation program, freely available at <u>http://apps1.eere.energy.gov/buildings/energyplus/</u>. Version 4.0.0 was used for this work.

Appendix A – Summary of Measured and Calculated Test Data

The data points used for testing are shown on a psychrometric chart in Figure 4. Psychrometric chart showing test points. A summary table of results is presented below in Table 4 and Table 5.

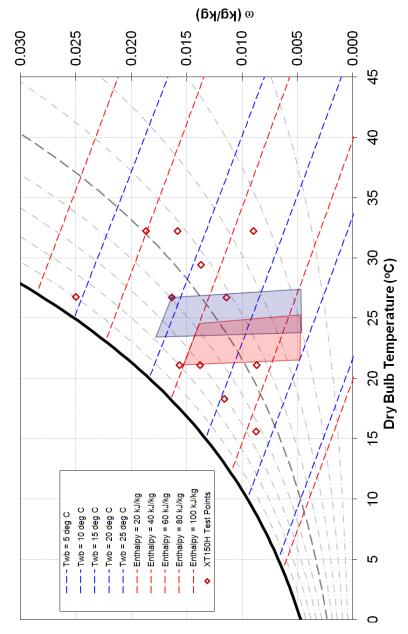


Figure 4. Psychrometric chart showing test points. ASHRAE thermal comfort regions are shaded in blue (cooling) and red (heating).

Table 4. Summary of Test Data

		Unit	10a	5a	11a	12a	6a	7a
Test Duration	ו	Hours	0.518	0.800	0.540	0.549	0.581	0.580
T In		deg C	15.60	21.10	32.20	18.30	26.70	21.10
T Out		deg_C	27.29	31.07	39.29	32.34	37.75	36.53
T_condensat	e	deg C	4.09	5.83	10.36	8.21	9.85	10.32
Tdew In		deg_C	8.79	8.66	9.19	12.99	12.70	15.56
Tdew Out		deg C	2.33	3.75	7.00	6.56	8.28	9.37
W In		kg/kg	8.75E-03	8.69E-03	8.99E-03	1.16E-02	1.14E-02	1.38E-02
W Out		kg/kg	5.56E-03	6.17E-03	7.73E-03	7.49E-03	8.47E-03	9.12E-03
W In		grains	61.24	60.86	62.91	81.25	79.95	96.62
W Out		grains	38.90	43.17	54.11	52.42	59.26	63.84
Delta_grains		grains	22.34	17.69	8.80	28.82	20.69	32.77
P ambient		Pa	81614	81361	81639	81705	81442	81428
P In		Pa	81612	81360	81637	81703	81441	81428
P_Out		Pa	81615	81376	81641	81707	81443	81427
Air flow In		SCFM	327.9	325.1	326.1	328.3	329.7	328.4
Air flow Out		SCFM	329.4	326.0	327.1	327.6	328.4	327.8
	nsate (Coriolis)	kg/s	5.29E-04	4.40E-04	3.02E-04	6.74E-04	5.39E-04	7.85E-04
	nsate (Coriolis)	gpm	5.29E-04 8.39E-03	4.40E-04 6.98E-03	4.79E-03	1.07E-04	8.55E-03	1.25E-0
	· · · · ·	lb	2.13	0.96E-03	4.79E-03 1.13	3.06	2.50	3.75
	nsate Weight (Scale) Insate Weight (Coriolis)	lb lb	2.13	2.805	1.13	2.944	2.50	3.625
	U (kg	0.989	1.272	0.588	1.335	1.131	1.644
Balance Air	nsate Weight (Coriolis)	Unitless		0.997	0.566	1.002	1.004	
		Unitless	0.995			1.002	1.004	1.002
Balance_Moi Balance_Ene		Unitless	0.984	1.015 0.994	0.958 0.997	0.995	1.004	1.037 0.998
Electric Powe		kW	0.659	0.698	0.792	0.708	0.763	0.756
Total Load R	emoval	kW	-0.707	-0.685	-0.743	-0.717	-0.698	-0.718
Sensible Loa	d Removal	kW	-2.203	-1.861	-1.329	-2.640	-2.087	-2.904
Latent Load	Removal	kW	1.496	1.176	0.586	1.923	1.389	2.185
Condensate	Production	pints/day	96.85	80.62	55.24	123.42	98.73	143.7
Efficiency		liters/kWh	3.023	2.377	1.435	3.584	2.662	3.912
Electric Powe		kW	0.661	0.693	0.791	0.711	0.770	0.755
	emoval (Model)	kW	-0.707	-0.689	-0.739	-0.710	-0.705	-0.715
	d Removal (Model)	kW	-2.197	-1.843	-1.327	-2.682	-2.103	-2.897
Latent Load I	Removal (Model)	kW	1.491	1.154	0.588	1.972	1.397	2.183
	Production (Model)	pints/day	95.4	81.1	54.3	126.2	100.7	142.6
Efficiency (M	odel)	liters/kWh	2.984	2.401	1.415	3.648	2.690	3.878
Electric Powe	er Error	kW	0.001	-0.005	-0.001	0.003	0.007	-0.001
			(0.2%)	(0.7%)	(0.12%)	(0.41%)	(0.95%)	(0.08%)
Total Load R	emoval Error	kW	0 (0%)	-0.004 (0.53%)	0.004 (0.6%)	0.007 (0.93%)	-0.007 (1.02%)	0.003 (0.47%)
	d Removal Error	kW	0.005	0.018	0.002	-0.042	-0.015	0.006
Sensible Loa			(0.25%)	(0.94%)	(0.15%)	(1.59%)	(0.73%)	(0.22%)
Sensible Loa				-0.021	0.003	0.049	0.008	-0.003
	Removal Error	kW	-0.005 (0.36%)				(0.59%)	(0.13%
Latent Load I			(0.36%) -1.433	(1.79%) 0.447	(0.43%) -0.894	(2.54%) 2.795	(0.59%) 1.929	(0.13%) -1.095
Latent Load I	Removal Error Production Error	kW pints/day	(0.36%)	(1.79%)	(0.43%)	(2.54%)	(/	

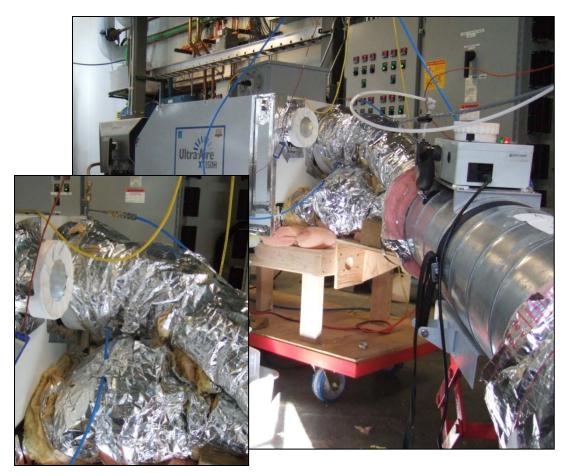
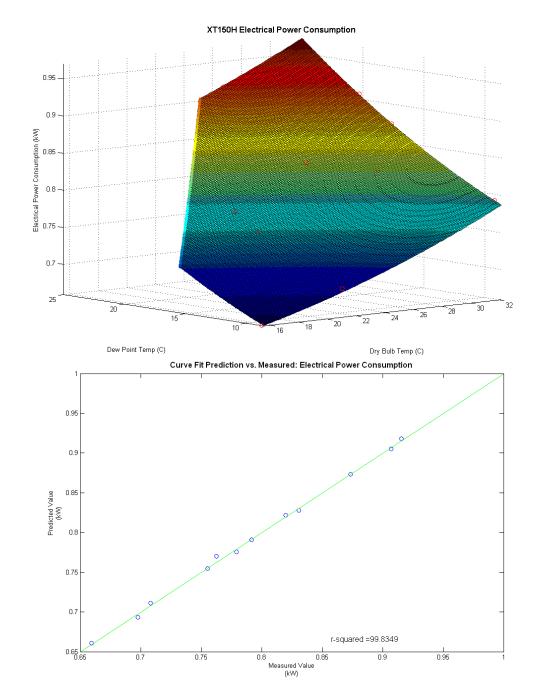
		-	0	•	,	n	r
	Unit	2a	8a	9a	13a	14a	15a
Test Duration	Hours	0.497	0.465	0.231	0.483	0.499	0.350
T_ln	deg_C	29.40	21.10	32.20	26.71	32.21	26.75
T_Out	deg_C	41.73	38.31	45.34	42.28	47.50	47.46
T_condensate	deg_C	12.54	11.81	14.97	13.94	16.92	23.63
Tdew_In	deg_C	15.45	17.46	17.65	18.20	20.32	25.04
Tdew_Out	deg_C	11.17	11.04	13.55	13.03	16.02	19.99
W_In	kg/kg	1.37E-02	1.57E-02	1.58E-02	1.63E-02	1.87E-02	2.50E-0
W Out	kg/kg	1.03E-02	1.02E-02	1.21E-02	1.16E-02	1.41E-02	1.82E-0
W_In	grains	96.00	109.54	110.82	114.26	130.67	175.00
W Out	grains	72.21	71.65	84.75	81.43	99.03	127.39
 Delta_grains	grains	23.79	37.91	26.10	32.83	31.64	47.61
P_ambient	Pa	81371	81307	81342	81765	81894	82211
P In	Pa	81372	81308	81343	81763	81892	82209
P_Out	Pa	81370	81307	81340	81768	81897	82213
Air flow_In	SCFM	327.9	328.1	329.8	327.5	327.2	335.9
Air flow_Ut	SCFM	327.0	328.2	329.2	327.2	327.1	336.0
Flow_Condensate (Coriolis)	kg/sec	6.46E-04				8.49E-04	1.19E-0
Flow_Condensate (Coriolis)		1.03E-02	1.40E-02	1.08E-02	1.34E-02	1.35E-02	1.90E-0
	gpm						
Total Condensate Weight (Scale)	lbs	2.59	3.50	2.81	3.31	3.31	3.44
Total Condensate Weight (Coriolis)	lbs	2.554	3.262	1.251	3.231	3.373	3.325
Total Condensate Weight (Coriolis)	kg	1.159	1.480	0.568	1.465	1.530	1.508
Balance_AirMass	Unitless	1.003	1.000	1.002	1.001	1.000	1.000
Balance_MoistureMass	Unitless	0.997	1.046	1.007	1.011	0.997	1.022
Balance_Energy	Unitless	1.004	0.997	1.005	1.000	1.001	0.996
Electric Power	kW	0.820	0.779	0.874	0.831	0.907	0.916
Total Load Removal	kW	-0.731	-0.716	-0.736	-0.744	-0.776	-0.78
Sensible Load Removal	kW	-2.318	-3.240	-2.486	-2.927	-2.875	-3.99
Latent Load Removal	kW	1.587	2.524	1.750	2.183	2.098	3.209
Condensate Production	pints/day	118.4	161.3	124.8	154.2	155.7	219.2
Efficiency	liters/kWh	2.967	4.257	2.936	3.814	3.525	4.910
Linciency	IIICI S/KVVII	2.907	4.237	2.930	5.014	3.525	4.910
Electric Power (Model)	kW	0.821	0.775	0.873	0.828	0.905	0.918
Total Load Removal (Model)	kW	-0.726	-0.728	-0.753	-0.730	-0.768	-0.79
Sensible Load Removal (Model)	kW	-2.336	-3.203	-2.478	-2.922	-2.867	-4.00
Latent Load Removal (Model)	kW	1.610	2.476	1.725	2.192	2.099	3.220
Condensate Production (Model)	pints/day	117.1	160.9	128.4	151.4	153.8	220.2
Efficiency (Model)	liters/kWh	2.937	4.259	3.024	3.754	3.483	4.930
Electric Power Error	kW	0.001	-0.004	0	-0.003	-0.002	0.002
	1.44	(0.16%)	(0.48%)	(0.05%)	(0.35%)	(0.18%)	(0.25%
Total Load Removal Error	kW	0.005	-0.012	-0.017	0.014	0.009	-0.00
	1.44	(0.66%)	(1.65%)	(2.36%)	(1.86%)	(1.1%)	(0.24%
Sensible Load Removal Error	kW	-0.018	0.037	0.008	0.004	0.008	-0.01
	N V V	(0.77%)	(1.14%)	(0.31%)	(0.15%)	(0.27%)	(0.31%
Latent Load Removal Error		0.023	-0.049	-0.025	0.01	0.001	0.011
Latent Load Removal Error	kW	(1.44%)	(1.93%)	(1.43%)	(0.44%)	(0.05%)	(0.34%
Condensate Production Error	ninte/devi	-1.23	-0.485	3.522	-2.774	-1.822	1.043
Condensate Production Error	pints/day	(1.04%)	(0.3%)	(2.82%)	(1.8%)	(1.17%)	(0.48%
Efficiency Error	liters/kWh	-0.029 (1.03%)	0.002	0.088	-0.06	-0.042	0.02

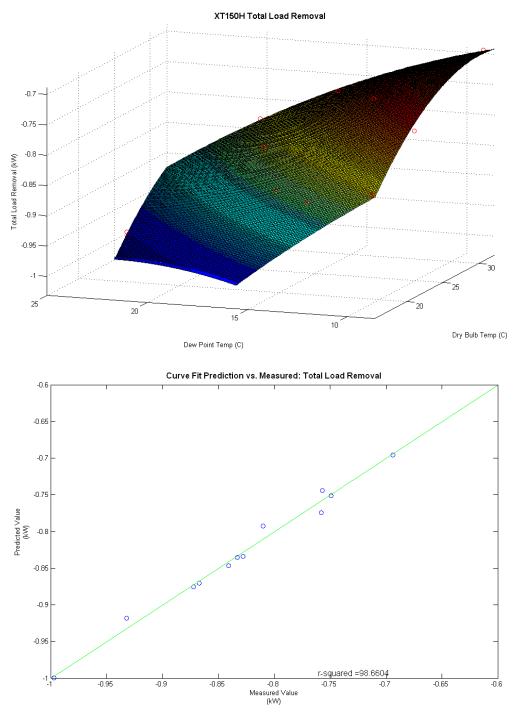
Table 5. Summary of Test Data (continued)

Appendix B – Photos of Experimental Setup

Figure 5. Photograph of Ultra-Aire XT150H test setup

A stand was constructed to elevate the unit so flow could be measured and collected. The temperature of the flowing condensate was measured in the trap. This piping was insulated to maintain condensate temperature up to a coriolis flowmeter. The condensate was collected downstream in the jug seen in the lower center of the image, and weighed after the test. All seams in the XT150H's sheet metal box were sealed with aluminum tape, to prevent air leakage and thus maintain an accurate air mass balance. The gray box sitting on top of the dehumidifier is the power meter.


Figure 6. Photograph of Ultra-Aire XT150H test setup

The rigid ductwork to the right of the image is a mixing section, at the end of which temperature and humidity are measured. Thick insulation was applied to the ductwork after that measurement to prevent heat loss and condensation prior to the dehumidifier inlet. Similarly, insulated ductwork routes the outlet airstream to a mixing section where outlet temperature and humidity are measured. The inset image shows pitot tube connections for pressure measurement immediately at the unit's inlet and outlet. The blue tubing connects the pitot tubes to pressure transducers.

Appendix C – Plots of Data Fit Surfaces and Model Comparisons

Figure 7. Electrical power consumption (kW)

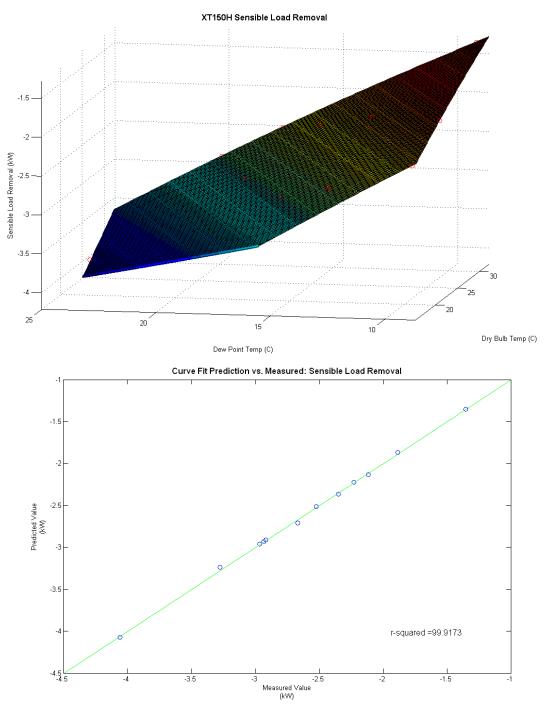


Figure 9. Sensible load removal (kW)

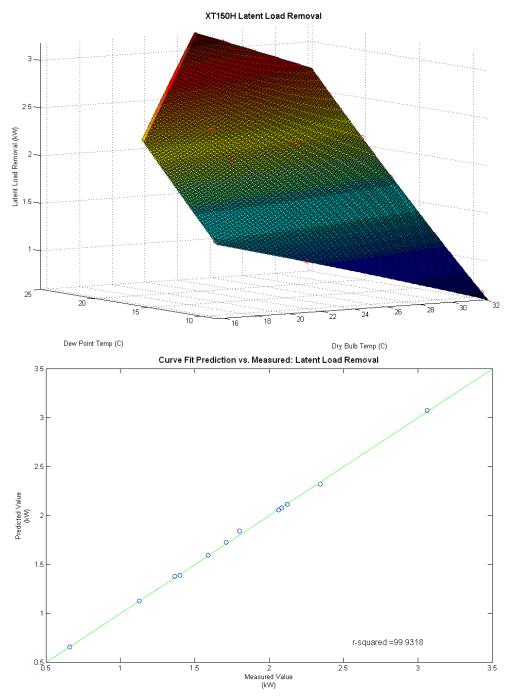


Figure 10. Latent load removal (kW)

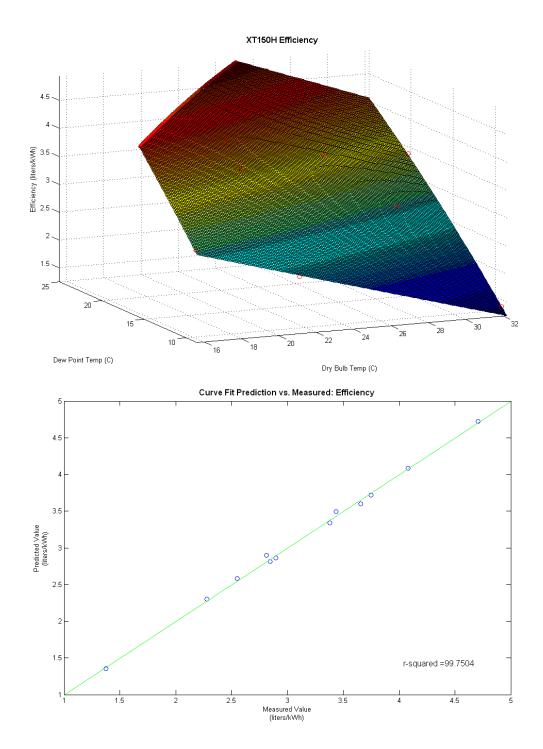


Figure 11. Efficiency (L/kWh)

Appendix D – Plots of EnergyPlus Model Performance Comparisons

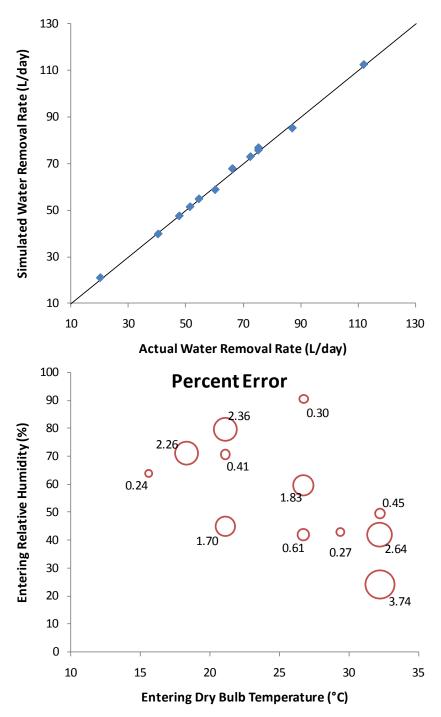


Figure 12. EnergyPlus Model – Water Removal Rate (L/day)

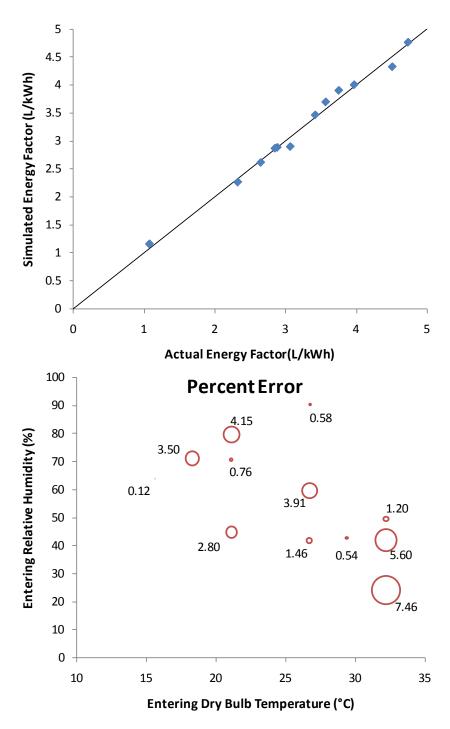


Figure 13. EnergyPlus Model – Energy Factor (L/kWh)

REPORT DOC		Form Approved OMB No. 0704-0188		
The public reporting burden for this collection of in gathering and maintaining the data needed, and collection of information, including suggestions fo should be aware that notwithstanding any other procurrently valid OMB control number. PLEASE DO NOT RETURN YOUR FOR			cluding the time and comments ive Services for failing to c	ne for reviewing instructions, searching existing data sources, s regarding this burden estimate or any other aspect of this and Communications Directorate (0704-0188). Respondents comply with a collection of information if it does not display a
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
December 2009	Technical Report			
 TITLE AND SUBTITLE Laboratory Test Report for Th 	ermaStor Liltra Aire XT	1501		TRACT NUMBER AC36-08-GO28308
Dehumidifier		15011		
			5b. GRA	NT NUMBER
			5c. PRO	GRAM ELEMENT NUMBER
6. AUTHOR(S)			5d. PRO	JECT NUMBER
D. Christensen and J. Winkler			NR	EL/TP-550-47215
			5e. TAS	K NUMBER
				F98001
			5f WOE	
			51. WOR	IN ONIT NOMBER
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION
National Renewable Energy L	aboratory			
1617 Cole Blvd.	NREL/TP-550-47215			
Golden, CO 80401-3393				
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
				NREL
				11. SPONSORING/MONITORING
				AGENCY REPORT NUMBER
12. DISTRIBUTION AVAILABILITY STA				
National Technical Information				
U.S. Department of Commerc 5285 Port Royal Road	e			
Springfield, VA 22161				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT (Maximum 200 Words)				
This report documents the me	•			
				t. Its performance was measured -squared values greater than 0.998 for
				al fit was then used to implement the
Zone Air Direct-Expansion De				·····
15. SUBJECT TERMS				
thermastor; thermastor ultra-a	ire; ultra-aire; xt150h; c	lehumidifier		
16. SECURITY CLASSIFICATION OF:	17. LIMITATION		19a. NAME C	OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS		OF PAGES		
Unclassified Unclassified Unclas	ssified UL	1	19b. TELEPH	IONE NUMBER (Include area code)
<u> </u>				Standard Form 298 (Rev. 8/98)

Standard Form 298 (Rev.	8/9
Prescribed by ANSI Std. Z39.18	