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Outline of Talk
 Rationale for stabilization/preconditioning procedure
 Proposed Study plan to probe transitory behavior

 Consists of preconditioning
 Dark 90°C anneal at open circuit

 emulates 85/85, but shorter and perhaps induce reversible changes
 Two branches of subsequent stabilization

 Light exposure at 1-sun, 60°C
Dark exposure at 60°C, in forward bias between optimum power point 

voltage and open-circuit voltage
 Modules used in study
 Value of C-V profiling as signature
 C-V profiles

 on CIGS module, sweep directions, frequencies
 Carrier concentrations, depletion widths on CIGS & CdTe modules

 Performance changes in CIGS & CdTe modules with 
stabilization/preconditioning procedure

 Summary & conclusions
 CV -derived depletion width changes & hysteresis  appear linked  to  stability
 Dark exposure in forward bias likely emulates light exposure at 1-sun
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Rationale for Preconditioning Procedure
 Transient and metastable changes in CdTe/CIGS performance pose 

challenges in assessing performance: 
 Is a unique PV conversion efficiency/performance metric possible without 

specifying prior exposure history? (probably not)
 Time between exposure and I-V measurement is critical

 Current standard for thin-film PV certification (IEC 61646) stabilization: 
 calls for light-soaking until change in power ≤ 2% is achieved, after consecutive 

periods of at least 43 kW-h/m2 of integrated irradiance 
 designed with amorphous silicon (a-Si) in mind

Dominant defect mechanism in a-Si: light-induced Staebler-Wronski effect 
 CIGS or CdTe devices most likely have different defect mechanisms 

Current procedure may be inadequate when applied to CIGS / CdTe 

 Appropriate preconditioning or stabilization steps prior to performance 
testing would lead to reduced error in assessing long-term energy yield, 
service lifetime and/or reliability. 
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Defects in CIGS or CdTe
 Ascribed major role in shaping transient or metastable 

phenomena
 Mobile ions

 CdTe 
Cu moving between back contact and CdS/CdTe interface

 CIGS
Cu - In vacancy complexes
Se vacancy

 Presence of Traps
 CdTe

Voc increases with time
 CIGS 

Persistent photoconductivity
Changes in acceptor concentration after thermal anneal
Charging/discharging of donors at CdS/CIGS interface

 C-V profiling used as probe for defects in CIGS & CdTe
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Proposed Stability Study Plan Flowchart
 Preconditioning step & Main Stabilization Sequence Study Plan 
Main Stabilization: 
 dark 90°C anneal step, emulates and is shorter version of 85C/85% RH 1000-h  

certification test
 consists of two branches: light exposure & biased dark exposure, both @ 60°C
 Biased dark exposure is advantageous if successful because of ease and lower cost
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Modules Studied
 Diverse set of CdTe & CIGS modules 

 Some nascent or new, never used, or stored as controls
 Some pre-exposed in hot-humid climate
 Some light-soaked indoors

Module 
Type  Quantity Exposure Conditions Pre-existing exposure conditions 

CdTe A 2 One each: light soak, 
biased dark soak Yes, hot-humid outdoors 3 years 

CdTe B 2 One each: light soak, 
biased dark soak No, nascent 

CdTe C 1 biased dark soak Yes, indoor light-soak, 1130 kW-h 
in 2002 

CIGS A 4 Two each: light soak, 
biased dark soak 

Nascent: 3 controls from 2003;   
1 pre-exposed in hot-humid 

outdoors 3 years 

CIGS B 2 One each: light soak, 
biased dark soak No, nascent 
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Module characterization tests

 I-V
 Using large area continuous solar simulator (LACSS) apparatus
 Dark & light (STC), part into reverse bias

 Derive series resistances, shunt conductances, etc…, via standard diode analysis

 C-V profiling
 Used precision HP 4284A LCR meter
 If module cells are uniform, measuring C-V on module with Nc number of 

interconnected cells, produces signal as if the device under test were a cell 
sized 0.5-3 cm2, 
 due to series connection & magnitude cancellation of cell area (Ac) & number (Nc)

)1(111...1...111
0

121 C

C

D
Mod

NcNcjMod N
A

w
C

CCCCCC
⋅⋅⋅≈⇒+++++=

−

εε



National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future

Value of C-V profiling CdTe cells
 Albin, D.S. et al., “Degradation and Capacitance-Voltage Hysteresis in CdTe 

Devices,” ibid. these proceedings.
 Hysteresis in depletion width vs. bias and derived carrier densities as one sweeps 

into reverse then up to forward bias appears correlated to amount of Cu in devices
 No Cu in back contact  little hysteresis in C-V profile
 Cu in back contact  hysteresis in depletion width between reverse & forward bias scans
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C-V profiling on CIGS Module
 Mott-Schottky plot upper graph 

 A2/C2 vs. Vbias 
 C-V scan sweep details
 Start Vb = 0
 sweep to reverse bias, arrives at extrema 
 Vb dwells 5 mins. at extrema in reverse
 sweep reverses to forward bias
 Vb arrives at max fwd bias 
 Vb dwells 5 mins. at max fwd bias 
 sweep reverses & scans down to 0
 dwell for 5 mins. at 0 bias

 Multiple C-V profiles run across broad span of 
frequencies 100 Hz-800 kHz, (lower graph) to 
determine location of best signal
 best signal range ~ 50 – 100 kHz is Θ ≤ 20°
 Θ = angle between reactive component & 

total Z vector  = arctangent of dissipation
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CIGS A module, biased dark exposure branch: carrier 
density & depletion width
 Depletion width (Wd) vs. Vbias upper graph & 
carrier density (N(Wd)) lower graph shown 
Profiles at various stages of exposure: baseline, 
after precondition, after dark 90°C anneal, after 2 
voltage-biased dark soaks 
Wd profiles show variation & hysteresis 

Wd hysteresis between measurements sweeping 
into reverse bias & then forward bias
~16%-20% varying by exposure, 
 large increase in Wd and hysteresis after dark 

90°C anneal
 N(Wd) Carrier densities
At baseline start near ~ 1016/cm3 

Increase preconditioning outdoor exposure
Collapse after dark 90°C anneal
Increase after 120 h biased dark soak 60°C back 
up to level after preconditioning exposure

Similar changes for light-soaked CIGS A
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CdTe C module, biased dark exposure branch: carrier 
density & depletion width

 Depletion width (Wd vs. Vb upper graph) & 
carrier density (N(Wd) lower graph) shown
Profiles at various stages of exposure, as in 

previous dark-soak example
 Wd profiles
Show less hysteresis ~5%-15% of total Wd 

and/or variations (as %) than CIGS during 
tests  
 larger & span larger range than for CIGS
Dark 90°C anneal lowers Wd
Post-anneal exposure brings profiles close to 

levels after preconditioning
 N(Wd) carrier densities
show small or modest variation with exposure 

and dark anneal
Minima ~just under 1014/cm3, consistent with 

Albin data for device with no Cu
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CdTe A or B, light/dark exposure branches, depletion & 
carrier densities summarized, compared to CdTe C

 CdTe B
 Depletion widths (Wd)
 Wd vs. Vb profiles show variations & 
hysteresis similar to C
 somewhat larger than A
 exhibit similar changes with dark 
90°C anneal:
Wd values lowered, span vs. Vb larger

subsequent exposures raise & bring 
Wd vs. Vb profiles close to levels 
observed after preconditioning

 Carrier densities
 similar minima ~just under 1014/cm3

 mostly 1014-1015, for Wd 0.8-2 µm
 Show similar variation with exposure
 dark 90°C anneal has modest effect

 CdTe A
Depletion widths (Wd)
 Wd vs. Vb profile changes and 
hysteresis are smallest of all CdTe
little changes on dark 90°C anneal
subsequent exposures (light/dark) 
bring Wd vs. Vb profiles close to 
where they were at baseline

 Carrier densities
 similar minima ~just under 1014/cm3

mostly similar to B except spanned 
Wd is less than B modules
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Performance changes in CIGS A or B modules due to 
stabilization procedures
 I-V Changes plotted relative to 
baseline vs. 9 exposure categories 

 initial preconditioning outdoor 
exposures increase performance of 
A1-A3, slightly drops that of B1,B2

 dark 90°C anneal substantially 
degrades performance ~5%-12%, 
largely due to FF & Voc losses

Subsequent light/dark soaks only 
mitigate losses from dark anneal ≤ ½ 

 Performance appear moderately 
stabilized after 3 exposures   
 ∆ ηSTC < ~2% after 3 exposures post 

dark anneal
Light or dark exposures appear  
equally capable of driving toward 
stabilized ηSTC

Module odd/even numbers & dark/light colors     
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Sources of performance changes in CIGS A or B modules 
due to stabilization procedures scrutinized

 Std. diode analysis for series resistance 
(Rse) & shunt conductance (Gsh)
 CIGS A
Rse dark/light increase after dark anneal, 
Rse (dark) drop in subsequent exposures, 

but stay somewhat elevated
Rse (light) diminish in latter exposures, are 

fairly low at end (0.4-0.8 Ω-cm2)
 Gsh are relatively small and drop after 
dark anneal and all exposures

 CIGS B
Rse dark/light increase slightly or 
modestly after dark 90°C anneal, but 
diminish in subsequent exposures
 Gsh increase for exposures after dark 
anneal for B2, but B1 shows no change 
after all exposures after dark anneal
 somewhat larger than for CIGS A, may be 

more of source of FF loss Baseline
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Performance changes in CdTe A, B, C modules due to 
stabilization procedures
 Changes plotted relative to baseline
 initial preconditioning outdoor 
exposures result in small changes
 dark 90°C anneal 
degrades performance of B’s due to FF 
recovers performance of A & C
increases Voc for all modules

 exposures subsequent to dark anneal
 keep A1,A2 gains in dark/light exposures
 B1 improves in dark soak, B2 improves 

at 1st then degrades in light soak
 C1 slowly loses gains in dark-soak

 Performance (∆ηSTC) post dark anneal
A2, B1 moderately stabilized (∆ηSTC< 2%) 

after 3 exposures
 rest not stabilized (∆ηSTC >2%)
dark exposures appear no worse than, & 

are equally capable of driving toward 
stabilized ηSTC as  light exposures
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Sources of performance changes in CdTe A, B, C modules 
due to stabilization procedures scrutinized

 Std. diode analysis for Rse & Gsh

 all CdTe modules exhibit very low Gsh       
 ≤ 0.2 milliS/cm2, Gsh not a problem at all

 Rse dark/light
CdTe A: 
either slight change or increase initially  
drop close to baseline or lower with 

subsequent exposures
CdTe B
Rse (light) increase dramatically after 

dark anneal & stay high in subsequent 
exposures

 CdTe C
Rse not a problem
Rse dark increase after dark anneal 

but drop to lower than baseline in 
subsequent exposures
 Rse light stay low (≤ 1 Ω-cm2) 

throughout tests

R
se

 li
gh

t I
-V

 Ω
-c

m
2

Baseline

1 kW
-h/m

2

outdoor

26 kW
-h/m

2

outdoor

90° C
 dark

anneal

24 kW
-h/m

2

or 24 h dark

48 kW
-h/m

2

or 48 h dark

48 kW
-h/m

2

or 48 h dark

48 kW
-h/m

2

light-soak

R
se

 d
ar

k-
IV

 (Ω
-c

m
2 )

0
20
40
60
80

100
120
140
160
180

G
sh

 d
ar

k-
IV

 (m
illi

S/
cm

2 )

0.00

0.05

0.10

0.15

0.20

0
2
4
6
8

10
12
14
16

A1
A2
B1
B2
C1

A1
A2
B1
B2
C1

A1
A2
B1
B2
C1

Module odd/even numbers & dark/light colors    
 dark/light exposures after dark 90 C anneal



National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future

Summary

 CIGS A & B (unexposed previously)
FF losses dominate
Rse increases are chief cause for loss in CIGS A, 

 reversible in exposures (light-soak and biased dark-soak) after dark 90°C anneal, 
so hard to reconcile that with TCO degradation

 more consistent with in changes in semiconductor as shown by changes in C-V 
carrier densities during tests

Rse increases observed in CIGS B, appear somewhat reversible in  
subsequent exposures

Shunt losses likely more of problem for CIGS B 
 Voc loses also present for both A & B, ~2%-4%
 Changes in and hysteresis in depletion width (C-V) suggest link to 
stability in CIGS A 
 not enough data measured for CIGS B
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Summary
 CdTe A (pre-exposed)
 Relatively stable during tests, 
 modest increases in performance after dark anneal and subsequent exposures 
 but efficiencies are always lower than for CdTe B even after CdTe B degraded

Voc increases after dark anneal
 relative small changes in depletion width and hysteresis thereof during exposure 

tests is consistent with link to stability
 CdTe B (unexposed)
FF losses dominate after dark 90°C anneal
Rse (light) increases appears likely main mechanism
 do not reverse substantially in subsequent exposures, maybe irreversible changes after dark 90°C 

anneal at OC
 efficiencies are fairly larger than CdTe A even after degradation

 larger changes in depletion width and hysteresis thereof during exposure tests 
consistent with link to stability

 CdTe C (pre-exposed)
Slight FF, Voc increases with dark anneal & first few subsequent exposures 
Isc & Voc losses in latter exposures drop overall performance slightly
modest changes in depletion width and hysteresis thereof during exposure tests 

are somewhat consistent with the stability- depletion width link
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Conclusions

 Devised stabilization / preconditioning study plan procedures 
that show promise in arriving at more stable performance 
values when implemented
Both types of exposure: light soaking at 1-sun & 60°C and voltage-
biased dark-soaking at 60° C appear capable at driving similar 
performance changes for CdTe & CIGS
Have yet to more precisely quantify equivalency of exposure times between 
two types that produce stabilized performance values

C-V profiling and derived depletion widths changes plus hysteresis 
thereof likely provide valuable co-signature to potential metastability
details of hysteresis and link to stability is likely different for CdTe and CIGS
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