

National Renewable Energy Laboratory

Innovation for Our Energy Future

Definition of a 5-MW Reference Wind Turbine for Offshore System Development

J. Jonkman, S. Butterfield, W. Musial, and G. Scott

Technical Report NREL/TP-500-38060 February 2009

Definition of a 5-MW Reference Wind Turbine for Offshore System Development

J. Jonkman, S. Butterfield, W. Musial, and G. Scott

Prepared under Task No. WER5.3301

Technical Report NREL/TP-500-38060 February 2009

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

Contract No. DE-AC36-08-GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/ordering.htm</u>

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

Acronyms and Abbreviations

ADAMS® A2AD	=	Automatic Dynamic Analysis of Mechanical Systems ADAMS-to-AeroDyn
BEM	=	blade-element / momentum
СМ	=	center of mass
DLL DOE DOF DOWEC DU		dynamic link library U.S. Department of Energy degree of freedom Dutch Offshore Wind Energy Converter project Delft University
ECN equiripple	=	Energy Research Center of the Netherlands equalized-ripple
FAST	=	Fatigue, Aerodynamics, Structures, and Turbulence
GE	=	General Electric
IEA	=	International Energy Agency
MSL	=	mean sea level
NACA NREL NWTC	= = =	National Advisory Committee for Aeronautics National Renewable Energy Laboratory National Wind Technology Center
OCS OC3	=	offshore continental shelf Offshore Code Comparison Collaborative
PI PID	=	proportional-integral proportional-integral-derivative
RECOFF	=	Recommendations for Design of Offshore Wind Turbines project
WindPAC w.r.t.	Γ= =	Wind Partnerships for Advanced Component Technology project with respect to

Nomenclature

A_d	=	discrete-time state matrix
B_d	=	discrete-time input matrix
C_d	=	discrete-time output state matrix
C_{arphi}	=	effective damping in the equation of motion for the rotor-speed error
D_d	=	discrete-time input transmission matrix
f_c	=	corner frequency
GK	=	gain-correction factor
I _{Drivetrain}	=	drivetrain inertia cast to the low-speed shaft
I _{Gen}	=	generator inertia relative to the high-speed shaft
I _{Rotor}	=	rotor inertia
K_D	=	blade-pitch controller derivative gain
K_I	=	blade-pitch controller integral gain
K_P	=	blade-pitch controller proportional gain
K_{arphi}	=	effective stiffness in the equation of motion for the rotor-speed error
M_{arphi}	=	effective inertia (mass) in the equation of motion for the rotor-speed error
n	=	discrete-time-step counter
N _{Gear}	=	high-speed to low-speed gearbox ratio
Р	=	mechanical power
P_{0}	=	rated mechanical power
$\partial P/\partial heta$	=	sensitivity of the aerodynamic power to the rotor-collective blade-pitch angle
t	=	simulation time
T _{Aero}	=	aerodynamic torque in the low-speed shaft
T _{Gen}	=	generator torque in the high-speed shaft

T_s	=	discrete-time step
u	=	unfiltered generator speed
x	=	for the control-measurement filter, the filter state
<i>x,y,z</i>	=	set of orthogonal axes making up a reference-frame coordinate system
у	=	for the control-measurement filter, the filtered generator speed
α	=	low-pass filter coefficient
$\varDelta \theta$	=	small perturbation of the blade-pitch angles about their operating point
${\it \Delta} {\it \Omega}$	=	small perturbation of the low-speed shaft rotational speed about the rated speed
$\Delta\dot{\Omega}$	=	low-speed shaft rotational acceleration
ζ_{φ}	=	damping ratio of the response associated with the equation of motion for the rotor-speed error
θ	=	full-span rotor-collective blade-pitch angle
$ heta_K$	=	rotor-collective blade-pitch angle at which the pitch sensitivity has doubled from its value at the rated operating point
π	=	the ratio of a circle's circumference to its diameter
arphi	=	the integral of $\dot{\phi}$ with respect to time
$\dot{\phi}$	=	small perturbation of the low-speed shaft rotational speed about the rated speed
$\ddot{\varphi}$	=	low-speed shaft rotational acceleration
${\it \Omega}$	=	low-speed shaft rotational speed
$arOmega_0$	=	rated low-speed shaft rotational speed
$\omega_{\varphi n}$	=	natural frequency of the response associated with the equation of motion for the rotor-speed error

v

Executive Summary

To support concept studies aimed at assessing offshore wind technology, we developed the specifications of a representative utility-scale multimegawatt turbine now known as the "NREL offshore 5-MW baseline wind turbine." This wind turbine is a conventional three-bladed upwind variable-speed variable blade-pitch-to-feather-controlled turbine. To create the model, we obtained some broad design information from the published documents of turbine manufacturers, with a heavy emphasis on the REpower 5M machine. Because detailed data was unavailable, however, we also used the publicly available properties from the conceptual models in the WindPACT, RECOFF, and DOWEC projects. We then created a composite from these data, extracting the best available and most representative specifications. This report documents the specifications of the NREL offshore 5-MW baseline wind turbine—including the aerodynamic, structural, and control-system properties—and the rationale behind its development. The model has been, and will likely continue to be, used as a reference by research teams throughout the world to standardize baseline offshore wind turbine specifications and to quantify the benefits of advanced land- and sea-based wind energy technologies.

Table of Contents

1 Introduction	1
2 Blade Structural Properties	5
3 Blade Aerodynamic Properties	7
4 Hub and Nacelle Properties	12
5 Drivetrain Properties	14
6 Tower Properties	15
7 Baseline Control System Properties	17
7.1 Baseline Control-Measurement Filter	17
7.2 Baseline Generator-Torque Controller	19
7.3 Baseline Blade-Pitch Controller	20
7.4 Baseline Blade-Pitch Actuator	26
7.5 Summary of Baseline Control System Properties	26
8 FAST with AeroDyn and ADAMS with AeroDyn Models	
9 Full-System Natural Frequencies and Steady-State Behavior	
10 Conclusions	
References	
Appendix A FAST Input Files	
A.1 Primary Input File	
A.2 Blade Input File – NRELOffshrBsline5MW_Blade.dat	40
A.3 Tower Input File – NRELOffshrBsline5MW_Tower_Onshore.dat	41
A.4 ADAMS Input File – NRELOffshrBsline5MW_ADAMSSpecific.dat	42
A.5 Linearization Input File – NRELOffshrBsline5MW_Linear.dat	43
Appendix B AeroDyn Input Files	44
Appendix B AeroDyn Input Files B.1 Primary Input File – NRELOffshrBsline5MW_AeroDyn.ipt	 44 44
Appendix B AeroDyn Input Files B.1 Primary Input File – NRELOffshrBsline5MW_AeroDyn.ipt B.2 Airfoil-Data Input File – Cylinder1.dat	 44 44 44
Appendix B AeroDyn Input Files B.1 Primary Input File – NRELOffshrBsline5MW_AeroDyn.ipt B.2 Airfoil-Data Input File – Cylinder1.dat B.3 Airfoil-Data Input File – Cylinder2.dat	44 44 44 44

Appendix C Source Code for the Control System DLL	
B.9 Airfoil-Data Input File – NACA64_A17.dat	
B.8 Airfoil-Data Input File – DU21_A17.dat	
B.7 Airfoil-Data Input File – DU25_A17.dat	
B.6 Airfoil-Data Input File – DU30_A17.dat	
B.5 Airfoil-Data Input File – DU35_A17.dat	47

List of Tables

Table 1-1.	Gross Properties Chosen for the NREL 5-MW Baseline Wind Turbine	2
Table 2-1.	Distributed Blade Structural Properties	5
Table 2-2.	Undistributed Blade Structural Properties	6
Table 3-1.	Distributed Blade Aerodynamic Properties	7
Table 4-1.	Nacelle and Hub Properties	13
Table 5-1.	Drivetrain Properties	14
Table 6-1.	Distributed Tower Properties	15
Table 6-2.	Undistributed Tower Properties	16
Table 7-1.	Sensitivity of Aerodynamic Power to Blade Pitch in Region 3	23
Table 7-2.	Baseline Control System Properties	27
Table 9-1.	Full-System Natural Frequencies in Hertz	30

List of Figures

Figure 3-1.	Corrected coefficients of the DU40 airfoil	. 9
Figure 3-2.	Corrected coefficients of the DU35 airfoil	. 9
Figure 3-3.	Corrected coefficients of the DU30 airfoil	10
Figure 3-4.	Corrected coefficients of the DU25 airfoil	10
Figure 3-5.	Corrected coefficients of the DU21 airfoil	11
Figure 3-6.	Corrected coefficients of the NACA64 airfoil	11
Figure 7-1.	Bode plot of generator speed low-pass filter frequency response	18
Figure 7-2.	Torque-versus-speed response of the variable-speed controller	20
Figure 7-3.	Best-fit line of pitch sensitivity in Region 3	24
Figure 7-4.	Baseline blade-pitch control system gain-scheduling law	25
Figure 7-5.	Flowchart of the baseline control system	27
Figure 9-1.	Steady-state responses as a function of wind speed	32

1 Introduction

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), through the National Wind Technology Center (NWTC), has sponsored conceptual studies aimed at assessing offshore wind technology suitable in the shallow and deep waters off the U.S. offshore continental shelf (OCS) and other offshore sites worldwide. To obtain useful information from such studies, use of realistic and standardized input data is required. This report documents the turbine specifications of what is now called the "NREL offshore 5-MW baseline wind turbine" and the rationale behind its development. Our objective was to establish the detailed specifications of a large wind turbine that is representative of typical utility-scale land- and sea-based multimegawatt turbines, and suitable for deployment in deep waters.

Before establishing the detailed specifications, however, we had to choose the basic size and power rating of the machine. Because of the large portion of system costs in the support structure of an offshore wind system, we understood from the outset that if a deepwater wind system is to be cost-effective, each individual wind turbine must be rated at 5 MW or higher [23].¹ Ratings considered for the baseline ranged from 5 MW to 20 MW. We decided that the baseline should be 5 MW because it has precedence:

- Feasible floater configurations for offshore wind turbines scoped out by Musial, Butterfield, and Boone [23] were based on the assumption of a 5-MW unit.
- Unpublished DOE offshore cost studies were based on a rotor diameter of 128 m, which is a size representative of a 5- to 6-MW wind turbine.
- The land-based Wind Partnerships for Advanced Component Technology (WindPACT) series of studies, considered wind turbine systems rated up to 5 MW [19,24,29].
- The Recommendations for Design of Offshore Wind Turbines project (known as RECOFF) based its conceptual design calculations on a wind turbine with a 5-MW rating [32].
- The Dutch Offshore Wind Energy Converter (DOWEC) project based its conceptual design calculations on a wind turbine with a 6-MW rating [8,14,17].
- At the time of this writing, the largest wind turbine prototypes in the world—the Multibrid M5000 [5,21,22] and the REpower 5M [18,26,27]—each had a 5-MW rating.

We gathered the publicly available information on the Multibrid M5000 and REpower 5M prototype wind turbines. And because detailed information on these machines was unavailable, we also used the publicly available properties from the conceptual models used in the WindPACT, RECOFF, and DOWEC projects. These models contained much greater detail than was available about the prototypes. We then created a composite from these models, extracting the best available and most representative specifications.

¹ A single 5-MW wind turbine can supply enough energy annually to power 1,250 average American homes.

The Multibrid M5000 machine has a significantly higher tip speed than typical onshore wind turbines and a lower tower-top mass than would be expected from scaling laws previously developed in one of the WindPACT studies [29]. In contrast, the REpower 5M machine has properties that are more "expected" and "conventional." For this reason, we decided to use the specifications of the REpower 5M machine as the target specifications² for our baseline model.

The wind turbine used in the DOWEC project had a slightly higher rating than the rating of the REpower 5M machine, but many of the other basic properties of the DOWEC turbine matched the REpower 5M machine very well. In fact, the DOWEC turbine matched many of the properties of the REpower 5M machine better than the turbine properties derived for the WindPACT and RECOFF studies.³ As a result of these similarities, we made the heaviest use of data from the DOWEC study in our development of the NREL offshore 5-MW baseline wind turbine.

The REpower 5M machine has a rotor radius of about 63 m. Wanting the same radius and the lowest reasonable hub height possible to minimize the overturning moment acting on an offshore substructure, we decided that the hub height for the baseline wind turbine should be 90 m. This would give a 15-m air gap between the blade tips at their lowest point when the wind turbine is undeflected and an estimated extreme 50-year individual wave height of 30 m (i.e., 15-m amplitude). The additional gross properties we chose for the NREL 5-MW baseline wind turbine, most of which are identical to those of the REpower 5M, are given in Table 1-1. The (*x*,*y*,*z*) coordinates of the overall center of mass (CM) location of the wind turbine are indicated in a tower-base coordinate system, which originates along the tower centerline at ground or mean

-	
Rating	5 MW
Rotor Orientation, Configuration	Upwind, 3 Blades
Control	Variable Speed, Collective Pitch
Drivetrain	High Speed, Multiple-Stage Gearbox
Rotor, Hub Diameter	126 m, 3 m
Hub Height	90 m
Cut-In, Rated, Cut-Out Wind Speed	3 m/s, 11.4 m/s, 25 m/s
Cut-In, Rated Rotor Speed	6.9 rpm, 12.1 rpm
Rated Tip Speed	80 m/s
Overhang, Shaft Tilt, Precone	5 m, 5°, 2.5°
Rotor Mass	110,000 kg
Nacelle Mass	240,000 kg
Tower Mass	347,460 kg
Coordinate Location of Overall CM	(-0.2 m, 0.0 m, 64.0 m)

Table 1-1. Gross Properties Chosen for the NREL 5-MW BaselineWind Turbine

 $^{^2}$ Note that we established the target specifications using information about the REpower 5M machine that was published in January 2005 [26,27]. Some of the information presented in Refs. [26] and [27] disagrees with more recently published information. For example, the published nacelle and rotor masses of the REpower 5M are higher in the more recent publications.

³ This was probably because the REpower 5M prototype utilized blades provided by LM Glasfiber [18], a company that helped establish the structural properties of the blades used in the DOWEC study.

sea level (MSL). The *x*-axis of this coordinate system is directed nominally downwind, the *y*-axis is directed transverse to the nominal wind direction, and the *z*-axis is directed vertically from the tower base to the yaw bearing.

The actual REpower 5M wind turbine uses blades with built-in prebend as a means of increasing tower clearance without a large rotor overhang. Because many of the available simulation tools and design codes cannot support blades with built-in prebend, we chose a 2.5°-upwind precone in the baseline wind turbine to represent the smaller amount of precone and larger amount of prebend that are built into the actual REpower 5M machine.

The rotor diameter indicated in Table 1-1 ignores the effect of blade precone, which reduces the actual diameter and swept area. The exact rotor diameter in the turbine specifications (assuming that the blades are undeflected) is actually (126 m) × $cos(2.5^{\circ}) = 125.88$ m and the actual swept area is $(\pi/4) \times (125.88 \text{ m})^2 = 12,445.3 \text{ m}^2$.

We present other information about this model as follows:

- The blade structural properties in Section 2
- The blade aerodynamic properties in Section 3
- The hub and nacelle properties in Section 4
- The drivetrain properties in Section 5
- The tower properties in Section 6
- The baseline control system properties in Section 7
- The aero-servo-elastic FAST (Fatigue, Aerodynamics, Structures, and Turbulence) [11] with AeroDyn [16,20] and MSC.ADAMS[®] (Automatic Dynamic Analysis of Mechanical Systems) with A2AD (ADAMS-to-AeroDyn)⁴ [6,15] and AeroDyn models of the wind turbine in Section 8
- The basic responses of the land-based version of the wind turbine, including its fullsystem natural frequencies and steady-state behavior in Section 9.

Although we summarize much of this information⁵ for conciseness and clarity, Section 7 contains a high level of detail about the development of the wind turbine's baseline control system. These details are provided because they are fundamental to the development of more advanced control systems.

The NREL offshore 5-MW baseline wind turbine has been used to establish the reference specifications for a number of research projects supported by the U.S. DOE's Wind & Hydropower Technologies Program [1,2,7,12,28,33,34]. In addition, the integrated European

⁴ Note that we use the term "ADAMS" to mean "MSC.ADAMS with A2AD" in this work.

⁵ Note that some of the turbine properties are presented with a large number (>4) of significant figures. Most of these were carried over from the turbine properties documented in the DOWEC study [8,14,17]—We did not truncate their precision to maintain consistency with the original data source.

Union UpWind research program⁶ and the International Energy Agency (IEA) Wind Annex XXIII Subtask 2^7 Offshore Code Comparison Collaboration (OC3) [13,25] have adopted the NREL offshore 5-MW baseline wind turbine as their reference model. The model has been, and will likely continue to be, used as a reference by research teams throughout the world to standardize baseline offshore wind turbine specifications and to quantify the benefits of advanced land- and sea-based wind energy technologies.

⁶ Web site: <u>http://www.upwind.eu/default.aspx</u>

⁷ Web site: <u>http://www.ieawind.org/Annex%20XXIII/Subtask2.html</u>

2 Blade Structural Properties

The NREL offshore 5-MW baseline wind turbine has three blades. We based the distributed blade structural properties of each blade on the structural properties of the 62.6-m-long LM Glasfiber blade used in the DOWEC study (using the data given in Appendix A of Ref. [17]). Because the blades in the DOWEC study were 1.1 m longer than the 61.5-m-long LM Glasfiber blades [18] used on the actual REpower 5M machine, we truncated the 62.6-m blades at 61.5-m span to obtain the structural properties of the NREL 5-MW baseline blades (we found the structural properties at the blade tip by interpolating between the 61.2-m and 61.7-m stations given in Appendix A of Ref. [17]). Table 2-1 lists the resulting properties.

The entries in the first column of Table 2-1, labeled "Radius," are the spanwise locations along the blade-pitch axis relative to the rotor center (apex). "BlFract" is the fractional distance along the blade-pitch axis from the root (0.0) to the tip (1.0). We located the blade root 1.5 m along the pitch axis from the rotor center, equivalent to half the hub diameter listed in Table 1-1.

"AeroCent" is the name of a FAST input parameter. The FAST code assumes that the bladepitch axis passes through each airfoil section at 25% chord. By definition, then, the quantity (AeroCent – 0.25) is the fractional distance to the aerodynamic center from the blade-pitch axis along the chordline, positive toward the trailing edge. Thus, at the root (i.e., BlFract = 0.0), AeroCent = 0.25 means that the aerodynamic center lies on the blade-pitch axis [because (0.25 - 0.25) = 0.0], and at the tip (i.e., BlFract = 1.0), AeroCent = 0.125 means that the aerodynamic center lies 0.125 chordlengths toward the leading edge from the blade-pitch axis [because (0.125)

Radius	BIFract	AeroCent	StrcTwst	BMassDen	FlpStff	EdgStff	GJStff	EAStff	Alpha	FlpIner	EdgIner	PrecrvRef	PreswpRef	FlpcgOf	EdgcgOf	FlpEAOf	EdgEAOf
(m)	(-)	(-)	(°)	(kg/m)	(N•m ²)	(N•m ²)	(N•m ²)	(N)	(-)	(kg•m)	(kg•m)	(m)	(m)	(m)	(m)	(m)	(m)
1.50	0.00000	0.25000	13.308	678.935	18110.00E+6	18113.60E+6	5564.40E+6	9729.48E+6	0.0	972.86	973.04	0.0	0.0	0.0	0.00017	0.0	0.0
1.70	0.00325	0.25000	13.308	678.935	18110.00E+6	18113.60E+6	5564.40E+6	9729.48E+6	0.0	972.86	973.04	0.0	0.0	0.0	0.00017	0.0	0.0
2.70	0.01951	0.24951	13.308	773.363	19424.90E+6	19558.60E+6	5431.59E+6	10789.50E+6	0.0	1091.52	1066.38	0.0	0.0	0.0	-0.02309	0.0	0.0
3.70	0.03577	0.24510	13.308	740.550	17455.90E+6	19497.80E+6	4993.98E+6	10067.23E+6	0.0	966.09	1047.36	0.0	0.0	0.0	0.00344	0.0	0.0
4.70	0.05203	0.23284	13.308	740.042	15287.40E+6	19788.80E+6	4666.59E+6	9867.78E+6	0.0	873.81	1099.75	0.0	0.0	0.0	0.04345	0.0	0.0
5.70	0.06829	0.22059	13.308	592.496	10782.40E+6	14858.50E+6	3474.71E+6	7607.86E+6	0.0	648.55	873.02	0.0	0.0	0.0	0.05893	0.0	0.0
6.70	0.08455	0.20833	13.308	450.275	7229.72E+6	10220.60E+6	2323.54E+6	5491.26E+6	0.0	456.76	641.49	0.0	0.0	0.0	0.06494	0.0	0.0
7.70	0.10081	0.19608	13.308	424.054	6309.54E+6	9144.70E+6	1907.87E+6	4971.30E+6	0.0	400.53	593.73	0.0	0.0	0.0	0.07718	0.0	0.0
8.70	0.11707	0.18382	13.308	400.638	5528.36E+6	8063.16E+6	1570.36E+6	4493.95E+6	0.0	351.61	547.18	0.0	0.0	0.0	0.08394	0.0	0.0
9.70	0.13335	0.17156	13.308	382.062	4980.06E+6	6884.44E+6	1158.26E+6	4034.80E+6	0.0	316.12	490.84	0.0	0.0	0.0	0.10174	0.0	0.0
10.70	0.14959	0.15931	13.308	399.655	4936.84E+6	7009.18E+6	1002.12E+6	4037.29E+6	0.0	303.60	503.86	0.0	0.0	0.0	0.10758	0.0	0.0
11.70	0.16585	0.14706	13.308	426.321	4691.66E+6	7167.68E+6	855.90E+6	4169.72E+6	0.0	289.24	544.70	0.0	0.0	0.0	0.15829	0.0	0.0
12.70	0.18211	0.13481	13.181	416.820	3949.46E+6	7271.66E+6	672.27E+6	4082.35E+6	0.0	246.57	569.90	0.0	0.0	0.0	0.22235	0.0	0.0
13.70	0.19837	0.12500	12.848	406.186	3386.52E+6	7081.70E+6	547.49E+6	4085.97E+6	0.0	215.91	601.28	0.0	0.0	0.0	0.30756	0.0	0.0
14.70	0.21465	0.12500	12.192	381.420	2933.74E+6	6244.53E+6	448.84E+6	3668.34E+6	0.0	187.11	546.56	0.0	0.0	0.0	0.30386	0.0	0.0
15.70	0.23089	0.12500	11.561	352.822	2568.96E+6	5048.96E+6	335.92E+6	3147.76E+6	0.0	160.84	468.71	0.0	0.0	0.0	0.26519	0.0	0.0
16.70	0.24715	0.12500	11.072	349.477	2388.65E+6	4948.49E+6	311.35E+6	3011.58E+6	0.0	148.56	453.76	0.0	0.0	0.0	0.25941	0.0	0.0
17.70	0.26341	0.12500	10.792	346.538	2271.99E+6	4808.02E+6	291.94E+6	2882.62E+6	0.0	140.30	436.22	0.0	0.0	0.0	0.25007	0.0	0.0
19.70	0.29595	0.12500	10.232	339.333	2050.05E+6	4501.40E+6	261.00E+6	2613.97E+6	0.0	124.61	398.18	0.0	0.0	0.0	0.23155	0.0	0.0
21.70	0.32846	0.12500	9.672	330.004	1828.25E+6	4244.07E+6	228.82E+6	2357.48E+6	0.0	109.42	362.08	0.0	0.0	0.0	0.20382	0.0	0.0
23.70	0.36098	0.12500	9.110	321.990	1588.71E+6	3995.28E+6	200.75E+6	2146.86E+6	0.0	94.36	335.01	0.0	0.0	0.0	0.19934	0.0	0.0
25.70	0.39350	0.12500	8.534	313.820	1361.93E+6	3750.76E+6	174.38E+6	1944.09E+6	0.0	80.24	308.57	0.0	0.0	0.0	0.19323	0.0	0.0
27.70	0.42602	0.12500	7.932	294.734	1102.38E+6	3447.14E+6	144.47E+6	1632.70E+6	0.0	62.67	263.87	0.0	0.0	0.0	0.14994	0.0	0.0
29.70	0.45855	0.12500	7.321	287.120	875.80E+6	3139.07E+6	119.98E+6	1432.40E+6	0.0	49.42	237.06	0.0	0.0	0.0	0.15421	0.0	0.0
31.70	0.49106	0.12500	6.711	263.343	681.30E+6	2734.24E+6	81.19E+6	1168.76E+6	0.0	37.34	196.41	0.0	0.0	0.0	0.13252	0.0	0.0
33.70	0.52358	0.12500	6.122	253.207	534.72E+6	2554.87E+6	69.09E+6	1047.43E+6	0.0	29.14	180.34	0.0	0.0	0.0	0.13313	0.0	0.0
35.70	0.55610	0.12500	5.546	241.666	408.90E+6	2334.03E+6	57.45E+6	922.95E+6	0.0	22.16	162.43	0.0	0.0	0.0	0.14035	0.0	0.0
37.70	0.58862	0.12500	4.971	220.638	314.54E+6	1828.73E+6	45.92E+6	760.82E+6	0.0	17.33	134.83	0.0	0.0	0.0	0.13950	0.0	0.0
39.70	0.62115	0.12500	4.401	200.293	238.63E+6	1584.10E+6	35.98E+6	648.03E+6	0.0	13.30	116.30	0.0	0.0	0.0	0.15134	0.0	0.0
41.70	0.65366	0.12500	3.834	179.404	175.88E+6	1323.36E+6	27.44E+6	539.70E+6	0.0	9.96	97.98	0.0	0.0	0.0	0.17418	0.0	0.0
43.70	0.68618	0.12500	3.332	165.094	126.01E+6	1183.68E+6	20.90E+6	531.15E+6	0.0	7.30	98.93	0.0	0.0	0.0	0.24922	0.0	0.0
45.70	0.71870	0.12500	2.890	154.411	107.26E+6	1020.16E+6	18.54E+6	460.01E+6	0.0	6.22	85.78	0.0	0.0	0.0	0.26022	0.0	0.0
47.70	0.75122	0.12500	2.503	138.935	90.88E+6	797.81E+6	16.28E+6	375.75E+6	0.0	5.19	69.96	0.0	0.0	0.0	0.22554	0.0	0.0
49.70	0.78376	0.12500	2.116	129.555	76.31E+6	709.61E+6	14.53E+6	328.89E+6	0.0	4.36	61.41	0.0	0.0	0.0	0.22795	0.0	0.0
51.70	0.81626	0.12500	1.730	107.264	61.05E+6	518.19E+6	9.07E+6	244.04E+6	0.0	3.36	45.44	0.0	0.0	0.0	0.20600	0.0	0.0
53.70	0.84878	0.12500	1.342	98.776	49.48E+6	454.87E+6	8.06E+6	211.60E+6	0.0	2.75	39.57	0.0	0.0	0.0	0.21662	0.0	0.0
55.70	0.88130	0.12500	0.954	90.248	39.36E+6	395.12E+6	7.08E+6	181.52E+6	0.0	2.21	34.09	0.0	0.0	0.0	0.22784	0.0	0.0
56.70	0.89756	0.12500	0.760	83.001	34.67E+6	353.72E+6	6.09E+6	160.25E+6	0.0	1.93	30.12	0.0	0.0	0.0	0.23124	0.0	0.0
57.70	0.91382	0.12500	0.574	72.906	30.41E+6	304.73E+6	5.75E+6	109.23E+6	0.0	1.69	20.15	0.0	0.0	0.0	0.14826	0.0	0.0
58.70	0.93008	0.12500	0.404	68.772	26.52E+6	281.42E+6	5.33E+6	100.08E+6	0.0	1.49	18.53	0.0	0.0	0.0	0.15346	0.0	0.0
59.20	0.93821	0.12500	0.319	66.264	23.84E+6	261.71E+6	4.94E+6	92.24E+6	0.0	1.34	17.11	0.0	0.0	0.0	0.15382	0.0	0.0
59.70	0.94636	0.12500	0.253	59.340	19.63E+6	158.81E+6	4.24E+6	63.23E+6	0.0	1.10	11.55	0.0	0.0	0.0	0.09470	0.0	0.0
60.20	0.95447	0.12500	0.216	55.914	16.00E+6	137.88E+6	3.66E+6	53.32E+6	0.0	0.89	9.77	0.0	0.0	0.0	0.09018	0.0	0.0
60.70	0.96260	0.12500	0.178	52.484	12.83E+6	118.79E+6	3.13E+6	44.53E+6	0.0	0.71	8.19	0.0	0.0	0.0	0.08561	0.0	0.0
61.20	0.97073	0.12500	0.140	49.114	10.08E+6	101.63E+6	2.64E+6	36.90E+6	0.0	0.56	6.82	0.0	0.0	0.0	0.08035	0.0	0.0
61.70	0.97886	0.12500	0.101	45.818	7.55E+6	85.07E+6	2.17E+6	29.92E+6	0.0	0.42	5.57	0.0	0.0	0.0	0.07096	0.0	0.0
62.20	0.98699	0.12500	0.062	41.669	4.60E+6	64.26E+6	1.58E+6	21.31E+6	0.0	0.25	4.01	0.0	0.0	0.0	0.05424	0.0	0.0
62.70	0.99512	0.12500	0.023	11.453	0.25E+6	6.61E+6	0.25E+6	4.85E+6	0.0	0.04	0.94	0.0	0.0	0.0	0.05387	0.0	0.0
63.00	1.00000	0.12500	0.000	10.319	0.17E+6	5.01F+6	0.19F+6	3.53E+6	0.0	0.02	0.68	0.0	0.0	0.0	0.05181	0.0	0.0

 Table 2-1. Distributed Blade Structural Properties

-0.25) = -0.125].

The flapwise and edgewise section stiffness and inertia values, "FlpStff," "EdgStff," "FlpIner," and "EdgIner" in Table 2-1, are given about the principal structural axes of each cross section as oriented by the structural-twist angle, "StrcTwst." The values of the structural twist were assumed to be identical to the aerodynamic twist discussed in Section 3.

"GJStff" represents the values of the blade torsion stiffness. Because the DOWEC blade data did not contain extensional stiffness information, we estimated the blade extensional stiffness values—"EAStff" in Table 2-1—to be 10⁷ times the average mass moment of inertia at each blade station. This came from a rule of thumb derived from the data available in the WindPACT rotor design study [19], but the exact values are not important because of the low rotational speed of the rotor.

The edgewise CM offset values, "EdgcgOf," are the distances in meters along the chordline from the blade-pitch axis to the CM of the blade section, positive toward the trailing edge. We neglected the insignificant values of the flapwise CM offsets, "FlpcgOf," and flapwise and edgewise elastic offsets, "FlpEAOf" and "EdgEAOf," given in Appendix A of Ref. [17]. Instead, we assumed that they were zero as shown in Table 2-1.

The distributed blade section mass per unit length values, "BMassDen," given in Table 2-1 are the values documented in Appendix A of Ref. [17]. We increased these by 4.536% in the model to scale the overall (integrated) blade mass to 17,740 kg, which was the nominal mass of the blades in the REpower 5M prototype. In our baseline specifications, the nominal second mass moment of inertia, nominal first mass moment of inertia, and the nominal radial CM location of each blade are 11,776,047 kg·m², 363,231 kg·m, and 20.475 m with respect to (w.r.t.) the blade root, respectively.

We specified a structural-damping ratio of 0.477465% critical in all modes of the isolated blade, which corresponds to the 3% logarithmic decrement used in the DOWEC study from page 20 of Ref. [14].

Table 2-2 summarizes the undistributed blade structural properties discussed in this section.

Length (w.r.t. Root Along Preconed Axis)	61.5 m					
Mass Scaling Factor	4.536 %					
Overall (Integrated) Mass	17,740 kg					
Second Mass Moment of Inertia (w.r.t. Root)	11,776,047 kg•m ²					
First Mass Moment of Inertia (w.r.t. Root)	363,231 kg•m					
CM Location (w.r.t. Root along Preconed Axis)	20.475 m					
Structural-Damping Ratio (All Modes)	0.477465 %					

Table 2-2. Undistributed Blade Structural Properties

3 Blade Aerodynamic Properties

Similar to the blade structural properties, we based the blade aerodynamic properties of the NREL 5-MW baseline wind turbine on the DOWEC blades (using the data described in Table 1 on page 13 of Ref. [14] and in Appendix A of Ref. [17]). We set the FAST with AeroDyn and ADAMS with AeroDyn models to use 17 blade elements for integration of the aerodynamic and structural forces. To better capture the large structural gradients at the blade root and the large aerodynamic gradients at the blade tip, the 3 inboard and 3 outboard elements are two-thirds the size of the 11 equally spaced midspan elements. Table 3-1 gives the aerodynamic properties at the blade nodes, which are located at the center of the blade elements.

The blade node locations, labeled as "RNodes" in Table 3-1, are directed along the blade-pitch axis from the rotor center (apex) to the blade cross sections. The element lengths, "DRNodes," sum to the total blade length of 61.5 m indicated in Table 2-2. The aerodynamic twist, "AeroTwst," as given in Table 3-1, are offset by -0.09182° from the values provided in Appendix A of Ref. [17] to ensure that the zero-twist reference location is at the blade tip. Integrating the chord distribution along the blade span reveals that the rotor solidity is roughly 5.16%.

As indicated in Table 3-1, we incorporated eight unique airfoil-data tables for the NREL offshore 5-MW baseline wind turbine. The two innermost airfoil tables represent cylinders with drag coefficients of 0.50 (Cylinder1.dat) and 0.35 (Cylinder2.dat) and no lift. We created the remaining six airfoil tables by making corrections for three-dimensional behavior to the two-dimensional airfoil-data coefficients of the six airfoils used in the DOWEC study (as detailed in

10		ISTIDUTED	Diaue Aei u	buynamic i	
Node	RNodes	AeroTwst	DRNodes	Chord	Airfoil Table
(-)	(m)	(°)	(m)	(m)	(-)
1	2.8667	13.308	2.7333	3.542	Cylinder1.dat
2	5.6000	13.308	2.7333	3.854	Cylinder1.dat
3	8.3333	13.308	2.7333	4.167	Cylinder2.dat
4	11.7500	13.308	4.1000	4.557	DU40_A17.dat
5	15.8500	11.480	4.1000	4.652	DU35_A17.dat
6	19.9500	10.162	4.1000	4.458	DU35_A17.dat
7	24.0500	9.011	4.1000	4.249	DU30_A17.dat
8	28.1500	7.795	4.1000	4.007	DU25_A17.dat
9	32.2500	6.544	4.1000	3.748	DU25_A17.dat
10	36.3500	5.361	4.1000	3.502	DU21_A17.dat
11	40.4500	4.188	4.1000	3.256	DU21_A17.dat
12	44.5500	3.125	4.1000	3.010	NACA64_A17.dat
13	48.6500	2.319	4.1000	2.764	NACA64_A17.dat
14	52.7500	1.526	4.1000	2.518	NACA64_A17.dat
15	56.1667	0.863	2.7333	2.313	NACA64_A17.dat
16	58.9000	0.370	2.7333	2.086	NACA64_A17.dat
17	61.6333	0.106	2.7333	1.419	NACA64_A17.dat

Table 3-1. Distributed Blade Aerodynamic Properties

Appendix A of Ref. [14]).⁸ In these airfoil tables, "DU" refers to Delft University and "NACA" refers to the National Advisory Committee for Aeronautics. We used AirfoilPrep v2.0 [9] to "tailor" these airfoil data. We first corrected the lift and drag coefficients for rotational stall delay using the Selig and Eggars method for 0° to 90° angles of attack. We then corrected the drag coefficients using the Viterna method for 0° to 90° angles of attack assuming an aspect ratio of 17. Finally, we estimated the Beddoes-Leishman dynamic-stall hysteresis parameters. We made no corrections to the DOWEC-supplied pitching-moment coefficients. The resulting three-dimensionally corrected airfoil-data coefficients are illustrated graphically in Figure 3-1 through Figure 3-6. The numerical values are documented in the AeroDyn airfoil-data input files that make up Appendix B.

⁸ C. Lindenburg of the Energy Research Center of the Netherlands (ECN) provided numerical values for these coefficients.

Figure 3-2. Corrected coefficients of the DU35 airfoil

Figure 3-4. Corrected coefficients of the DU25 airfoil

Figure 3-6. Corrected coefficients of the NACA64 airfoil

4 Hub and Nacelle Properties

As indicated in Table 1-1, we located the hub of the NREL 5-MW baseline wind turbine 5 m upwind of the tower centerline at an elevation of 90 m above the ground when the system is undeflected. We also specified the same vertical distance from the tower top to the hub height used by the DOWEC study—that is, 2.4 m (as specified in Table 6 on page 26 of Ref. [14]). Consequently, the elevation of the yaw bearing above ground or MSL is 87.6 m. With a shaft tilt of 5°, this made the distance directed along the shaft from the hub center to the yaw axis 5.01910 m and the vertical distance along the yaw axis from the tower top to the shaft 1.96256 m. The distance directed along the shaft from the hub center to the shaft 1.912 m (from Table 6 on page 26 of Ref. [14]).

We specified the hub mass to be 56,780 kg like in the REpower 5M, and we located its CM at the hub center. The hub inertia about the shaft, taken to be 115,926 kg·m², was found by assuming that the hub casting is a thin spherical shell with a radius of 1.75 m (this is 0.25 m longer than the actual hub radius because the nacelle height of the DOWEC turbine was 3.5 m, based on the data in Table 6 on page 26 of Ref. [14]).

We specified the nacelle mass to be 240,000 kg like in the REpower 5M and we located its CM 1.9 m downwind of the yaw axis like in the DOWEC turbine (from Table 7 on page 27 of Ref. [14]) and 1.75 m above the yaw bearing, which was half the height of the DOWEC turbine's nacelle (from Table 6 on page 26 of Ref. [14]). The nacelle inertia about the yaw axis was taken to be 2,607,890 kg·m². We chose this to be equivalent to the DOWEC turbine's nacelle inertia about its nacelle CM, but translated to the yaw axis using the parallel-axis theorem with the nacelle mass and downwind distance to the nacelle CM.

We took the nacelle-yaw actuator to have a natural frequency of 3 Hz, which is roughly equivalent to the highest full-system natural frequency in the FAST model (see Section 9), and a damping ratio of 2% critical. This resulted in an equivalent nacelle-yaw-actuator linear-spring constant of 9,028,320,000 N•m/rad and an equivalent nacelle-yaw-actuator linear-damping constant of 19,160,000 N•m/(rad/s). The nominal nacelle-yaw rate was chosen to be the same as that for the DOWEC 6-MW turbine, or 0.3°/s (from page 27 of Ref. [14]).

Table 4-1 summarizes the nacelle and hub properties discussed in this section.

Table 4-1.	Nacelle	and Hub	Properties
------------	---------	---------	------------

Elevation of Yaw Bearing above Ground	87.6 m		
Vertical Distance along Yaw Axis from Yaw Bearing to Shaft	1.96256 m		
Distance along Shaft from Hub Center to Yaw Axis	5.01910 m		
Distance along Shaft from Hub Center to Main Bearing	1.912 m		
Hub Mass	56,780 kg		
Hub Inertia about Low-Speed Shaft	115,926 kg•m ²		
Nacelle Mass	240,000 kg		
Nacelle Inertia about Yaw Axis	2,607,890 kg•m ²		
Nacelle CM Location Downwind of Yaw Axis	1.9 m		
Nacelle CM Location above Yaw Bearing	1.75 m		
Equivalent Nacelle-Yaw-Actuator Linear-Spring Constant	9,028,320,000 N•m/rad		
Equivalent Nacelle-Yaw-Actuator Linear-Damping Constant	19,160,000 N•m/(rad/s)		
Nominal Nacelle-Yaw Rate	0.3 °/s		

5 Drivetrain Properties

We specified the NREL 5-MW baseline wind turbine to have the same rated rotor speed (12.1 rpm), rated generator speed (1173.7 rpm), and gearbox ratio (97:1) as the REpower 5M machine. The gearbox was assumed be a typical multiple-stage gearbox but with no frictional losses—a requirement of the preprocessor functionality in FAST for creating ADAMS models [11]. The electrical efficiency of the generator was taken to be 94.4%. This was chosen to be roughly the same as the total mechanical-to-electrical conversion loss used by the DOWEC turbine at rated power—that is, the DOWEC turbine had about 0.35 MW of power loss at about 6.25 MW of aerodynamic power (from Figure 15, page 24 of Ref. [14]). The generator inertia about the high-speed shaft was taken to be 534.116 kg·m², which is the same equivalent low-speed shaft generator inertia used in the DOWEC study (i.e., 5,025,500 kg·m² from page 36 of Ref. [14]).

The driveshaft was taken to have the same natural frequency as the RECOFF turbine model and a structural-damping ratio—associated with the free-free mode of a drivetrain composed of a rigid generator and rigid rotor—of 5% critical. This resulted in an equivalent driveshaft linear-spring constant of 867,637,000 N•m/rad and a linear-damping constant of 6,215,000 N•m/(rad/s).

The high-speed shaft brake was assumed to have the same ratio of maximum brake torque to maximum generator torque and the same time lag as used in the DOWEC study (from page 29 of Ref. [14]). This resulted in a fully deployed high-speed shaft brake torque of 28,116.2 N•m and a time lag of 0.6 s. This time lag is the amount of time it takes for the brake to fully engage once deployed. The FAST and ADAMS models employ a simple linear ramp from nothing to full braking over the 0.6-s period.

Table 5-1 summarizes the drivetrain properties discussed in this section.

Rated Rotor Speed	12.1 rpm
Rated Generator Speed	1173.7 rpm
Gearbox Ratio	97 :1
Electrical Generator Efficiency	94.4 %
Generator Inertia about High-Speed Shaft	534.116 kg•m ²
Equivalent Drive-Shaft Torsional-Spring Constant	867,637,000 N•m/rad
Equivalent Drive-Shaft Torsional-Damping Constant	6,215,000 N•m/(rad/s)
Fully-Deployed High-Speed Shaft Brake Torque	28,116.2 N•m
High-Speed Shaft Brake Time Constant	0.6 s

Table 5-1. Drivetrain Properties

6 Tower Properties

The properties of the tower for the NREL offshore 5-MW baseline wind turbine will depend on the type support structure used to carry the rotor-nacelle assembly. The type of support structure will, in turn, depend on the installation site, whose properties vary significantly through differences in water depth, soil type, and wind and wave severity. Offshore support-structure types include fixed-bottom monopiles, gravity bases, and space-frames—such as tripods, quadpods, and lattice frames (e.g., "jackets")—and floating structures. This section documents the tower properties for the equivalent land-based version of the NREL 5-MW baseline wind turbine. These properties provide a basis with which to design towers for site-specific offshore support structures. For example, different types of offshore support structures for the NREL 5-MW baseline wind turbine have been designed for—and investigated in—separate phases of the OC3 project [13,25].

We based the distributed properties of the land-based tower for the NREL 5-MW baseline wind turbine on the base diameter (6 m) and thickness (0.027 m), top diameter (3.87 m) and thickness (0.019 m), and effective mechanical steel properties of the tower used in the DOWEC study (as given in Table 9 on page 31 of Ref. [14]). The Young's modulus was taken to be 210 GPa, the shear modulus was taken to be 80.8 GPa, and the effective density of the steel was taken to be 8,500 kg/m³. The density of 8,500 kg/m³ was meant to be an increase above steel's typical value of 7,850 kg/m³ to account for paint, bolts, welds, and flanges that are not accounted for in the tower thickness data. The radius and thickness of the tower were assumed to be linearly tapered from the tower base to tower top. Because the REpower 5M machine had a larger tower-top mass than the DOWEC wind turbine, we scaled up the thickness of the tower relative to the values given earlier in this paragraph to strengthen the tower. We chose an increase of 30% to ensure that the first fore-aft and side-to-side tower frequencies were placed between the one- and three-per-rev frequencies throughout the operational range of the wind turbine in a Campbell diagram. Table 6-1 gives the resulting distributed tower properties.

The entries in the first column, "Elevation," are the vertical locations along the tower centerline relative to the tower base. "HtFract" is the fractional height along the tower centerline from the tower base (0.0) to the tower top (1.0). The rest of columns are similar to those described for the distributed blade properties presented in Table 2-1.

The resulting overall (integrated) tower mass is 347,460 kg and is centered at 38.234 m along the

Elevation	HtFract	TMassDen	TwFAStif	TwSSStif	TwGJStif	TwEAStif	TwFAIner	TwSSIner	TwFAcgOf	TwSScgOf
(m)	(-)	(kg/m)	(N•m²)	(N•m ²)	(N•m²)	(N)	(kg•m)	(kg•m)	(m)	(m)
0.00	0.0	5590.87	614.34E+9	614.34E+9	472.75E+9	138.13E+9	24866.3	24866.3	0.0	0.0
8.76	0.1	5232.43	534.82E+9	534.82E+9	411.56E+9	129.27E+9	21647.5	21647.5	0.0	0.0
17.52	0.2	4885.76	463.27E+9	463.27E+9	356.50E+9	120.71E+9	18751.3	18751.3	0.0	0.0
26.28	0.3	4550.87	399.13E+9	399.13E+9	307.14E+9	112.43E+9	16155.3	16155.3	0.0	0.0
35.04	0.4	4227.75	341.88E+9	341.88E+9	263.09E+9	104.45E+9	13838.1	13838.1	0.0	0.0
43.80	0.5	3916.41	291.01E+9	291.01E+9	223.94E+9	96.76E+9	11779.0	11779.0	0.0	0.0
52.56	0.6	3616.83	246.03E+9	246.03E+9	189.32E+9	89.36E+9	9958.2	9958.2	0.0	0.0
61.32	0.7	3329.03	206.46E+9	206.46E+9	158.87E+9	82.25E+9	8356.6	8356.6	0.0	0.0
70.08	0.8	3053.01	171.85E+9	171.85E+9	132.24E+9	75.43E+9	6955.9	6955.9	0.0	0.0
78.84	0.9	2788.75	141.78E+9	141.78E+9	109.10E+9	68.90E+9	5738.6	5738.6	0.0	0.0
87 60	10	2536 27	115 82E+9	115 82E+9	89 13E+9	62 66E+9	4688.0	4688.0	0.0	0.0

Table 6-1. Distributed Tower Properties

tower centerline above the ground. This result follows directly from the overall tower height of 87.6 m.

We specified a structural-damping ratio of 1% critical in all modes of the isolated tower (without the rotor-nacelle assembly mass present), which corresponds to the values used in the DOWEC study (from page 21 of Ref. [14]).

Table 6-2 summarizes the undistributed tower properties discussed in this section.

	per
Height above Ground	87.6 m
Overall (Integrated) Mass	347,460 kg
CM Location (w.r.t. Ground along Tower Centerline)	38.234 m
Structural-Damping Ratio (All Modes)	1 %

Table 6-2. Undistributed Tower Properties

7 Baseline Control System Properties

For the NREL 5-MW baseline wind turbine, we chose a conventional variable-speed, variable blade-pitch-to-feather configuration. In such wind turbines, the conventional approach for controlling power-production operation relies on the design of two basic control systems: a generator-torque controller and a full-span rotor-collective blade-pitch controller. The two control systems are designed to work independently, for the most part, in the below-rated and above-rated wind-speed range, respectively. The goal of the generator-torque controller is to maximize power capture below the rated operation point. The goal of the blade-pitch controller is to regulate generator speed above the rated operation point.

We based the baseline control system for the NREL 5-MW wind turbine on this conventional design approach. We did not establish additional control actions for nonpower-production operations, such as control actions for normal start-up sequences, normal shutdown sequences, and safety and protection functions. Nor did we develop control actions to regulate the nacelle-yaw angle. (The nacelle-yaw control system is generally neglected within aero-servo-elastic simulation because its response is slow enough that it does not generally contribute to large extreme loads or fatigue damage.)

We describe the development of our baseline control system next, including the controlmeasurement filter (Section 7.1), the generator-torque controller (Section 7.2), the blade-pitch controller (Section 7.3), and the blade-pitch actuator (Section 7.4). Section 7.5 shows how these systems are put together in the overall integrated control system.

7.1 Baseline Control-Measurement Filter

As is typical in utility-scale multimegawatt wind turbines, both the generator-torque and bladepitch controllers use the generator speed measurement as the sole feedback input. To mitigate high-frequency excitation of the control systems, we filtered the generator speed measurement for both the torque and pitch controllers using a recursive, single-pole low-pass filter with exponential smoothing [30]. The discrete-time recursion (difference) equation for this filter is

$$y[n] = (1-\alpha)u[n] + \alpha y[n-1], \qquad (7-1)$$

with

$$\alpha = e^{-2\pi T_s f_c}, \qquad (7-2)$$

where y is the filtered generator speed (output measurement), u is the unfiltered generator speed (input), α is the low-pass filter coefficient, n is the discrete-time-step counter, T_s is the discrete time step, and f_c is the corner frequency.

By defining the filter state,

$$x[n] = y[n-1], \tag{7-3a}$$

$$x[n+1] = y[n], \tag{7-3b}$$

one can derive a discrete-time state-space representation of this filter:

$$x[n+1] = A_d x[n] + B_d u[n]$$

$$y[n] = C_d x[n] + D_d u[n],$$
(7-4)

where $A_d = \alpha$ is the discrete-time state matrix, $B_d = 1 - \alpha$ is the discrete-time input matrix, $C_d = \alpha$ is the discrete-time output state matrix, and $D_d = 1 - \alpha$ is the discrete-time input transmission matrix.

or

The state-space representation of Eq. (7-4) is useful for converting the filter into other forms, such as transfer-function form or frequency-response form [31].

We set the corner frequency (the -3 dB point in Figure 7-1) of the low-pass filter to be roughly one-quarter of the blade's first edgewise natural frequency (see Section 9) or 0.25 Hz. For a discrete time step of 0.0125 s, the frequency response of the resulting filter is shown in the Bode plot of Figure 7-1.

We chose the recursive, single-pole filter for its simplicity in implementation and effectiveness

Figure 7-1. Bode plot of generator speed low-pass filter frequency response

in the time domain. The drawbacks to this filter are its gentle roll-off in the stop band (-6 dB/octave) and the magnitude and nonlinearity of its phase lag in the pass band [30]. We considered other linear low-pass filters, such as Butterworth, Chebyshev, Elliptic, and Bessel filters because of their inherent advantages relative to the chosen filter. Like the chosen filter, a Butterworth filter has a frequency response that is flat in the pass band, but the Butterworth filter offers steeper roll-off in the stop band. Chebyshev filters offer even steeper roll-off in the stop band (Type 2), respectively. Elliptic filters offer the steepest roll-off of any linear filter, but have equiripple in both the pass and stop bands. Bessel filters offer the flattest group delay (linear phase lag) in the pass band. We designed and tested examples of each of these other low-pass filter types, considering state-space representations of up to fourth order (four states). None were found to give superior performance in the overall system response, however, so they did not warrant the added complexity of implementation.

7.2 Baseline Generator-Torque Controller

The generator torque is computed as a tabulated function of the filtered generator speed, incorporating five control regions: 1, $1\frac{1}{2}$, 2, $2\frac{1}{2}$, and 3. Region 1 is a control region before cut-in wind speed, where the generator torque is zero and no power is extracted from the wind; instead, the wind is used to accelerate the rotor for start-up. Region 2 is a control region for optimizing power capture. Here, the generator torque is proportional to the square of the filtered generator speed to maintain a constant (optimal) tip-speed ratio. In Region 3, the generator power is held constant so that the generator torque is inversely proportional to the filtered generator speed. Region $1\frac{1}{2}$, a start-up region, is a linear transition between Regions 1 and 2. This region is used to place a lower limit on the generator speed to limit the wind turbine's operational speed range. Region $2\frac{1}{2}$ is a linear transition between Regions 2 and 3 with a torque slope corresponding to the slope of an induction machine. Region $2\frac{1}{2}$ is typically needed (as is the case for my 5-MW turbine) to limit tip speed (and hence noise emissions) at rated power.

We found the peak of the power coefficient as a function of the tip-speed ratio and blade-pitch surface by running FAST with AeroDyn simulations at a number of given rotor speeds and a number of given rotor-collective blade-pitch angles at a fixed wind speed of 8 m/s. From these simulations, we found that the peak power coefficient of 0.482 occurred at a tip-speed ratio of 7.55 and a rotor-collective blade-pitch angle of 0.0° . With the 97:1 gearbox ratio, this resulted in an optimal constant of proportionality of $0.0255764 \text{ N}\cdot\text{m/rpm}^2$ in the Region 2 control law. With the rated generator speed of 1173.7 rpm, rated electric power of 5 MW, and a generator efficiency of 94.4%, the rated mechanical power is 5.296610 MW and the rated generator torque is 43,093.55 N·m. We defined Region $1\frac{1}{2}$ to span the range of generator speeds between 670 rpm and 30% above this value (or 871 rpm). The minimum generator speed of 670 rpm corresponds to the minimum rotor speed of 6.9 rpm used by the actual REpower 5M machine [26]. We took the transitional generator speed between Regions $2\frac{1}{2}$ and 3 to be 99% of the rated generator speed, or 1,161.963 rpm. The generator-slip percentage in Region $2\frac{1}{2}$ was taken to be 10%, in accordance with the value used in the DOWEC study (see page 24 of Ref. [14]). Figure 7-2 shows the resulting generator-torque versus generator speed response curve.

Figure 7-2. Torque-versus-speed response of the variable-speed controller

Because of the high intrinsic structural damping of the drivetrain, we did not need to incorporate a control loop for damping drivetrain torsional vibration in our baseline generator-torque controller.

We did, however, place a conditional statement on the generator-torque controller so that the torque would be computed as if it were in Region 3—regardless of the generator speed—whenever the previous blade-pitch-angle command was 1° or greater. This results in improved output power quality (fewer dips below rated) at the expense of short-term overloading of the generator and the gearbox. To avoid this excessive overloading, we saturated the torque to a maximum of 10% above rated, or 47,402.91 N•m. We also imposed a torque rate limit of 15,000 N•m/s. In Region 3, the blade-pitch control system takes over.

7.3 Baseline Blade-Pitch Controller

In Region 3, the full-span rotor-collective blade-pitch-angle commands are computed using gainscheduled proportional-integral (PI) control on the speed error between the filtered generator speed and the rated generator speed (1173.7 rpm).

We designed the blade-pitch control system using a simple single-degree-of-freedom (single-DOF) model of the wind turbine. Because the goal of the blade-pitch control system is to regulate the generator speed, this DOF is the angular rotation of the shaft. To compute the required control gains, it is beneficial to examine the equation of motion of this single-DOF system. From a simple free-body diagram of the drivetrain, the equation of motion is

$$T_{Aero} - N_{Gear} T_{Gen} = \left(I_{Rotor} + N_{Gear}^2 I_{Gen} \right) \frac{d}{dt} \left(\Omega_0 + \Delta \Omega \right) = I_{Drivetrain} \Delta \dot{\Omega} , \qquad (7-5)$$

where T_{Aero} is the low-speed shaft aerodynamic torque, T_{Gen} is the high-speed shaft generator torque, N_{Gear} is the high-speed to low-speed gearbox ratio, $I_{Drivetrain}$ is the drivetrain inertia cast to the low-speed shaft, I_{Rotor} is the rotor inertia, I_{Gen} is the generator inertia relative to the highspeed shaft, Ω_0 is the rated low-speed shaft rotational speed, $\Delta\Omega$ is the small perturbation of low-speed shaft rotational speed about the rated speed, $\Delta\dot{\Omega}$ is the low-speed shaft rotational acceleration, and t is the simulation time.

Because the generator-torque controller maintains constant generator power in Region 3, the generator torque in Region 3 is inversely proportional to the generator speed (see Figure 7-2), or

$$T_{Gen}\left(N_{Gear}\Omega\right) = \frac{P_0}{N_{Gear}\Omega},\tag{7-6}$$

where P_{θ} is the rated mechanical power and Ω is the low-speed shaft rotational speed.

Similarly, assuming negligible variation of aerodynamic torque with rotor speed, the aerodynamic torque in Region 3 is

$$T_{Aero}\left(\theta\right) = \frac{P\left(\theta, \Omega_{0}\right)}{\Omega_{0}},\tag{7-7}$$

where P is the mechanical power and θ is the full-span rotor-collective blade-pitch angle.

Using a first-order Taylor series expansion of Eqs. (7-6) and (7-7), one can see that

$$T_{Gen} \approx \frac{P_0}{N_{Gear} \Omega_0} - \frac{P_0}{N_{Gear} \Omega_0^2} \Delta \Omega$$
(7-8)

and

$$T_{Aero} \approx \frac{P_0}{\Omega_0} + \frac{1}{\Omega_0} \left(\frac{\partial P}{\partial \theta}\right) \Delta \theta , \qquad (7-9)$$

where $\Delta \theta$ is a small perturbation of the blade-pitch angles about their operating point. With proportional-integral-derivative (PID) control, this is related to the rotor-speed perturbations by

$$\Delta \theta = K_P N_{Gear} \Delta \Omega + K_I \int_0^t N_{Gear} \Delta \Omega dt + K_D N_{Gear} \Delta \dot{\Omega} , \qquad (7-10)$$

where K_P , K_I , and K_D are the blade-pitch controller proportional, integral, and derivative gains, respectively.

By setting $\dot{\phi} = \Delta \Omega$, combining the above expressions, and simplifying, the equation of motion for the rotor-speed error becomes

$$\left[I_{Drivetrain} + \frac{1}{\Omega_0} \left(-\frac{\partial P}{\partial \theta}\right) N_{Gear} K_D\right] \ddot{\varphi} + \left[\frac{1}{\Omega_0} \left(-\frac{\partial P}{\partial \theta}\right) N_{Gear} K_P - \frac{P_0}{\Omega_0^2}\right] \dot{\varphi} + \left[\frac{1}{\Omega_0} \left(-\frac{\partial P}{\partial \theta}\right) N_{Gear} K_I\right] \varphi = 0 \right]$$

$$(7-11)$$

One can see that the idealized PID-controlled rotor-speed error will respond as a second-order system with the natural frequency, $\omega_{\varphi n}$, and damping ratio, ζ_{φ} , equal to

$$\omega_{\varphi n} = \sqrt{\frac{K_{\varphi}}{M_{\varphi}}} \tag{7-12}$$

and

$$\zeta_{\varphi} = \frac{C_{\varphi}}{2\sqrt{K_{\varphi}M_{\varphi}}} = \frac{C_{\varphi}}{2M_{\varphi}\omega_{\varphi n}}.$$
(7-13)

In an active pitch-to-feather wind turbine, the sensitivity of aerodynamic power to the rotorcollective blade-pitch angle, $\partial P/\partial \theta$, is negative in Region 3. With positive control gains, then, the derivative term acts to increase the effective inertia of the drivetrain, the proportional term adds damping, and the integral term adds restoring. Also, because the generator torque drops with increasing speed error (to maintain constant power) in Region 3, one can see that the generator-torque controller introduces a negative damping in the speed error response [indicated by the $-P_0/\Omega_0^2$ term in Eq. (7-11)]. This negative damping must be compensated by the proportional term in the blade-pitch controller.

In the design of the blade-pitch controller, Ref. [10] recommends neglecting the derivative gain, ignoring the negative damping from the generator-torque controller, and aiming for the response characteristics given by $\omega_{\varphi n} = 0.6$ rad/s and $\zeta_{\varphi} = 0.6$ to 0.7. This specification leads to direct expressions for choosing appropriate PI gains once the sensitivity of aerodynamic power to rotor-collective blade pitch, $\partial P/\partial \theta$, is known:

$$K_{P} = \frac{2I_{Drivetrain}\Omega_{0}\zeta_{\varphi}\omega_{\varphi n}}{N_{Gear}\left(-\frac{\partial P}{\partial\theta}\right)}$$
(7-14)

and

$$K_{I} = \frac{I_{Drivetrain} \Omega_{0} \omega_{\varphi n}^{2}}{N_{Gear} \left(-\frac{\partial P}{\partial \theta}\right)}.$$
(7-15)

The blade-pitch sensitivity, $\partial P/\partial \theta$, is an aerodynamic property of the rotor that depends on the wind speed, rotor speed, and blade-pitch angle. We calculated it for the NREL offshore 5-MW baseline wind turbine by performing a linearization analysis in FAST with AeroDyn at a number

of given, steady, and uniform wind speeds; at the rated rotor speed ($\Omega_0 = 12.1$ rpm); and at the corresponding blade-pitch angles that produce the rated mechanical power ($P_0 = 5.296610$ MW). The linearization analysis involves perturbing the rotor-collective blade-pitch angle at each operating point and measuring the resulting variation in aerodynamic power. Within FAST, the partial derivative is computed using the central-difference-perturbation numerical technique. We created a slightly customized copy of FAST with AeroDyn so that the linearization procedure would invoke the frozen-wake assumption, in which the induced wake velocities are held constant while the blade-pitch angle is perturbed. This gives a more accurate linearization for heavily loaded rotors (i.e., for operating points in Region 3 closest to rated). Table 7-1 presents the results.

Wind Speed	Rotor Speed	Pitch Angle	∂ ₽ /∂ θ
(m/s)	(rpm)	(°)	(watt/rad)
11.4 - Rated	12.1	0.00	-28.24E+6
12.0	12.1	3.83	-43.73E+6
13.0	12.1	6.60	-51.66E+6
14.0	12.1	8.70	-58.44E+6
15.0	12.1	10.45	-64.44E+6
16.0	12.1	12.06	-70.46E+6
17.0	12.1	13.54	-76.53E+6
18.0	12.1	14.92	-83.94E+6
19.0	12.1	16.23	-90.67E+6
20.0	12.1	17.47	-94.71E+6
21.0	12.1	18.70	-99.04E+6
22.0	12.1	19.94	-105.90E+6
23.0	12.1	21.18	-114.30E+6
24.0	12.1	22.35	-120.20E+6
25.0	12.1	23.47	-125.30E+6

 Table 7-1. Sensitivity of Aerodynamic Power to Blade

 Pitch in Region 3

As Table 7-1 shows, the sensitivity of aerodynamic power to rotor-collective blade pitch varies considerably over Region 3, so constant PI gains are not adequate for effective speed control. The pitch sensitivity, though, varies nearly linearly with blade-pitch angle:

$$\frac{\partial P}{\partial \theta} = \left[\frac{\frac{\partial P}{\partial \theta}(\theta = 0)}{\theta_{K}}\right] \theta + \left[\frac{\partial P}{\partial \theta}(\theta = 0)\right]$$
(7-16a)

or

$$\frac{1}{\frac{\partial P}{\partial \theta}} = \frac{1}{\frac{\partial P}{\partial \theta}} \left(\theta = \theta\right) \left(1 + \frac{\theta}{\theta_K}\right),$$
(7-16b)

where $\frac{\partial P}{\partial \theta}(\theta = 0)$ is the pitch sensitivity at rated and θ_K is the blade-pitch angle at which the pitch sensitivity has doubled from its value at the rated operating point; that is,

$$\frac{\partial P}{\partial \theta} \left(\theta = \theta_K \right) = 2 \frac{\partial P}{\partial \theta} \left(\theta = 0 \right). \tag{7-17}$$

On the right-hand side of Eq. (7-16a), the first and second terms in square brackets represent the slope and intercept of the best-fit line, respectively. We computed this regression for the NREL 5-MW baseline wind turbine and present the results in Figure 7-3.

The linear relation between pitch sensitivity and blade-pitch angle presents a simple technique for implementing gain scheduling based on blade-pitch angle; that is,

$$K_{P}(\theta) = \frac{2I_{Drivetrain}\Omega_{0}\zeta_{\varphi}\omega_{\varphi n}}{N_{Gear}\left[-\frac{\partial P}{\partial \theta}(\theta=0)\right]}GK(\theta)$$
(7-18)

and

$$K_{I}(\theta) = \frac{I_{Drivetrain} \Omega_{0} \omega_{\varphi n}^{2}}{N_{Gear} \left[-\frac{\partial P}{\partial \theta} (\theta = 0) \right]} GK(\theta),$$
(7-19)

where $GK(\theta)$ is the dimensionless gain-correction factor (from Ref. [10]), which is dependent on the blade-pitch angle:

$$GK(\theta) = \frac{l}{l + \frac{\theta}{\theta_{K}}}.$$
(7-20)

In our implementation of the gain-scheduled PI blade-pitch controller, we used the blade-pitch angle from the previous controller time step to calculate the gain-correction factor at the next time step.

Using the properties for the baseline wind turbine and the recommended response characteristics from Ref. [10], the resulting gains are $K_P(\theta = 0^\circ) = 0.01882681$ s, $K_I(\theta = 0^\circ) = 0.008068634$, and $K_D = 0.0 \text{ s}^2$. Figure 7-4 presents the gains at other blade-pitch angles, along with the gain-correction factor. We used the upper limit of the recommended damping ratio range, $\zeta_{\varphi} = 0.7$, to compensate for neglecting negative damping from the generator-torque controller in the determination of K_P .

Unfortunately, the simple gain-scheduling law derived in this section for the proportional and integral gains cannot retain consistent response characteristics (i.e., constant values of $\omega_{\varphi n}$ and

Figure 7-4. Baseline blade-pitch control system gain-scheduling law
ζ_{φ}) across all of Region 3 when applied to the derivative gain. We, nevertheless, considered adding a derivative term by selecting and testing a range of gains, but none were found to give better performance in the overall system response. Instead, the baseline control system uses the gains derived previously in this section (without the derivative term).

We set the blade-pitch rate limit to 8° /s in absolute value. This is speculated to be the bladepitch rate limit of conventional 5-MW machines based on General Electric (GE) Wind's longblade test program. We also set the minimum and maximum blade-pitch settings to 0° and 90° , respectively. The lower limit is the set blade pitch for maximizing power in Region 2, as described in Section 7.2. The upper limit is very close to the fully feathered blade pitch for neutral torque. We saturated the integral term in the PI controller between these limits to ensure a fast response in the transitions between Regions 2 and 3.

7.4 Baseline Blade-Pitch Actuator

Because of limitations in the FAST code, the FAST model does not include any blade-pitch actuator dynamic effects. Blade-pitch actuator dynamics are, however, needed in ADAMS. To enable successful comparisons between the FAST and ADAMS response predictions, then, we found it beneficial to reduce the effect of the blade-pitch actuator response in ADAMS. Consequently, we designed the blade-pitch actuator in the ADAMS model with a very high natural frequency of 30 Hz, which is higher than the highest full-system natural frequency in the FAST model (see Section 9), and a damping ratio of 2% critical. This resulted in an equivalent blade-pitch actuator linear-spring constant of 971,350,000 N•m/rad and an equivalent blade-pitch actuator linear-damping constant of 206,000 N•m/(rad/s).

7.5 Summary of Baseline Control System Properties

We implemented the NREL offshore 5-MW wind turbine's baseline control system as an external dynamic link library (DLL) in the style of Garrad Hassan's *BLADED* wind turbine software package [3]. Appendix C contains the source code for this DLL, and Figure 7-5 presents a flowchart of the overall integrated control system calculations. Table 7-2 summarizes the baseline generator-torque and blade-pitch control properties we discussed earlier in this section.

Figure 7-5. Flowchart of the baseline control system

Corner Frequency of Generator-Speed Low-Pass Filter	0.25 Hz
Peak Power Coefficient	0.482
Tip-Speed Ratio at Peak Power Coefficient	7.55
Rotor-Collective Blade-Pitch Angle at Peak Power Coefficient	0.0 °
Generator-Torque Constant in Region 2	0.0255764 N•m/rpm ²
Rated Mechanical Power	5.296610 MW
Rated Generator Torque	43,093.55 N•m
Transitional Generator Speed between Regions 1 and 1 ¹ / ₂	670 rpm
Transitional Generator Speed between Regions 1 ¹ / ₂ and 2	871 rpm
Transitional Generator Speed between Regions 2 ¹ / ₂ and 3	1,161.963 rpm
Generator Slip Percentage in Region 2 ¹ / ₂	10 %
Minimum Blade Pitch for Ensuring Region 3 Torque	1 °
Maximum Generator Torque	47,402.91 N•m
Maximum Generator Torque Rate	15,000 N•m/s
Proportional Gain at Minimum Blade-Pitch Setting	0.01882681 s
Integral Gain at Minimum Blade-Pitch Setting	0.008068634
Blade-Pitch Angle at which the Rotor Power Has Doubled	6.302336 °
Minimum Blade-Pitch Setting	0 °
Maximum Blade-Pitch Setting	90 °
Maximum Absolute Blade Pitch Rate	8 °/s
Equivalent Blade-Pitch-Actuator Linear-Spring Constant	971,350,000 N•m/rad
Equivalent Blade-Pitch-Actuator Linear-Damping Constant	206,000 N•m/rad/s

	Table 7-2.	Baseline	Control	System	Properties
--	------------	----------	---------	--------	------------

8 FAST with AeroDyn and ADAMS with AeroDyn Models

Using the turbine properties described previously in this report, we put together models of the NREL offshore 5-MW baseline wind turbine within FAST [11] with AeroDyn [16,20]. The input files for these models are given in Appendix A and Appendix B, for version (v) 6.10a-jmj of FAST and v12.58 of AeroDyn, respectively. We then generated the higher fidelity ADAMS with AeroDyn models through the preprocessor functionality built into the FAST code.

The input files in Appendix A are for the FAST model of the equivalent land-based version of the NREL 5-MW baseline wind turbine. The input files for other versions of the model, such as those for different support structures, require only a few minor changes. These include changes to input parameters "PtfmModel" and "PtfmFile," which identify the type and properties of the support platform, and modifications to the prescribed mode shapes in the tower input file, "TwrFile."

Although most of the input-parameter specifications in Appendix A and Appendix B are selfexplanatory, the specifications of the prescribed mode shapes needed by FAST to characterize the flexibility of the blades and tower deserve a special explanation. The required mode shapes depend on the member's boundary conditions. For the blade modes, we used v2.22 of the Modes program [4] to derive the equivalent polynomial representations of the blade mode shapes needed by FAST. The Modes program calculates the mode shapes of rotating blades, assuming that a blade mode shape is unaffected by its coupling with other system modes of motion. This is a common assumption in wind turbine analysis. For the tower modes, however, there is a great deal of coupling with the rotor motions, and in offshore floating systems, there is coupling with the platform motions as well. To take the former factor into account, we used the linearization functionality of the full-system ADAMS model to obtain the tower modes for the land-based version of the NREL 5-MW baseline wind turbine. In other words, we built an ADAMS model of the wind turbine, enabled all system DOFs, and linearized the model. Then we passed a best-fit polynomial through the resulting tower mode shapes to get the equivalent polynomial representations of the tower mode shapes needed by FAST.

Not including platform motions, the FAST model of the land-based version of the NREL 5-MW baseline wind turbine incorporates 16 DOFs as follows:

- Two flapwise and one edgewise bending-mode DOFs for each of the three blades
- One variable-generator speed DOF and one driveshaft torsional DOF
- One nacelle-yaw-actuator DOF
- Two fore-aft and two side-to-side bending-mode DOFs in the tower.

Not including platform motion, the higher fidelity ADAMS model of the land-based version of the wind turbine incorporates 438 DOFs as follows:

- One hundred and two DOFs in each of the three blades, including flapwise and edgewise shear and bending, torsion, and extension DOFs
- One blade-pitch actuator DOF in each of the three blades

- One variable-generator speed DOF and one driveshaft torsional DOF
- One nacelle-yaw actuator DOF
- One hundred and twenty-six DOFs in the tower, including fore-aft and side-to-side shear and bending, torsion, and extension DOFs.

The support platform motions in, for example, the floating-platform versions of the NREL 5-MW baseline wind turbine add six DOFs per model.

We use a constant time step of 0.0125 s in FAST's fixed-step-size time-integration scheme and a maximum step size of 0.0125 s in ADAMS' variable-step-size time integrator. We have AeroDyn perform aerodynamic calculations every other structural time step (i.e., 0.025 s) to ensure that there are at least 200-azimuth-step computations per revolution at 12 rpm. Data are output at 20 Hz or every fourth structural time step. We made these time steps as large as possible to ensure numerical stability and suitable output resolution across a range of operating conditions.

9 Full-System Natural Frequencies and Steady-State Behavior

To provide a cursory overview of the overall system behavior of the equivalent land-based version of the NREL 5-MW baseline wind turbine, we calculated the full-system natural frequencies and the steady-state response of the system as a function of wind speed.

We obtained the full-system natural frequencies with both the FAST model and the ADAMS model. In FAST, we calculated the natural frequencies by performing an eigenanalysis on the first-order state matrix created from a linearization analysis. In ADAMS, we obtained the frequencies by invoking a "LINEAR/EIGENSOL" command, which linearizes the complete ADAMS model and computes eigendata. To avoid the rigid-body drivetrain mode, the analyses considered the wind turbine in a stationary condition with the high-speed shaft brake engaged. The blades were pitched to their minimum set point (0°), but aerodynamic damping was ignored. Table 9-1 lists results for the first 13 full-system natural frequencies.

Mode	Description	FAST	ADAMS
1	1st Tower Fore-Aft	0.3240	0.3195
2	1st Tower Side-to-Side	0.3120	0.3164
3	1st Drivetrain Torsion	0.6205	0.6094
4	1st Blade Asymmetric Flapwise Yaw	0.6664	0.6296
5	1st Blade Asymmetric Flapwise Pitch	0.6675	0.6686
6	1st Blade Collective Flap	0.6993	0.7019
7	1st Blade Asymmetric Edgewise Pitch	1.0793	1.0740
8	1st Blade Asymmetric Edgewise Yaw	1.0898	1.0877
9	2nd Blade Asymmetric Flapwise Yaw	1.9337	1.6507
10	2nd Blade Asymmetric Flapwise Pitch	1.9223	1.8558
11	2nd Blade Collective Flap	2.0205	1.9601
12	2nd Tower Fore-Aft	2.9003	2.8590
13	2nd Tower Side-to-Side	2.9361	2.9408

 Table 9-1. Full-System Natural Frequencies in Hertz

The agreement between FAST and ADAMS is quite good. The biggest differences exist in the predictions of the blades' second asymmetric flapwise yaw and pitch modes. By "yaw" and "pitch" we mean that these blade asymmetric modes couple with the nacelle-yaw and nacelle-pitching motions, respectively. Because of the offsets of the blade section CM from the pitch axis, higher-order modes, and tower-torsion DOFs—which are available in ADAMS, but not in FAST—ADAMS predicts lower natural frequencies in these modes than FAST does.

Bir and Jonkman have published [2] a much more exhaustive eigenanalysis for the NREL 5-MW baseline wind turbine. The referenced publication documents the natural frequencies and damping ratios of the land- and floating-platform versions of the 5-MW turbine across a range of operating conditions.

We obtained the steady-state response of the land-based 5-MW baseline wind turbine by running a series of FAST with AeroDyn simulations at a number of given, steady, and uniform wind speeds. The simulations lengths were long enough to ensure that all transient behavior had died out; we then recorded the steady-state output values. We ran the simulations using the blade-

element / momentum (BEM) wake option of AeroDyn and with all available and relevant landbased DOFs enabled. Figure 9-1 shows the results for several output parameters, which are defined as follows:

- "GenSpeed" represents the rotational speed of the generator (high-speed shaft).
- "RotPwr" and "GenPwr" represent the mechanical power within the rotor and the electrical output of the generator, respectively.
- "RotThrust" represents the rotor thrust.
- "RotTorq" represents the mechanical torque in the low-speed shaft.
- "RotSpeed" represents the rotational speed of the rotor (low-speed shaft).
- "BlPitch1" represents the pitch angle of Blade 1.
- "GenTq" represents the electrical torque of the generator.
- "TSR" represents the tip-speed ratio.
- "OoPDefl1" and "IPDefl1" represent the out-of-plane and in-plane tip deflections of Blade 1 relative to the undeflected blade-pitch axis.
- "TTDspFA" and "TTDspSS" represent the fore-aft and side-to-side deflection of the tower top relative to the centerline of the undeflected tower.

As planned, the generator and rotor speeds increase linearly with wind speed in Region 2 to maintain constant tip-speed ratio and optimal wind-power conversion efficiency. Similarly, the generator and rotor powers and generator and rotor torques increase dramatically with wind speed in Region 2, increasing cubically and quadratically, respectively. Above rated, the generator and rotor powers are held constant by regulating to a fixed speed with active blade-pitch control. The out-of-plane tip deflection of the reference blade (Blade 1) reaches a maximum at the rated operating point before dropping again. This response characteristic is the result of the peak in rotor thrust at rated. This peak is typical of variable generator speed variable blade-pitch-to-feather wind turbines because of the transition that occurs in the control system at rated between the active generator-torque and the active blade-pitch control regions. This peak in response is also visible, though less pronounced, in the in-plane tip deflection of the reference blade and the tower-top fore-aft displacement.

Start-up transient behavior is an artifact of computational analysis. To mitigate this behavior, we suggest using the steady-state values of the rotor speed and blade-pitch angles found in Figure 9-1 as initial conditions in simulations.

Figure 9-1. Steady-state responses as a function of wind speed

10 Conclusions

To support concept studies aimed at assessing offshore wind technology, we developed the specifications of a representative utility-scale multimegawatt turbine now known as the "NREL offshore 5-MW baseline wind turbine." This wind turbine is a conventional three-bladed upwind variable-speed variable blade-pitch-to-feather-controlled turbine. To create the model, we obtained some broad design information from the published documents of turbine manufacturers, with a heavy emphasis on the REpower 5M machine. Because detailed data was unavailable, however, we also used the publicly available properties from the conceptual models in the WindPACT, RECOFF, and DOWEC projects. We then created a composite from these data, extracting the best available and most representative specifications. This report documented the specifications of the NREL offshore 5-MW baseline wind turbine—including the aerodynamic, structural, and control-system properties—and the rationale behind its development. The model has been, and will likely continue to be, used as a reference by research teams throughout the world to standardize baseline offshore wind turbine specifications and to quantify the benefits of advanced land- and sea-based wind energy technologies.

References

- Agarwal, P. and Manuel, L., "Simulation of Offshore Wind Turbine Response for Extreme Limit States," *Proceedings of OMAE2007 26th International Conference on Offshore Mechanics and Arctic Engineering*, 10–15 June 2007, San Diego, CA [CD-ROM], Houston, TX: The American Society of Mechanical Engineers (ASME International) Ocean, Offshore and Arctic Engineering (OOAE) Division, June 2007, OMAE2007-29326.
- [2] Bir, G. and Jonkman, J., "Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines," Journal of Physics: Conference Series, The Second Conference on The Science of Making Torque From Wind, Copenhagen, Denmark, 28–31 August 2007, [online journal], Vol. 75, 2007, 012069, URL: <u>http://www.iop.org/EJ/article/1742-6596/75/1/012069/jpconf7_75_012069.pdf?request-id=PNODaQdu3BGLGoay2wi7Kg</u>, [cited 28 August 2007]; NREL/CP-500-41804, Golden, CO: National Renewable Energy Laboratory.
- [3] Bossanyi, E. A., *GH Bladed Version 3.6 User Manual*, 282/BR/010, Bristol, UK: Garrad Hassan and Partners Limited, December 2003.
- [4] Buhl, M., "Modes: A Simple Mode-Shape Generator for Both Towers and Rotating Blades," *NWTC Design Codes* [online database], URL: <u>http://wind.nrel.gov/designcodes/preprocessors/modes/</u> [cited 22 July 2005].
- [5] de Vries, E., "Multibrid: 'A New Offshore Wind Turbine Contender'," *Renewable Energy World* [online journal], Vol. 7, No. 5, September-October 2004, URL: <u>http://www.renewable-energy-world.com/articles/article_display.cfm?ARTICLE_ID=272695&p=121</u>, [cited 1 November 2004].
- [6] Elliott, A. S., "Analyzing Rotor Dynamics with a General-Purpose Code," *Mechanical Engineering*, Vol. 112, No. 12, December 1990, pp. 21–25.
- [7] Fulton, G. R., Malcolm, D. J., and Moroz, E., "Design of a Semi-Submersible Platform for a 5MW Wind Turbine," 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, NV, AIAA Meeting Papers on Disc [CD-ROM], Reston, VA: American Institute of Aeronautics and Astronautics, January 2006, AIAA-2006-997.
- [8] Goezinne, F., "Terms of reference DOWEC," *DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports* [CD-ROM], DOWEC 10041_000, 176-FG-R0300, September 2001.
- [9] Hansen, C., "AirfoilPrep: An Excel workbook for generating airfoil tables for AeroDyn and WT_Perf," *NWTC Design Codes* [online database], URL: <u>http://wind.nrel.gov/designcodes/preprocessors/airfoilprep/</u> [cited 1 November 2004].

- [10] Hansen, M. H., Hansen, A., Larsen, T. J., Φye, S., Sørensen, and Fuglsang, P., Control Design for a Pitch-Regulated, Variable-Speed Wind Turbine, Risø-R-1500(EN), Roskilde, Denmark: Risø National Laboratory, January 2005.
- [11] Jonkman, J. M. and Buhl Jr., M. L. FAST User's Guide, NREL/EL-500-38230 (previously NREL/EL-500-29798), Golden, CO: National Renewable Energy Laboratory, August 2005.
- [12] Jonkman, J. M., Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, Ph.D. Thesis, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, 2007; NREL/TP-500-41958, Golden, CO: National Renewable Energy Laboratory.
- Jonkman, J., Butterfield, S., Passon, P., Larsen, T., Camp, T., Nichols, J., Azcona, J., and Martinez, A., "Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase II Results Regarding Monopile Foundation Modeling," 2007 European Offshore Wind Conference & Exhibition, 4–6 December 2007, Berlin, Germany [online proceedings], BT2.1, URL: <u>http://www.eow2007proceedings.info/allfiles2/</u> <u>206 Eow2007fullpaper.pdf</u> [cited 31 March 2008]; NREL/CP-500-42471, Golden, CO: National Renewable Energy Laboratory.
- [14] Kooijman, H. J. T., Lindenburg, C., Winkelaar, D., and van der Hooft, E. L., "DOWEC 6 MW Pre-Design: Aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS," DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports [CD-ROM], DOWEC 10046_009, ECN-CX--01-135, Petten, the Netherlands: Energy Research Center of the Netherlands, September 2003.
- [15] Laino, D. J. and Hansen, A. C., *User's Guide to the Computer Software Routines AeroDyn Interface for ADAMS*[®], Salt Lake City, UT: Windward Engineering LLC, Prepared for the National Renewable Energy Laboratory under Subcontract No. TCX-9-29209-01, September 2001.
- [16] Laino, D. J. and Hansen, A. C., User's Guide to the Wind Turbine Dynamics Aerodynamics Computer Software AeroDyn, Salt Lake City, UT: Windward Engineering LLC, Prepared for the National Renewable Energy Laboratory under Subcontract No. TCX-9-29209-01, December 2002.
- [17] Lindenburg, C., "Aeroelastic Modelling of the LMH64-5 Blade," DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports [CD-ROM], DOWEC 10083_001, DOWEC-02-KL-083/0, Petten, the Netherlands: Energy Research Center of the Netherlands, December 2002.
- [18] LM Glasfiber Group, Wind Turbine Blades, Product Overview, Standard Products Max. Rated Power <=5000 kW [online publication], URL: <u>http://www.lmglasfiber.dk/UK/Products/Wings/ProductOverView/50000kw.htm</u> [cited 4 January 2005].

- [19] Malcolm, D. J. and Hansen, A. C., *WindPACT Turbine Rotor Design Study*, NREL/SR-500-32495, Golden, CO: National Renewable Energy Laboratory, August 2002.
- [20] Moriarty, P. J. and Hansen, A. C., *AeroDyn Theory Manual*, NREL/EL-500-36881, Golden, CO: National Renewable Energy Laboratory, December 2005.
- [21] Multibrid Technology, *Technical Data Multibrid M5000* [online publication], URL: <u>http://www.multibrid.com/download/Datenblatt_M5000_eng.pdf</u> [cited 1 November 2004].
- [22] Multibrid Technology, *The Concept in Detail* [online publication], URL: <u>http://www.multibrid.com/english/concept.htm</u> [cited 4 January 2005].
- [23] Musial, W., Butterfield, S., and Boone, A., "Feasibility of Floating Platform Systems for Wind Turbines," A Collection of the 2004 ASME Wind Energy Symposium Technical Papers Presented at the 42nd AIAA Aerospace Sciences Meeting and Exhibit, 5–7 January 2004, Reno Nevada, USA, New York: American Institute of Aeronautics and Astronautics, Inc. (AIAA) and American Society of Mechanical Engineers (ASME), January 2004, pp. 476–486; NREL/CP-500-36504, Golden, CO: National Renewable Energy Laboratory.
- [24] National Renewable Energy Laboratory, *About the Program: WindPACT* [online publication], URL: <u>http://www.nrel.gov/wind/windpact/</u> [cited 4 January 2005].
- [25] Passon, P., Kühn, M., Butterfield, S., Jonkman, J., Camp, T., and Larsen, T. J., "OC3— Benchmark Exercise of Aero-Elastic Offshore Wind Turbine Codes," *Journal of Physics: Conference Series, The Second Conference on The Science of Making Torque From Wind, Copenhagen, Denmark, 28–31 August 2007*, [online journal], Vol. 75, 2007, 012071, URL: <u>http://www.iop.org/EJ/article/1742-6596/75/1/012071/jpconf7_75_012071.pdf?request-id=8k111g5u3BGgUobT2wi7Kg</u>, [cited 28 August 2007].
- [26] REpower Systems, *REpower 5M* [online publication], URL: <u>http://www.repower.de/typo3/fileadmin/download/produkte/5m_uk.pdf</u> [cited 4 January 2005].
- [27] REpower Systems, *REpower Systems AG Renewable Energy for the Future* [online publication], URL: <u>http://www.repower.de/</u> [cited 4 January 2005].
- [28] Saigal, R. K., Dolan, D., Der Kiureghian, A., Camp, T., and Smith, C. E., "Comparison of Design Guidelines for Offshore Wind Energy Systems," 2007 Offshore Technology Conference, April 30 – May 3, 2007, Houston, TX [CD-ROM], Richardson, TX: Offshore Technology Conference, May 2007, OTC 18984.
- [29] Smith, K., *WindPACT Turbine Design Scaling Studies; Technical Area 2: Turbine, Rotor, and Blade Logistics,* NREL/SR-500-29439, Golden, CO: National Renewable Energy Laboratory, June 2001.

- [30] Smith, S. W., *The Scientist and Engineer's Guide to Digital Signal Processing*, San Diego, CA: California Technical Publishing, 2006.
- [31] Strum, R. D. and Kirk, D. E., *Contemporary Linear Systems Using MATLAB*[®], Brooks/Cole, Pacific Grove, California, USA, 2000, pp. 221–297.
- [32] Tarp-Johansen, N. J., *RECOFF Home Page* [online publication], URL: <u>http://www.risoe.dk/vea/recoff/</u>, [cited 1 November 2004].
- [33] Wayman, E. N., Sclavounos, P. D., Butterfield, S., Jonkman, J., and Musial, W., "Coupled Dynamic Modeling of Floating Wind Turbine Systems," 2006 Offshore Technology Conference, 1–4 May 2006, Houston, TX [CD-ROM], OTC 18287, Richardson, TX: Offshore Technology Conference, May 2006; NREL/CP-500-39481, Golden, CO: National Renewable Energy Laboratory.
- [34] Wayman, E., *Coupled Dynamics and Economic Analysis of Floating Wind Turbine Systems*, M.S. Dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, June 2006.

Appendix A FAST Input Files

A.1 Primary Input File

FAS	T INPUT FILE	
NREL 5.0 MW	Baseline Wind	d Turbine for Use in Offshore Analysis.
Properties	from Dutch Of	fshore Wind Energy Converter (DOWEC) 6MW Pre-Design (10046 009.pdf) and REpower 5M 5MW (5m uk.pdf): C
	S	IMULATION CONTROL
False	Echo -	- Echo input data to "echo.out" (flag)
3	ADAMSPrep ·	- ADAMS preprocessor mode {1: Run FAST, 2: use FAST as a preprocessor to create an ADAMS model, 3: do
1	AnalMode	- Analysis mode {1: Run a time-marching simulation, 2: create a periodic linearized model} (switch)
3	NumBl ·	- Number of blades (-)
630.0	TMax	- Total run time (s)
0.0125	DT ·	- Integration time step (s)
	TI	JRBINE CONTROL
0	YCMode	- Yaw control mode {0: none, 1: user-defined from routine UserYawCont, 2: user-defined from Simulink}
9999.9	TYCOn ·	- Time to enable active yaw control (s) [unused when YCMode=0]
1	PCMode -	- Pitch control mode {0: none, 1: user-defined from routine PitchCntrl, 2: user-defined from Simulink
0.0	TPC0n	- Time to enable active pitch control (s) [unused when PCMode=0]
2	VSContrl ·	- Variable-speed control mode {0: none, 1: simple VS, 2: user-defined from routine UserVSCont, 3: use
9999.9	VS RtGnSp	- Rated generator speed for simple variable-speed generator control (HSS side) (rpm) [used only when
9999.9	VS RtTq	- Rated generator torque/constant generator torque in Region 3 for simple variable-speed generator co
9999.9	VS Rgn2K	- Generator torque constant in Region 2 for simple variable-speed generator control (HSS side) (N-m/r
9999.9	VS_S1Pc	- Rated generator slip percentage in Region 2 1/2 for simple variable-speed generator control (%) [us
2	GenModel ·	- Generator model {1: simple, 2: Thevenin, 3: user-defined from routine UserGen} (switch) [used only
True	GenTiStr	- Method to start the generator {T: timed using TimGenOn, F: generator speed using SpdGenOn} (flag)
True	GenTiStp	- Method to stop the generator {T: timed using TimGenOf, F: when generator power = 0} (flag)
9999.9	SpdGenOn ·	- Generator speed to turn on the generator for a startup (HSS speed) (rpm) [used only when GenTiStr=F
0.0	TimGenOn	- Time to turn on the generator for a startup (s) [used only when GenTiStr=True]
9999.9	TimGenOf	- Time to turn off the generator (s) [used only when GenTiSto=True]
1	HSSBrMode	- HSS brake model {1: simple, 2: user-defined from routine UserHSSBr} (switch)
9999.9	THSSBrDp	- Time to initiate deployment of the HSS brake (s)
9999.9	TiDvnBrk	- Time to initiate deployment of the dynamic generator brake [CURRENTLY IGNORED] (s)
9999.9	TTpBrDp(1)	- Time to initiate deployment of tip brake 1 (s)
9999.9	TTpBrDp(2)	- Time to initiate deployment of tip brake 2 (s)
9999.9	TTpBrDp(3)	- Time to initiate deployment of tip brake 3 (s) [unused for 2 blades]
9999.9	TBDepISp(1)	- Deployment-initiation speed for the tip brake on blade 1 (rpm)
9999.9	TBDepISp(2)	- Deployment-initiation speed for the tip brake on blade 2 (rpm)
9999.9	TBDepISp(3)	- Deployment-initiation speed for the tip brake on blade 3 (rpm) [unused for 2 blades]
9999.9	TYawManS	- Time to start override vaw maneuver and end standard vaw control (s)
0.3	YawManRat	- Yaw rate (in absolute value) at which override vaw maneuver heads toward final vaw angle (deg/s)
0.0	NacYawF	- Final vaw angle for override vaw maneuvers (degrees)
9999.9	TPitManS(1)	- Time to start override pitch maneuver for blade 1 and end standard pitch control (s)
9999.9	TPitManS(2)	- Time to start override pitch maneuver for blade 2 and end standard pitch control (s)
9999.9	TPitManS(3)	- Time to start override pitch maneuver for blade 3 and end standard pitch control (s) [unused for 2
8.0	PitManRat(1)	- Pitch rate (in absolute value) at which override pitch maneuver for blade 1 heads toward final pitc
8.0	PitManRat(2)	- Pitch rate (in absolute value) at which override pitch maneuver for blade 2 heads toward final pitc
8.0	PitManRat(3)	- Pitch rate (in absolute value) at which override pitch maneuver for blade 3 heads toward final pitc
0.0	BlPitch(1)	- Blade 1 initial pitch (degrees)
0.0	BlPitch(2)	- Blade 2 initial pitch (degrees)
0.0	BlPitch(3)	- Blade 3 initial pitch (degrees) [unused for 2 blades]
0.0	BlPitchF(1)	- Blade 1 final pitch for override pitch maneuvers (degrees)
0.0	BlPitchF(2)	- Blade 2 final pitch for override pitch maneuvers (degrees)
0.0	BlPitchF(3)	- Blade 3 final pitch for override pitch maneuvers (degrees) [unused for 2 blades]
	Éľ	NVIRONMENTAL CONDITIONS
9.80665	Gravity	- Gravitational acceleration (m/s^2)
	FI	EATURE FLAGS
True	FlapDOF1	- First flapwise blade mode DOF (flag)
True	FlapDOF2	- Second flapwise blade mode DOF (flag)
True	EdgeDOF	- First edgewise blade mode DOF (flag)
False	TeetDOF	- Rotor-teeter DOF (flag) [unused for 3 blades]
True	DrTrDOF	- Drivetrain rotational-flexibility DOF (flag)
True	GenDOF	- Generator DOF (flag)
True	YawDOF	- Yaw DOF (flag)
True	TwFADOF1	- First fore-aft tower bending-mode DOF (flag)
True	TwFADOF2	- Second fore-aft tower bending-mode DOF (flag)
True	TwSSD0F1	- First side-to-side tower bending-mode DOF (flag)
True	TwSSD0F2	- Second side-to-side tower bending-mode DOF (flag)
True	CompAero	- Compute aerodynamic forces (flag)
False	CompNoise	- Compute aerodynamic noise (flag)
	II	NITIAL CONDITIONS
0.0	OoPDef1	- Initial out-of-plane blade-tip displacement (meters)
0.0	IPDefl ·	- Initial in-plane blade-tip deflection (meters)
0.0	TeetDefl	- Initial or fixed teeter angle (degrees) [unused for 3 blades]
0.0	Azimuth	- Initial azimuth angle for blade 1 (degrees)
12.1	RotSpeed ·	- Initial or fixed rotor speed (rpm)
0.0	NacYaw	- Initial or fixed nacelle-yaw angle (degrees)
0.0	TTDspFA ·	- Initial fore-aft tower-top displacement (meters)
0.0	TTDspSS	- Initial side-to-side tower-top displacement (meters)

		TURBINE CONFIGURATION
63.0	TipRad	- The distance from the rotor apex to the blade tip (meters)
1.5	HubRad	- The distance from the rotor apex to the blade root (meters)
1	PSpnein	- Number of the innermost blade element which is still part of the pitchable portion of the blade for
0.0	HubCM	- Distance from rotor apex to hub mass [positive downwind] (meters)
-5.01910	OverHang	- Distance from yaw axis to rotor apex [3 blades] or teeter pin [2 blades] (meters)
1.9	NacCMxn	- Downwind distance from the tower-top to the nacelle CM (meters)
0.0	NacCMyn	- Lateral distance from the tower-top to the nacelle CM (meters)
1.75	NacCMzn	- Vertical distance from the tower-top to the nacelle CM (meters)
87.6	TowerHt	- Height of tower above ground level [onshore] or MSL [offshore] (meters)
1.96256	TwrRBHt	- Vertilat distance from the tower-top to the rotor shart (meters)
-5.0	ShftTilt	- Rotor shaft tilt angle (degrees)
0.0	Delta3	- Delta-3 angle for teetering rotors (degrees) [unused for 3 blades]
-2.5	PreCone(1)	- Blade 1 cone angle (degrees)
-2.5	PreCone(2)	- Blade 2 cone angle (degrees)
-2.5	PreCone(3)	- Blade 3 cone angle (degrees) [unused for 2 blades]
0.0	А21ШВ10р	- Azimuth varie to use for 1/0 when blade 1 points up (degrees)
0.0	YawBrMass	- Yaw bearing mass (kg)
240.00E3	NacMass	- Nacelle mass (kg)
56.78E3	HubMass	- Hub mass (kg)
0.0	TipMass(1)	- Tip-brake mass, blade 1 (kg)
0.0	TipMass(2)	- Tip-brake mass, blade 2 (kg)
2607 89F3	NacVIner	- IIP-Drake mass, blade 5 (kg/ [unised for 2 blades]
534.116	GenIner	- Generator inertia about HSS (kg m ²)
115.926E3	HubIner	- Hub inertia about rotor axis [3 blades] or teeter axis [2 blades] (kg m^2)
		DRIVETRAIN
100.0	GBoxEff	- Gearbox efficiency (%)
94.4	GenEff	- Generator efficiency [ignored by the Thevenin and user-defined generator models] (%)
97.0 False	GBRALIO	- Gearbox revence] /T. if noton and generator notate in opposite directions) (flag)
28.1162E3	HSSBrTaF	- Fully deployed HSS-brake torque (N-m)
0.6	HSSBrDT	- Time for HSS-brake to reach full deployment once initiated (sec) [used only when HSSBrMode=1]
	DynBrkFi	- File containing a mech-gen-torque vs HSS-speed curve for a dynamic brake [CURRENTLY IGNORED] (quote
867.637E6	DTTorSpr	- Drivetrain torsional spring (N-m/rad)
6.215E6	DTTorDmp	- Drivetrain torsional damper (N-m/(rad/s))
9999 9	STG SIPC	- Rated generator slin nercentage (%) [used only when VSContrl=0 and GenModel=1]
9999.9	SIG SySp	- Synchronous (zero-torque) generator speed (rpm) [used only when VSContrl=0 and GenModel=1]
9999.9	SIG_RtTq	- Rated torque (N-m) [used only when VSContrl=0 and GenModel=1]
9999.9	SIG_PORt	- Pull-out ratio (Tpullout/Trated) (-) [used only when VSContrl=0 and GenModel=1]
		THEVENIN-EQUIVALENT INDUCTION GENERATOR
9999.9	TEC_Freq	- Line frequency [50 or 60] (H2) [Used only when VSContri=0 and GenModel=2]
9999 9	TEC_NPOI	- Stater resistance (ohms) [used only when VSContrl=0 and GenModel=2]
9999.9	TEC RRes	- Rotor resistance (ohms) [used only when VSContrl=0 and GenModel=2]
9999.9	TEC_VLL	- Line-to-line RMS voltage (volts) [used only when VSContrl=0 and GenModel=2]
9999.9	TEC_SLR	- Stator leakage reactance (ohms) [used only when VSContrl=0 and GenModel=2]
9999.9	TEC_RLR	- Rotor leakage reactance (ohms) [used only when VSContrl=0 and GenModel=2]
9999.9	TEC_MR	- Magnetizing reactance (onms) [used only when VSContri=0 and GenModel=2]
9	PtfmModel	- Platform model {0: none. 1: onshore. 2: fixed bottom offshore. 3: floating offshore} (switch)
	PtfmFile	- Name of file containing platform properties (quoted string) [unused when PtfmModel=0]
		TOWER
20	TwrNodes	- Number of tower nodes used for analysis (-)
"NRELOffshr	Bsline5MW_To	ower_Onshore.dat" TwrFile - Name of file containing tower properties (quoted string)
0028 3256		NACELLE-YAW
19.16E6	YawDamp	- Nacelle-yaw damping constant (N-m/(rad/s))
0.0	YawNeut	- Neutral yaw positionyaw spring force is zero at this yaw (degrees)
		FURLING
False	Furling	- Read in additional model properties for furling turbine (flag)
	FurlFile	- Name of tile containing furling properties (quoted string) [unused when Furling=False]
0	TeetMod	. Rotor-teater spring/dammer model [0: none 1: standard 2: user-defined from routine licerTeat} (swi
0.0	TeetDmpP	- Rotor-teeter damoer position (degrees) [used only for 2 blades and when TeetMode1]
0.0	TeetDmp	- Rotor-teeter damping constant $(N-m/(rad/s))$ [used only for 2 blades and when TeetMod=1]
0.0	TeetCDmp	- Rotor-teeter rate-independent Coulomb-damping moment (N-m) [used only for 2 blades and when TeetMod
0.0	TeetSStP	- Rotor-tester soft-stop position (degrees) [used only for 2 blades and when TestMod=1]
0.0	TeetHStP	- Rotor-teeter nard-stop position (degrees) [used only for 2 blades and when TeetMod=1]
0.0	Teetsssp TeetHSSn	- Notor-tester solt-stop linear-spring constant (N-m/rad) [used only for 2 blades and when restmod=1]
		TIP-BRAKE
0.0	TBDrConN	- Tip-brake drag constant during normal operation, Cd*Area (m^2)
0.0	TBDrConD	- Tip-brake drag constant during fully-deployed operation, Cd*Area (m^2)
0.0	TpBrDT	- Time for tip-brake to reach full deployment once released (sec)
"NDEL OFF-L		BLADE BLADE
"NRFI Offshol	SSIINESMW_B.	Laue.uat Diurile(1) - Name of file containing properties for Diade 1 (quoted String) Lade dat" BidFile(2) - Name of file containing properties for blade 2 (quoted string)
"NRELOffshr	Ssline5MW B	lade.dat" BldFild(3) - Name of file containing properties for blade 2 (quoted string)
		AERODYN

"NRELOffshr	Bsline5MW_A	eroDyn.ipt"	ADFile - Name of file containing AeroDyn input parameters (quoted stri	in
	NoiseFile	NOISE - Name of file containing	g aerodynamic noise input parameters (quoted string) [used only when CompNoi	s
"NRELOffshr	Bsline5MW_A	DAMSSpecific.dat"	ADAMSFile - Name of file containing ADAMS-specific input parameters (quot	:e
"NRELOffshr	Bsline5MW_L	inear.dat" OUTPUT	LinFile - Name of file containing FAST linearization parameters (quoted	i
True	SumPrint	- Print summary data to	" <rootname>.fsm" (flag)</rootname>	
True	TabDelim	- Generate a tab-delimit	ed tabular output file. (flag)	
"ES10.3E2"	OutFmt	- Format used for tabula	r output except time. Resulting field should be 10 characters. (quoted stri	in
30.0	TStart	- Time to begin tabular	output (s)	
4	DecFact	- Decimation factor for	tabular output {1: output every time step} (-)	
1.0	SttsTime	- Amount of time between	screen status messages (sec)	
-3.09528	NcIMUxn	- Downwind distance from	the tower-top to the nacelle IMU (meters)	
0.0	NcIMUyn	 Lateral distance from 	the tower-top to the nacelle IMU (meters)	
2.23336	NcIMUzn	 Vertical distance from 	the tower-top to the nacelle IMU (meters)	
1.912	ShftGagL	- Distance from rotor ap	ex [3 blades] or teeter pin [2 blades] to shaft strain gages [positive for u	ıр
1	NTwGages	- Number of tower nodes	that have strain gages for output [0 to 9] (-)	
10	TwrGagNd	- List of tower nodes th	at have strain gages [1 to TwrNodes] (-) [unused if NTwGages=0]	
1	NBlGages	- Number of blade nodes	that have strain gages for output [0 to 9] (-)	
9	BldGagNd	- List of blade nodes th	at have strain gages [1 to BldNodes] (-) [unused if NBlGages=0]	
	OutList	- The next line(s) conta	ins a list of output parameters. See OutList.txt for a listing of available	2
"WindVxi ,	WindVyi ,	WindVzi"	- Longitudinal, lateral, and vertical wind speeds	
"WaveElev"			- Wave elevation at the platform reference point	
"Wavelvxi ,	Wavelvyi,	WavelVzi	- Longitudinal, lateral, and vertical wave particle velocities	а
"WavelAx1 ,	WavelAy1 ,	Wave1Az1"	- Longitudinal, lateral, and vertical wave particle acceleratio	n
"GenPwr ,	Geniq		- Electrical generator power and torque	
"BldDitch1	BldDitch2	RldDitch?"	- Ritch angles for blades 1 2 and 3	
"Azimuth"	biuricciiz,	BIUFICCIS	- Plade 1 azimuth angle	
"RotSneed	GenSneed"		- brace i azimuch angre	
"NacYaw	NacYawErr"		- Nacelle vaw angle and nacelle vaw error estimate	
"OoPDef11	TPDef11	TwstDefl1"	- Blade 1 out-of-plane and in-plane deflections and tip twist	
"OoPDef12 ,	IPDef12 ,	TwstDef12"	- Blade 2 out-of-plane and in-plane deflections and tip twist	
"OoPDef13 ,	IPDef13 ,	TwstDef13"	- Blade 3 out-of-plane and in-plane deflections and tip twist	
"TwrClrnc1,	TwrClrnc2,	TwrClrnc3"	- Tip-to-tower clearance estimate for blades 1, 2, and 3	
"NcIMUTAxs,	NcIMUTAys,	NcIMUTAzs"	- Nacelle IMU translational accelerations (absolute) in the non	ır
"TTDspFA ,	TTDspSS,	TTDspTwst"	- Tower fore-aft and side-to-side displacements and top twist	
"PtfmSurge,	PtfmSway ,	PtfmHeave"	- Platform translational surge, sway, and heave displacements	
"PtfmRoll ,	PtfmPitch,	PtfmYaw"	- Platform rotational roll, pitch and yaw displacements	
"PtfmTAxt ,	PtfmTAyt ,	PtfmTAzt"	 Platform translation accelerations (absolute) in the tower-ba 	IS
"RootFxc1 ,	RootFyc1 ,	RootFzc1"	 Out-of-plane shear, in-plane shear, and axial forces at the r 	۰
"RootMxc1 ,	RootMyc1 ,	RootMzc1"	- In-plane bending, out-of-plane bending, and pitching moments	а
"RootFxc2 ,	RootFyc2 ,	RootFzc2"	- Out-of-plane shear, in-plane shear, and axial forces at the r	0
"RootMxc2 ,	RootMyc2 ,	RootMzc2"	- In-plane bending, out-ot-plane bending, and pitching moments	а
ROOTFXC3 ,	ROOTFYC3,	ROOTFZC3	- Out-ot-plane snear, in-plane snear, and axial forces at the r	۰ ⁰
KUULMIXC3,	KUULMYC3,	NUULM2C3	 In-plane benuing, out-of-plane benuing, and pitching moments Blade 1 local addewise bonding flapwise bonding, and pitching 	d
"Snn1MI vh?	Sphinkyol,	Spn1ML201 Snn1MLzh2"	- Blade 2 local edgewise bending flanwise bending and nitchin	יא זס
"Snn1MLxb2,	Sprincy02,	Spn1MLzb2"	- Blade 3 local edgewise bending flanwise bending and nitchin	י5 זס
"RotThrust	LSSGagEva	LSSGagEza"	- Rotor thrust and low-speed shaft 0- and 90-rotating shear for	פי יכ
"RotTora	LSSGagMva.	LSSGagMza"	- Rotor torque and low-speed shaft 0- and 90-rotating bending m	10
"YawBrFxp ,	YawBrFvp .	YawBrFzp"	- Fore-aft shear, side-to-side shear, and vertical forces at th	ie.
"YawBrMxp ,	YawBrMvp .	YawBrMzp"	- Side-to-side bending, fore-aft bending, and vaw moments at th	ie
"TwrBsFxt,	TwrBsFyt ,	TwrBsFzt"	- Fore-aft shear, side-to-side shear, and vertical forces at th	ie
"TwrBsMxt,	TwrBsMyt,	TwrBsMzt"	- Side-to-side bending, fore-aft bending, and yaw moments at th	ıe
"TwHt1MLxt,	TwHt1MLyt,	TwHt1MLzt"	- Local side-to-side bending, fore-aft bending, and yaw moments	;
"Fair1Ten ,	Fair1Ang,	Anch1Ten , Anch1Ang"	- Line 1 fairlead and anchor effective tensions and vertical an	١g
"Fair2Ten ,	Fair2Ang ,	Anch2Ten , Anch2Ang"	- Line 2 fairlead and anchor effective tensions and vertical an	ıg
"Fair3Ten ,	Fair3Ang ,	Anch3Ten , Anch3Ang"	- Line 3 fairlead and anchor effective tensions and vertical an	ıg
"Fair4Ten ,	Fair4Ang ,	Anch4Ten , Anch4Ang"	- Line 4 fairlead and anchor effective tensions and vertical an	ıg
"Fair5Ten ,	Fair5Ang ,	Anch5Ten , Anch5Ang"	- Line 5 fairlead and anchor effective tensions and vertical an	ıg
"Fair6Ten ,	Fair6Ang ,	Anch6Ten , Anch6Ang"	- Line 6 tairlead and anchor effective tensions and vertical an	ıg
"Fair7Ten ,	Fair7Ang ,	Anch7Ten , Anch7Ang"	 Line 7 fairlead and anchor effective tensions and vertical an 	ıg
Fairelen,	rairoang,	Ancholen , Ancholng"	- Line & Tairiead and anchor effective tensions and vertical an	ig
IIPSpakat,	innut fil	(the word "END" must and	- KOLOF LIP Speed ralid and power, thrust, and torque coefficie	:0
LND UT FAST	Tubur IIIe	(the word END must appe	a in the first o columns of this last line).	

A.2 Blade Input File – NRELOffshrBsline5MW_Blade.dat

FAST INDIVIDUAL BLADE FILE
 NREL 5.0 MW offshore baseline blade input properties.
 BLADE PARAMETERS
 Number of blade input stations (-)
 False CalcBMode - Calculate blade mode shapes internally {T: ignore mode shapes from below, F: use mode shapes from b
 0.477465 BldFlDmp(1) - Blade flap mode #1 structural damping in percent of critical (%)
 0.477465 BldElDmp(1) - Blade flap mode #2 structural damping in percent of critical (%)
 0.477465 BldEdDmp(1) - Blade edge mode #1 structural damping in percent of critical (%)
 0.477465 BldEdDmp(1) - Blade edge mode #1 structural damping in percent of critical (%)

1.0	C1C+T	unn(1)	Plada flanui	co modol sti	ffnore tunon	1ct modo	$\langle \rangle$					
1.0		$\operatorname{Inr}(1) -$	Blade flapwi	se modal sti	ffness tuner	, 1st mode	(-)					
1.0		unr(2) -	Blade Tlapwi	se moual sul	acc doncity	, znu moue	(-)					
1.045	Adden	15 - -	Factor to au	Just Diade m	ass density	(-)						
1.0	Adjeis	- Jo	Factor to ad	just blade t	lap stittnes	s (-)						
1.0	Adjeds	οτ - Στο	Factor to ad	just blade e	age stittnes	s (-)						
		· DIS	SIKIBUIED BLA	DE PROPERTIE	5				-1 -			
BIFract	AeroCent	Strciws	st BMassDen	FIPStff	EdgSt++	GJSt++	EASTT	Alpha	Fipiner	Edginer	Precrvket	Pre
(-)	(-)	(deg)	(kg/m)	(Nm^2)	(Nm^2)	(Nm^2)	(N)	(-)	(kg m)	(kg m)	(m)	(m)
0.00000	0.25000	13.308	678.935	18110.00E6	18113.60E6	5564.40E6	9729.48E6	0.0	972.86	973.04	0.0	0.0
0.00325	0.25000	13.308	678.935	18110.00E6	18113.60E6	5564.40E6	9729.48E6	0.0	972.86	973.04	0.0	0.0
0.01951	0.24951	13.308	773.363	19424.90E6	19558.60E6	5431.59E6	10789.50E6	0.0	1091.52	1066.38	0.0	0.0
0.03577	0.24510	13.308	740.550	17455.90E6	19497.80E6	4993.98E6	10067.23E6	0.0	966.09	1047.36	0.0	0.0
0.05203	0.23284	13.308	740.042	15287.40E6	19788.80E6	4666.59E6	9867.78E6	0.0	873.81	1099.75	0.0	0.0
0.06829	0.22059	13.308	592.496	10782.40E6	14858.50E6	3474.71E6	7607.86E6	0.0	648.55	873.02	0.0	0.0
0.08455	0.20833	13.308	450.275	7229.72E6	10220.60E6	2323.54E6	5491.26E6	0.0	456.76	641.49	0.0	0.0
0.10081	0.19608	13.308	424.054	6309.54E6	9144.70E6	1907.87E6	4971.30E6	0.0	400.53	593.73	0.0	0.0
0.11707	0.18382	13.308	400.638	5528.36E6	8063.16E6	1570.36E6	4493.95E6	0.0	351.61	547.18	0.0	0.0
0.13335	0.17156	13.308	382.062	4980.06E6	6884.44E6	1158.26E6	4034.80E6	0.0	316.12	490.84	0.0	0.0
0.14959	0.15931	13.308	399.655	4936.84E6	7009.18E6	1002.12E6	4037.29E6	0.0	303.60	503.86	0.0	0.0
0.16585	0.14706	13.308	426.321	4691.66E6	7167.68E6	855.90E6	4169.72E6	0.0	289.24	544.70	0.0	0.0
0.18211	0.13481	13.181	416.820	3949.46E6	7271.66E6	672.27E6	4082.35E6	0.0	246.57	569.90	0.0	0.0
0.19837	0.12500	12.848	406.186	3386.52E6	7081.70E6	547.49E6	4085.97E6	0.0	215.91	601.28	0.0	0.0
0.21465	0.12500	12.192	381,420	2933.74E6	6244.53E6	448.84E6	3668.34E6	0.0	187.11	546.56	0.0	0.0
0.23089	0.12500	11.561	352.822	2568,96E6	5048,96E6	335.92E6	3147.76E6	0.0	160.84	468.71	0.0	0.0
0.24715	0.12500	11.072	349.477	2388.65E6	4948.49E6	311.35E6	3011.58E6	0.0	148.56	453.76	0.0	0.0
0.26341	0.12500	10.792	346 538	2271,99F6	4808 02F6	291.94F6	2882 62F6	0.0	140.30	436.22	0.0	0.0
0.29595	0.12500	10,232	339 333	2050 0556	4501 40F6	261 00F6	2613 9756	0.0	124 61	398 18	0.0	0.0
0.23535	0.12500	9 672	330 001	1828 2556	4244 0764	201.0010	2357 /854	0.0	100 /7	362 00	0.0	0.0
0.32840	0.12500	9.072	221 000	1528.2310	2005 2856	228.8210	2337.4810	0.0	04 36	225 01	0.0	0.0
0.30058	0.12500	9.110	212 920	1261 0256	3353.2810	174 2056	1044 0056	0.0	94.30	200 57	0.0	0.0
0.33330	0.12500	7 0 2 2	204 724	1102 2056	3/30.70L0	1/4.3810	1622 7050	0.0	60.24	262.37	0.0	0.0
0.42602	0.12500	7.932	294.734	1102.3860	3447.1460	144.4766	1432.7066	0.0	62.67	203.87	0.0	0.0
0.45855	0.12500	7.321	287.120	8/5.8020	3139.0/60	119.9866	1432.4066	0.0	49.42	237.00	0.0	0.0
0.49106	0.12500	6./11	263.343	681.30E6	2/34.24E6	81.19E6	1168.7666	0.0	37.34	196.41	0.0	0.0
0.52358	0.12500	6.122	253.207	534./2E6	2554.8/E6	69.09E6	1047.43E6	0.0	29.14	180.34	0.0	0.0
0.55610	0.12500	5.546	241.666	408.90E6	2334.03E6	57.45E6	922.95E6	0.0	22.16	162.43	0.0	0.0
0.58862	0.12500	4.971	220.638	314.54E6	1828.73E6	45.92E6	760.82E6	0.0	17.33	134.83	0.0	0.0
0.62115	0.12500	4.401	200.293	238.63E6	1584.10E6	35.98E6	648.03E6	0.0	13.30	116.30	0.0	0.0
0.65366	0.12500	3.834	179.404	175.88E6	1323.36E6	27.44E6	539.70E6	0.0	9.96	97.98	0.0	0.0
0.68618	0.12500	3.332	165.094	126.01E6	1183.68E6	20.90E6	531.15E6	0.0	7.30	98.93	0.0	0.0
0.71870	0.12500	2.890	154.411	107.26E6	1020.16E6	18.54E6	460.01E6	0.0	6.22	85.78	0.0	0.0
0.75122	0.12500	2.503	138.935	90.88E6	797.81E6	16.28E6	375.75E6	0.0	5.19	69.96	0.0	0.0
0.78376	0.12500	2.116	129.555	76.31E6	709.61E6	14.53E6	328.89E6	0.0	4.36	61.41	0.0	0.0
0.81626	0.12500	1.730	107.264	61.05E6	518.19E6	9.07E6	244.04E6	0.0	3.36	45.44	0.0	0.0
0.84878	0.12500	1.342	98.776	49.48E6	454.87E6	8.06E6	211.60E6	0.0	2.75	39.57	0.0	0.0
0.88130	0.12500	0.954	90.248	39.36E6	395.12E6	7.08E6	181.52E6	0.0	2.21	34.09	0.0	0.0
0.89756	0.12500	0.760	83.001	34.67E6	353.72E6	6.09E6	160.25E6	0.0	1.93	30.12	0.0	0.0
0.91382	0.12500	0.574	72.906	30.41E6	304.73E6	5.75E6	109.23E6	0.0	1.69	20.15	0.0	0.0
0.93008	0.12500	0.404	68.772	26.52E6	281.42E6	5.33E6	100.08E6	0.0	1.49	18.53	0.0	0.0
0.93821	0.12500	0.319	66.264	23.84E6	261.71E6	4.94E6	92.24E6	0.0	1.34	17.11	0.0	0.0
0.94636	0.12500	0.253	59.340	19.63E6	158.81E6	4.24E6	63.23E6	0.0	1.10	11.55	0.0	0.0
0.95447	0.12500	0.216	55,914	16.00E6	137.88E6	3.66E6	53.32E6	0.0	0.89	9.77	0.0	0.0
0.96260	0.12500	0.178	52.484	12.83E6	118.79E6	3.13E6	44.53E6	0.0	0.71	8.19	0.0	0.0
0.97073	0.12500	0.140	49.114	10.08E6	101.63E6	2.64E6	36.90E6	0.0	0.56	6.82	0.0	0.0
0.97886	0.12500	0.101	45.818	7.55F6	85 07F6	2.17F6	29.92F6	0.0	0.42	5.57	0.0	0.0
0 98699	0 12500	0 062	41 669	4 60E6	64 26E6	1 5856	21 31E6	a a	0 25	4 01	0.0	0.0
0.99512	0.12500	0.023	11 453	0.25F6	6.61F6	0.25F6	4.85F6	0.0	0.04	0.94	0.0	0.0
1 00000	0 12500	0.025	10 319	0 1756	5 0156	0 1956	3 5356	0.0 0 0	0.04	0 68	0 0	0.0 0 0
1.00000	0.12500		DE MODE CHAD	FS	5.0110	0.150	5.5520	0.0	0.02	0.00	5.0	0.0
0.063		(ch/2)	Elan modo 1	cooff of vA	 າ							
1 725	A BIGEL	15h(2) =	riap mode i,	coeff of x^	2							
2.245		131(3) - 100	ر		4							
-3.245	DZ BIUFI.	LSH(4) -	و	coeff of x	4 F							
4.713	DI BIUFI.	LSII(5) -	و	coeff of x^	5							
-2.255	אס אס אס איז	LSII(0) -	Flag made 2	COETT OT XA	ง ว							
-0.586	99 BIGFIA	2Sn(2) -	Fiap mode 2,	COETT OT X^	2							
1.206	DV BIGEI	25n(3) -	ر	COETT OT X^	2							
-15.534	HY BIdF12	25n(4) -	و	coett of x^	4							
29.734	+/ BIdF12	25n(5) -	و	coett ot x^	5							
-13.825	5 B1dF12	2Sh(6) -		coett of x^	6							
0.362	27 BldEdg	gSh(2) -	Edge mode 1,	coeff of x^	2							
2.533	37 BldEdg	gSh(3) -	و	coeff of x^	3							
-3.577	72 BldEdg	gSh(4) -	و	coeff of x^	4							
2.376	50 BldEdg	gSh(5) -	,	coeff of x^	5							
-0.695	52 BldEdg	zSh(6) -		coeff of x^	6							

A.3 Tower Input File – NRELOffshrBsline5MW_Tower_Onshore.dat

1.0	TwrFAD	mp(1) - Tow	ver 1st fore	-aft mode s	tructural d	lamping rat	io (%)			
1.0	TwrFAD	mp(2) - Tow	ver 2nd fore	-aft mode s	tructural d	lamping rat	io (%)			
1.0	TwrSSD	mp(1) - Tow	ver 1st side	-to-side mo	ode structur	al damping	g ratio (%)			
1.0	TwrSSD	mp(2) - Tow	ver 2nd side	-to-side mo	ode structur	al damping	g ratio (%)			
		TOWER	ADJUSTMUNT	FACTORS						
1.0	FAStTu	nr(1) - Tow	ver tore-att	modal stif	tness tuner	, 1st mode	e (-)			
1.0	FAStTu	nr(2) - Tow	ver tore-att	modal stit	tuner	, 2nd mode	e (-)			
1.0	SSStlu	nr(1) - Iow	ver side-to-	side stiffn	iess tuner,	1st mode (-)			
1.0	SSSTIU	nr(2) - 10w	ver slde-to-	side stiffn	less tuner,	2na moae (-)			
1.0	Adjiwm	a - Fac + Fac	tor to adju	ist tower ma	iss density	(-)				
1.0	AUJFAS	t - Fac	tor to adju	ist tower it	de-to-cide	stiffnors	(-)			
1.0	Auj333	DISTRI	BUTED TOWER	PROPERTIES	ue-co-siue	3011111635	(-)			
HtFract	TMassDen	TWEAStif	Twssstif	TwGIStif	, TwFΔStif	TwFAIner	TwSSIner	TwFAcgOf	Twsscoof	
(-)	(kg/m)	(Nm^2)	(Nm^2)	(Nm^2)	(N)	(kg m)	(kg m)	(m)	(m)	
ò.ó	5590.87	614.343E9	614.343E9	472.751E9	138.127E9	24866.3	24866.3	0.0	0.0	
0.1	5232.43	534.821E9	534.821E9	411.558E9	129.272E9	21647.5	21647.5	0.0	0.0	
0.2	4885.76	463.267E9	463.267E9	356.495E9	120.707E9	18751.3	18751.3	0.0	0.0	
0.3	4550.87	399.131E9	399.131E9	307.141E9	112.433E9	16155.3	16155.3	0.0	0.0	
0.4	4227.75	341.883E9	341.883E9	263.087E9	104.450E9	13838.1	13838.1	0.0	0.0	
0.5	3916.41	291.011E9	291.011E9	223.940E9	96.758E9	11779.0	11779.0	0.0	0.0	
0.6	3616.83	246.027E9	246.027E9	189.323E9	89.357E9	9958.2	9958.2	0.0	0.0	
0.7	3329.03	206.457E9	206.457E9	158.874E9	82.247E9	8356.6	8356.6	0.0	0.0	
0.8	3053.01	171.851E9	171.851E9	132.244E9	75.427E9	6955.9	6955.9	0.0	0.0	
0.9	2788.75	141.776E9	141.776E9	109.100E9	68.899E9	5738.6	5738.6	0.0	0.0	
1.0	2536.27	115.820E9	115.820E9	89.126E9	62.661E9	4688.0	4688.0	0.0	0.0	
		TOWER	FORE-AFT MO	DE SHAPES -						
0.700	4 TWFAM1	Sh(2) - Moc	le 1, coetti	cient of x^	2 term					
2.196	3 IWFAM1	Sh(3) -	, coeffi	cient of x	3 term					
-5.620	Z IWFAM1	Sn(4) -	, coetti	cient of x	4 term					
0.22/	5 IWFAM1	SII(5) -	, COETTI	cient of x	5 Lerm					
-2.504		SI(0) = Moc	, coeffi	cient of x^	2 topm					
-70.331	2 TWEAM2	Sh(2) = h00	coeffi	cient of x^	2 term					
289 736	9 TwFAM2	Sh(3) =	, coeffi	cient of x^	1 torm					
-176 513	2 ΤωΓΑΠ2 4 ΤωΓΔΜ2	Sh(5) =	, coeffi	cient of x^	5 term					
22.070	6 TwFAM2	Sh(6) -	, coeffi	cient of x^	6 term					
		TOWER	SIDE-TO-SID	E MODE SHAP	PES					
1.385	0 TwSSM1	Sh(2) - Mod	de 1, coeffi	cient of x^	2 term					
-1.768	4 TwSSM1	Sh(3) -	, coeffi	cient of x^	3 term					
3.087	1 TwSSM1	Sh(4) -	, coeffi	cient of x^	4 term					
-2.239	5 TwSSM1	Sh(5) -	, coeffi	cient of x^	5 term					
0.535	7 TwSSM1	Sh(6) -	, coeffi	cient of x^	6 term					
-121.209	7 TwSSM2	Sh(2) - Mod	de 2, coeffi	cient of x^	2 term					
184.415	1 TwSSM2	Sh(3) -	, coeffi	cient of x^	3 term					
-224.903	7 TwSSM2	Sh(4) -	, coeffi	cient of x^	4 term					
298.536	0 TwSSM2	Sh(5) -	, coeffi	cient of x^	5 term					
-135.837	7 TwSSM2	Sh(6) -	coeffi	cient of x^	6 term					

A.4 ADAMS Input File – NRELOffshrBsline5MW_ADAMSSpecific.dat

	FAST 2 ADAMS PREPROCESSOR, ADAMS-SPECIFIC DATA FILE
NREL 5.0 MW	N offshore baseline ADAMS-specific input properties.
	FEATURE FLAGS
True	SaveGrphcs - Save GRAPHICS output (flag)
False	MakeLINacf - Make an ADAMS/LINEAR control / command file (flag)
	DAMPING PARAMETERS
0.01	CRatioTGJ - Ratio of damping to stiffness for the tower torsion deflection (-)
0.01	CRatioTEA - Ratio of damping to stiffness for the tower extensional deflection (-)
0.01	CRatioBGJ - Ratio of damping to stiffness for the blade torsion deflections (-)
0.01	CRatioBEA - Ratio of damping to stiffness for the blade extensional deflections (-)
	BLADE PITCH ACTUATOR PARAMETERS
971.350E6	BPActrSpr - Blade pitch actuator spring stiffness constant (N-m/rad)
0.206E6	BPActrDmp - Blade pitch actuator damping constant (N-m/(rad/s))
	GRAPHICS PARAMETERS
20	NSIdes - Number of sides used in GRAPHICS CYLINDER and FRUSTUM statements (-)
3.000	TwrBaseRad - Tower base radius used for linearly tapered tower GRAPHICS CYLINDERs (m)
1.935	TwrTopRad - Tower top radius used for linearly tapered tower GRAPHICS CYLINDERs (m)
7.0	Naclength - Length of nacelle used for the nacelle GRAPHICS (m)
1.75	NacRadBot - Bottom (opposite rotor) radius of nacelle FRUSTUM used for the nacelle GRAPHICS (m)
1.75	NacRadTop - Top (rotor end) radius of nacelle FRUSTUM used for the nacelle GRAPHICS (m)
1.0	GBoxLength - Length, width, and height of the gearbox BOX for gearbox GRAPHICS (m)
2.39	GenLength - Length of the generator CYLINDER used for generator GRAPHICS (m)
1.195	HSSLength - Length of the high-speed shaft CYLINDER used for HSS GRAPHICS (m)
4.78	LSSLength - Length of the low-speed shaft CYLINDER used for LSS GRAPHICS (m)
0.75	Genkad - Radius of the generator CYLINDER used for generator GRAPHICS (m)
0.2	HSSRad - Radius of the high-speed shart CYLINDER used for HSS GRAPHICS (m)
0.4	LSSRAG - KAGIUS OT THE IOW -SPEED SHATT CYLINDER USED FOR LSS GRAPHICS (m)
0.875	HUDCYIKAO - KAOLUS OT NUD CYLINDEK USED TOT NUD GKAPHICS (M)
0.18	Inkuvrunra - katio ot plade thickness to plade chora used for plade element BUX GRAPHICS (-)
0.0	BoomRad - Radius of the tail boom CYLINDER used for tail boom GRAPHICS (m)

A.5 Linearization Input File – NRELOffshrBsline5MW_Linear.dat

		FAST LINEARIZATION CONTROL FILE
NREL 5.0 M	√ offshore b	paseline linearization input properties.
		PERIODIC STEADY STATE SOLUTION
True	CalcStdy	- Calculate periodic steady state condition {False: linearize about initial conditions} (flag)
3	TrimCase	- Trim case {1: find nacelle yaw, 2: find generator torque, 3: find collective blade pitch} (switch)
0.0001	DispTol	- Convergence tolerance for the 2-norm of displacements in the periodic steady state calculation (rad
0.0010	VelTol	- Convergence tolerance for the 2-norm of velocities in the periodic steady state calculation (rad
		MODEL LINEARIZATION
36	NAzimStep	- Number of equally-spaced azimuth steps in periodic linearized model (-)
1	Md10rder	- Order of output linearized model {1: 1st order A, B, Bd, C, D, Dd; 2: 2nd order M, C, K, F, Fd, Vel
		INPUTS AND DISTURBANCES
0	NInputs	- Number of control inputs [0 (none) or 1 to 4+NumBl] (-)
	CntrlInpt	- List of control inputs [1 to NInputs] {1: nacelle yaw angle, 2: nacelle yaw rate, 3: generator to
0	NDisturbs	- Number of wind disturbances [0 (none) or 1 to 7] (-)
	Disturbnc	- List of input wind disturbances [1 to NDisturbs] {1: horizontal hub-height wind speed, 2: horizon

Appendix B AeroDyn Input Files

B.1 Primary Input File – NRELOffshrBsline5MW_AeroDyn.ipt

NREL 5.0	MW offsho	re baseli	ine aero	dynamic	input properties; Compatible with AeroDyn v12.58.
SI	SysUni	ts - 9	System o	f units	used for input and output [must be SI for FAST] (unquoted string)
BEDDOES	StallM	od - [Dynamic	stall i	ncluded [BEDDOES or STEADY] (unquoted string)
USE CM	UseCm	- l	Jse aero	dynamic	pitching moment model? [USE CM or NO CM] (unquoted string)
EQUIL	InfMod	el - 1	[nflow m	odel [D	YNIN or EQUIL] (unquoted string)
WAKE	IndMod	el - 1	Inductio	n-facto	r model [NONE or WAKE or SWIRL] (unquoted string)
0.005	AToler	- 1	Inductio	n-facto	r tolerance (convergence criteria) (-)
PRANDt1	TLMode	1 - 1	Tip-loss	model	(EQUIL only) [PRANDt], GTECH, or NONE] (unquoted string)
PRANDt1	HLMode	1 - H	ub-loss	model	(EQUIL only) [PRANdtl or NONE] (unquoted string)
"WindData	a\90m 12mp	s"			WindFile - Name of file containing wind data (quoted string)
90.0	НН	- 1	wind ref	erence	(hub) height [TowerHt+Twr2Shft+OverHang*SIN(ShftTilt)] (m)
0.0	TwrSha	d - 1	Tower-sh	adow ve	locity deficit (-)
9999.9	ShadHW	id - 1	Tower-sh	adow ha	lf width (m)
9999.9	T Shad	Refpt- 1	Tower-sh	adow re	ference point (m)
1.225	AirDen	s - 1	Air dens	itv (kø	/m^3)
1.464	F-5 KinVis	I	(inemati	c air v	iscosity [CURRENTLY IGNORED] (m^2/sec)
0.024	79 DTAero	- 1	Time int	erval f	or aerodynamic calculations (sec)
8	NumFoi	1 - 1	Number o	f airfo	il files (-)
"AeroData	a\Cvlinder	 1.dat"			FoilNm - Names of the airfoil files [NumEoil lines] (quoted strings)
"AeroData	a\Cvlinder	2.dat"			
"AeroData	a\DU40 A17	.dat"			
"AeroData	a\DU35_A17	.dat"			
"AeroData	a\DU30_A17	.dat"			
"AeroData	a\DU25_A17	.dat"			
"AeroData	a\DU21_A17	.dat"			
"AeroData	a NACA64 A	17.dat"			
17	BldNod	es - N	Number o	f blade	nodes used for analysis (-)
RNodes	AeroTwst	DRNodes	Chord	NEoil	
2.8667	13,308	2.7333	3.542	1	NOPRINT
5.6000	13,308	2.7333	3.854	1	NOPRINT
8.3333	13.308	2.7333	4.167	2	NOPRINT
11.7500	13,308	4,1000	4.557	3	NOPRINT
15.8500	11.480	4.1000	4.652	4	NOPRINT
19,9500	10.162	4.1000	4,458	4	NOPRINT
24,0500	9,011	4.1000	4,249	5	NOPRINT
28.1500	7.795	4.1000	4.007	6	NOPRINT
32.2500	6.544	4.1000	3.748	6	NOPRINT
36.3500	5.361	4.1000	3.502	7	NOPRINT
40.4500	4.188	4.1000	3.256	7	NOPRINT
44.5500	3.125	4.1000	3.010	8	NOPRINT
48.6500	2.319	4.1000	2.764	8	NOPRINT
52.7500	1.526	4.1000	2.518	8	NOPRINT
56.1667	0.863	2.7333	2.313	8	NOPRINT
58.9000	0.370	2.7333	2.086	8	NOPRINT
61.6333	0.106	2.7333	1.419	8	NOPRINT

B.2 Airfoil-Data Input File – Cylinder1.dat

Round root section with a Cd of 0.50					
Made by J	ason Jonkman				
1	Number of airfoil tables in this file				
0.0	Table ID parameter				
0.0	Stall angle (deg)				
0.0	No longer used, enter zero				
0.0	No longer used, enter zero				
0.0	No longer used, enter zero				
0.0	Zero Cn angle of attack (deg)				
0.0	Cn slope for zero lift (dimensionless)				
0.0	Cn extrapolated to value at positive stall angle of attack				
0.0	Cn at stall value for negative angle of attack				
0.0	Angle of attack for minimum CD (deg)				
0.50	Minimum CD value				
-180.00	0.000 0.5000 0.000				
0.00	0.000 0.5000 0.000				
180.00	0.000 0.5000 0.000				

B.3 Airfoil-Data Input File – Cylinder2.dat

```
Round root section with a Cd of 0.35
Made by Jason Jonkman
1 _____Number_of airfoil tables in this file
```

0.0	Table ID parameter									
0.0	Stall angle (deg)									
0.0	No longer used, enter zero									
0.0	No longer used, enter zero									
0.0	No longer used, enter zero									
0.0	Zero Cn angle of attack (deg)									
0.0	Cn slope for zero lift (dimensionless)									
0.0	Cn extrapolated to value at positive stall angle of attack									
0.0	Cn at stall value for negative angle of attack									
0.0	Angle of attack for minimum CD (deg)									
0.35	Minimum CD value									
-180.00	0.000 0.3500 0.000									
0.00	0.000 0.3500 0.000									
180.00	0.000 0.3500 0.000									

B.4 Airfoil-Data Input File – DU40_A17.dat

DU40 airfo	il_with a	n aspect	ratio of 17. Original -180 to 180deg Cl, Cd, and Cm versus AOA data taken from Appendix A of DOW
Cl and Cd	values co	rrected	for rotational stall delay and Cd values corrected using the Viterna method for 0 to 90deg AOA by
1	Number	ot airto	il tables in this file
0.0	Table I	D parame	
9.00	Stall a	ngie (de	g)
0.0	No long	er usea,	enter zero
0.0	No long	er usea,	enter zero
0.0	NO LONG	er useu,	enter zero
-1.5450		aligie u	n attack (ueg)
1 3519	Cn evtr	20012400	to value at nositive stall angle of attack
-0.3226	Cn at s	tall val	ue for negative angle of attack
0.9220	Angle o	f attack	for minimum (D) (deg)
0.0113	Minimum	CD valu	
-180.00	0.000	0.0602	0.0000
-175.00	0.218	0.0699	0.0934
-170.00	0.397	0.1107	0.1697
-160.00	0.642	0.3045	0.2813
-155.00	0.715	0.4179	0.3208
-150.00	0.757	0.5355	0.3516
-145.00	0.772	0.6535	0.3752
-140.00	0.762	0.7685	0.3926
-135.00	0.731	0.8777	0.4048
-130.00	0.680	0.9788	0.4126
-125.00	0.613	1.0700	0.4166
-120.00	0.532	1.1499	0.4176
-115.00	0.439	1.2174	0.4158
-110.00	0.337	1.2716	0.4117
-105.00	0.228	1.3118	0.4057
-100.00	0.114	1.33/8	
-95.00	-0.002	1.3492	0.388/
- 90.00	-0.120	1 3283	0.3663
-80.00	-0.230	1 296/	0.353/
-75 00	-0.345	1 2507	0.334
-70.00	-0.557	1.1918	0.3344
-65.00	-0.647	1.1204	0.3084
-60.00	-0.727	1.0376	0.2914
-55.00	-0.792	0.9446	0.2733
-50.00	-0.842	0.8429	0.2543
-45.00	-0.874	0.7345	0.2342
-40.00	-0.886	0.6215	0.2129
-35.00	-0.875	0.5067	0.1906
-30.00	-0.839	0.3932	0.1670
-25.00	-0.777	0.2849	0.1422
-24.00	-0.761	0.2642	0.1371
-23.00	-0.744	0.2440	0.1320
-22.00	-0.725	0.2242	0.1268
-21.00	-0.706	0.2049	0.1215
-20.00	-0.685	0.1861	0.1162
-19.00	-0.662	0.108/	0.1097
-17.00	-0.655	0.1333	0.0007
-16.00	-0.005	0.1398	0.0384
-15.00	-0.534	0.1183	0. 9646
-14.00	-0.494	0.1101	0.0494
-13.00	-0.452	0.1036	0.0330
-12.00	-0.407	0.0986	0.0156
-11.00	-0.360	0.0951	-0.0026
-10.00	-0.311	0.0931	-0.0213
-8.00	-0.208	0.0930	-0.0600
-6.00	-0.111	0.0689	-0.0500
-5.50	-0.090	0.0614	-0.0516
-5.00	-0.072	0.0547	-0.0532
-4.50	-0.065	0.0480	-0.0538

-4.00	-0.054	0.0411	-0.0544	
-3.50	-0.017	0.0349	-0.0554	
-3.00	0 003	0 0299	-0 0558	
2 50	0.005	0.0255	0.0550	
-2.50	0.014	0.0255	-0.0555	
-2.00	0.009	0.0198	-0.0534	
-1.50	0.004	0.0164	-0.0442	
-1.00	0.036	0.0147	-0.0469	
-0.50	0.073	0.0137	-0.0522	
0 00	0 137	0 0113	-0 0573	
0.00	0.157	0.0113	-0.0575	
0.50	0.213	0.0114	-0.0644	
1.00	0.292	0.0118	-0.0718	
1.50	0.369	0.0122	-0.0783	
2.00	0.444	0.0124	-0.0835	
2 50	0 51/	0 0124	-0 0866	
2.50	0.514	0.0124	0.0000	
3.00	0.580	0.0123	-0.088/	
3.50	0.645	0.0120	-0.0900	
4.00	0.710	0.0119	-0.0914	
4.50	0.776	0.0122	-0.0933	
5.00	0.841	0.0125	-0.0947	
5 50	0 904	0 0129	-0 0957	
5.50 C.00	0.007	0.0125	0.0057	
0.00	0.967	0.0133	-0.0907	
6.50	1.02/	0.0144	-0.09/3	
7.00	1.084	0.0158	-0.0972	
7.50	1.140	0.0174	-0.0972	
8.00	1.193	0.0198	-0.0968	
8.50	1.242	0.0231	-0.0958	
9 00	1 297	0 0275	-0 0010	
9.00	1 222	0.02/3	0.0340	
9.50	1.333	0.0323	-0.0942	
10.00	1.368	0.0393	-0.0926	
10.50	1.400	0.0475	-0.0908	
11.00	1.425	0.0580	-0.0890	
11.50	1.449	0.0691	-0.0877	
12 00	1 /73	0 0816	-0 0870	
12.00	1 404	0.0010	-0.0070	
12.50	1.494	0.0973	-0.0870	
13.00	1.513	0.1129	-0.08/6	
13.50	1.538	0.1288	-0.0886	
14.50	1.587	0.1650	-0.0917	
15.00	1.614	0.1845	-0.0939	
15 50	1 631	0 2052	-0 0966	
16 00	1 6/0	0.2052	-0.0006	
10.00	1.049	0.2250	-0.0990	
16.50	1.666	0.2467	-0.1031	
17.00	1.681	0.2684	-0.1069	
17.50	1.699	0.2900	-0.1110	
18.00	1.719	0.3121	-0.1157	
19.00	1.751	0.3554	-0.1242	
19 50	1 767	0 3783	-0 1291	
20 50	1 709	0.3703	0.1201	
20.50	1.798	0.4212	-0.1384	
21.00	1.810	0.4415	-0.1416	
22.00	1.830	0.4830	-0.1479	
23.00	1.847	0.5257	-0.1542	
24.00	1.861	0.5694	-0.1603	
25.00	1.872	0.6141	-0.1664	
26.00	1 991	0 6503	-0 1724	
20.00	1 804	0.0555	0.1041	
28.00	1.894	0.7513	-0.1841	
30.00	1.904	0.8441	-0.1954	
32.00	1.915	0.9364	-0.2063	
35.00	1.929	1.0722	-0.2220	
40.00	1.903	1.2873	-0.2468	
45.00	1.820	1.4796	-0.2701	
50.00	1.690	1.6401	-0.2921	
55 00	1 500	1 7600	-0 2127	
60.00	1 222	1 0000	-0.312/	
60.00	1.323	1.0300	-0.3521	
05.00	1.100	1.8614	-0.3502	
70.00	0.880	1.8347	-0.3672	
75.00	0.658	1.7567	-0.3830	
80.00	0.449	1.6334	-0.3977	
85.00	0.267	1.4847	-0.4112	
90 00	0.124	1.3879	-0.4234	
95.00	0.124	1 2010	-0 1212	
100 00	0.002	1 2705	0.4343	
100.00	-0.118	1.3/95	-0.443/	
105.00	-0.235	1.3528	-0.4514	
110.00	-0.348	1.3114	-0.4573	
115.00	-0.453	1.2557	-0.4610	
120.00	-0.549	1.1864	-0.4623	
125 00	-0 622	1 10/1	-0 1606	
120.00	-0.033	1 0102	0.4000	
130.00	-0.702	1.0102	-0.4554	
135.00	-0.754	0.9060	-0.4462	
140.00	-0.787	0.7935	-0.4323	
145.00	-0.797	0.6750	-0.4127	
150.00	-0.782	0.5532	-0.3863	
155 00	-0.739	0.4318	-0.3521	
160 00	-0 661	0.7510	-0 3085	
170.00	-0.004	0.514/	-0.3085	
1/0.00	-0.410	0.1144	-0.1858	
175.00	-0.226	0.0702	-0.1022	

180.00 0.000 0.0602 0.0000

B.5 Airfoil-Data Input File – DU35_A17.dat

DU35 airfoil with an aspect ratio of 17. Original -180 to 180deg Cl, Cd, and Cm versus AOA data taken from Appendix A of DOW Cl and Cd values corrected for rotational stall delay and Cd values corrected using the Viterna method for 0 to 90deg AOA by Number of airfoil tables in this file 1 0.0 Table ID parameter Stall angle (deg) 11.50 0.0 No longer used, enter zero 0.0 No longer used, enter zero 0.0 No longer used, enter zero -1.8330 Zero Cn angle of attack (deg) 7.1838 Cn slope for zero lift (dimensionless) 1.6717 Cn extrapolated to value at positive stall angle of attack Cn at stall value for negative angle of attack -0.3075 0.00 Angle of attack for minimum CD (deg) 0.0094 Minimum CD value -180.00 0.000 0.0407 0.0000 -175.00 0.223 0.0507 0.0937 -170.00 0.405 0.1055 0.1702 -160.00 0.658 0.2982 0.2819 -155.00 0.733 0.4121 0.3213 0.778 0.5308 -150.00 0.3520 -145.00 0.795 0.6503 0.3754 -140.00 0.787 0.7672 0.3926 0.757 0.8785 0.4046 -135.00 -130.00 0.708 0.9819 0.4121 -125.00 0.641 1.0756 0.4160 -120.00 0.560 1.1580 0.4167 -115.00 0.467 1.2280 0.4146 -110.00 0.365 1,2847 0.4104 -105.00 0.255 1.3274 0.4041 -100.00 0.139 1.3557 0.3961 -95.00 0.021 1.3692 0.3867 -90.00 -0.098 1.3680 0.3759 -85.00 -0.216 1.3521 0.3639 -80.00 -0.331 1.3218 0.3508 -75.00 -0.441 1.2773 0.3367 -70.00 -0.544 1.2193 0.3216 -65.00 -0.638 1.1486 0.3054 0.2884 -60.00 -0.720 1.0660 -0.788 -55.00 0.9728 0.2703 -50.00 -0.840 0.8705 0.2512 -45.00 -0.875 0.7611 0.2311 -40.00 -0.889 0.6466 0.2099 -35.00 -0.880 0.5299 0.1876 -30.00 -0.846 0.4141 0.1641 -25.00 -0.784 0.3030 0.1396 -24.00 -0.768 0.2817 0.1345 0.2608 -23.00 -0.751 0.1294 -22.00 -0.733 0.2404 0.1243 0.2205 -21.00 -0.714 0.1191 -20.00 -0.693 0.2011 0.1139 -19.00 -0.671 0.1822 0.1086 -18.00 -0.648 0.1640 0.1032 -17.00 -0.624 0.1465 0.0975 -0.601 0.0898 -16.00 0.1300 -15.00 -0.579 0.1145 0.0799 -14.00 -0.559 0.1000 0.0682 -13.00 -0.539 0.0867 0.0547 -12.00 -0.519 0.0744 0.0397 -11.00 -0.499 0.0633 0.0234 -10.00 -0.480 0.0534 0.0060 -5.54 -0.385 0.0245 -0.0800 -5.04 -0.359 0.0225 -0.0800 -4.54 -0.360 0.0196 -0.0800 -0.355 -4.04 0.0174 -0.0800 -3.54 -0.307 0.0162 -0.0800 -3.04 -0.246 0.0144 -0.0800 -3.00 -0.240 0.0240 -0.0623 -2.50 -0.163 0.0188 -0.0674 -2.00 -0.091 0.0160 -0.0712 -1.50 -0.019 0.0137 -0.0746 -1.00 0.052 0.0118 -0.0778 -0.50 0.121 0.0104 -0.0806 0.00 0.196 0.0094 -0.0831 0.50 0.265 0.0096 -0.0863 1.00 0.335 0.0098 -0.0895 1.50 0.404 0.0099 -0.0924 2.00 0.472 0.0100 -0.0949 2.50 0.540 0.0102 -0.0973

3 00	0 608	0 0103	-0 0996	
2.00	0.000	0.0104	0.1010	
3.50	0.674	0.0104	-0.1010	
4.00	0.742	0.0105	-0.1037	
4 50	0 000	0 0107	0 1057	
4.50	0.009	0.010/	-0.1057	
5.00	0.875	0.0108	-0.1076	
5 50	0 941	0 0109	-0 1094	
5.50	0.541	0.0105	0.1004	
6.00	1.00/	0.0110	-0.1109	
6.50	1.071	0.0113	-0.1118	
7 00	1 124	0 0115	0 1127	
7.00	1.154	0.0115	-0.112/	
7.50	1.198	0.0117	-0.1138	
8.00	1,260	0.0120	-0.1144	
0 50	1 210	0 0126	0 1127	
0.50	1.510	0.0120	-0.1157	
9.00	1.368	0.0133	-0.1112	
9.50	1.422	0.0143	-0.1100	
10.00	1 475	0.0150	0.1000	
10.00	1.4/5	0.0156	-0.1080	
10.50	1.523	0.0174	-0.1064	
11.00	1.570	0.0194	-0.1044	
11 50	1 (00	0.0227	0 1012	
11.50	1.009	0.0227	-0.1013	
12.00	1.642	0.0269	-0.0980	
12.50	1.675	0.0319	-0.0953	
12 00	1 700	0 0200	0 0025	
13.00	1.700	0.0398	-0.0925	
13.50	1.717	0.0488	-0.0896	
14.00	1.712	0.0614	-0.0864	
14 50	1 702	0 0700	0 0010	
14.50	1.705	0.0/80	-0.0840	
15.50	1.671	0.1173	-0.0830	
16.00	1.649	0.1377	-0.0848	
16 50	1 (21	0 1000	0 0000	
10.50	1.621	0.1000	-0.0880	
17.00	1.598	0.1814	-0.0926	
17.50	1.571	0.2042	-0.0984	
10.00	1 540	0.2012	0 1050	
18.00	1.549	0.2310	-0.1052	
19.00	1.544	0.2719	-0.1158	
19 50	1 549	0 2906	-0 1213	
20.00	1.545	0.2005	0.1215	
20.00	1.565	0.3085	-0.1248	
21.00	1.565	0.3447	-0.1317	
22 00	1 563	0 3820	-0 1385	
22.00	1.505	0.3020	0.1305	
23.00	1.558	0.4203	-0.1452	
24.00	1.552	0.4593	-0.1518	
25 00	1 546	0 1988	-0 1583	
25.00	1.540	0.4000	-0.1505	
26.00	1.539	0.538/	-0.1647	
28.00	1.527	0.6187	-0.1770	
30 00	1 5 2 2	0 6978	-0 1886	
30.00	1.522	0.00/0	-0.1000	
32.00	1.529	0.//4/	-0.1994	
35.00	1.544	0.8869	-0.2148	
40.00	1.529	1,0671	-0.2392	
40.00	1.525	1 2210	0.2552	
45.00	1.4/1	1.2319	-0.2622	
50.00	1.376	1.3747	-0.2839	
55.00	1.249	1.4899	-0.3043	
60.00	1 007	1 5720	0 2226	
00.00	1.09/	1.3/28	-0.5250	
65.00	0.928	1.6202	-0.3417	
70.00	0.750	1.6302	-0.3586	
75 00	0 570	1 6021	-0 3745	
75.00	0.5/0	1.0051	-0.5/45	
80.00	0.396	1.5423	-0.3892	
85.00	0.237	1.4598	-0.4028	
90 00	0,101	1,4041	-0.4151	
05.00	0.101	1 /052	0 4201	
95.00	-0.022	1.4053	-0.4261	
100.00	-0.143	1.3914	-0.4357	
105.00	-0.261	1.3625	-0.4437	
110 00	-0 274	1 2100	-0 1100	
110.00	-0.3/4	1.3199	-0.4498	
115.00	-0.480	1.2608	-0.4538	
120.00	-0.575	1.1891	-0.4553	
125 00	-0 650	1 1016	-0 1510	
125.00	-0.039	1.1046	-0.4540	
130.00	-0.727	1.0086	-0.4492	
135.00	-0.778	0.9025	-0.4405	
140 00	-0 900	0 7002	-0 1270	
140.00	-0.009	0.7003	0.42/0	
145.00	-0.818	0.6684	-0.4078	
150.00	-0.800	0.5457	-0.3821	
155 00	-0 754	0 1226	-0 3/9/	
00.00	-0./54	0.4230	-0.5404	
160.00	-0.677	0.3066	-0.3054	
170,00	-0.417	0.1085	-0.1842	
	0.000	0 0510	-0 1012	
175 00	_ 14	0.0010	-0.1013	
175.00	-0.229			
175.00 180.00	-0.229 0.000	0.0407	0.0000	

B.6 Airfoil-Data Input File – DU30_A17.dat

DU30 airfoil with an aspect ratio of 17. Original -180 to 180deg Cl, Cd, and Cm versus AOA data taken from Appendix A of DOW Cl and Cd values corrected for rotational stall delay and Cd values corrected using the Viterna method for 0 to 90deg AOA by 1 Number of airfoil tables in this file 0.0 Table ID parameter 9.00 Stall angle (deg) 0.0 No longer used, enter zero 0.0 No longer used, enter zero

	-2.3220	Zero	Cn angle o	of attack (deg)	
	7.3326	Cn sl	ope for ze	ero lift (dimensionless)	
	1.4490	Cn ex	ctall val	to value at positive stall angle of attack	
	-0.6138		of attack	tue for negative angle of attack	
	0.00	Minim	um CD valu	k TOP MITTINUM CD (deg)	
	-180 00	0 000	0 0267	0 0000	
	-175.00	0.274	0.0207	0.1379	
	-170.00	0.547	0.0968	0.2778	
	-160.00	0.685	0.2876	0.2740	
	-155.00	0.766	0.4025	0.3118	
	-150.00	0.816	0.5232	0.3411	
	-145.00	0.836	0.6454	0.3631	
	-140.00	0.832	0.7656	0.3791	
	-135.00	0.804	0.8807	0.3899	
	-130.00	0.756	0.9882	0.3965	
	-125.00	0.690	1.0861	0.3994	
	-120.00	0.609	1.1730	0.3992	
	-115.00	0.515	1.24/4	0.3964	
	-110.00	0.411	1.3084	0.3915	
	-105.00	0.300	1.3552	0.3846	
	-100.00	0.102	1 /0/8	0.3663	
	-90.00	-0 061	1 4070	0.3551	
	-85.00	-0.183	1.3941	0.3428	
	-80.00	-0.302	1.3664	0.3295	
	-75.00	-0.416	1.3240	0.3153	
	-70.00	-0.523	1.2676	0.3001	
ļ	-65.00	-0.622	1.1978	0.2841	
ļ	-60.00	-0.708	1.1156	0.2672	
ļ	-55.00	-0.781	1.0220	0.2494	
	-50.00	-0.838	0.9187	0.2308	
	-45.00	-0.877	0.8074	0.2113	
	-40.00	-0.895	0.6904	0.1909	
	-35.00	-0.889	0.5703	0.1696	
	-30.00	-0.858	0.4503	0.1274	
	-25.00	-0.832	0.3357	0.1224	
	-24.00	-0.052	0.3147	0.1156	
	-22.00	-0.002	0.2340	0.1001	
	-21.00	-0.963	0.2566	0.0914	
	-20.00	-1.013	0.2388	0.0823	
	-19.00	-1.067	0.2218	0.0728	
	-18.00	-1.125	0.2056	0.0631	
	-17.00	-1.185	0.1901	0.0531	
	-16.00	-1.245	0.1754	0.0430	
	-15.25	-1.290	0.1649	0.0353	
	-14.24	-1.229	0.1461	0.0240	
	-13.24	-1.148	0.1263	0.0100	
	-12.22	-1.052	0.1051	-0.0090	
	-11.22	-0.965	0.0886	-0.0230	
	-10.19	-0.86/	0.0740	-0.0336	
	-9.70	-0.822	0.0684	-0.03/5	
ļ	-9.10	-0.709	0.0000 0 0770	-0.0578	
ļ	-7.19	-0,690	0.0270	-0.0590	
ļ	-6,65	-0.616	0.0166	-0.0633	
ļ	-6.13	-0.542	0.0152	-0.0674	
ļ	-6.00	-0.525	0.0117	-0.0732	
ļ	-5.50	-0.451	0.0105	-0.0766	
ļ	-5.00	-0.382	0.0097	-0.0797	
ļ	-4.50	-0.314	0.0092	-0.0825	
ļ	-4.00	-0.251	0.0091	-0.0853	
ļ	-3.50	-0.189	0.0089	-0.0884	
ļ	-3.00	-0.120	0.0089	-0.0914	
ļ	-2.50	-0.051	0.0088	-0.0942	
ļ	-2.00	0.01/	0.00088		
	-1.50	0.085	0.0088	-0.0994	
ļ	-0.50	0.152	0.0000	-0.1010	
ļ	0.00	0.288	0.0087	-0.1062	
ļ	0.50	0.354	0.0087	-0.1086	
ļ	1.00	0.421	0.0088	-0.1107	
ļ	1.50	0.487	0.0089	-0.1129	
ļ	2.00	0.554	0.0090	-0.1149	
ļ	2.50	0.619	0.0091	-0.1168	
ļ	3.00	0.685	0.0092	-0.1185	
ļ	3.50	0.749	0.0093	-0.1201	
ļ	4.00	0.815	0.0095	-0.1218	
ļ	4.50	0.879	0.0096	-0.1233	
ļ	5.00	0.944	0.0097	-0.1248	
ļ	5.50	1.008	0.0099	-0.1260	
ļ	6.00	1.072	0.0101	-0.12/0	
1	0.50	1.132	0.0103	-0.1200	

7.00	1.197	0.0107	-0.1287	
7.50	1.256	0.0112	-0.1289	
8 99	1 305	0 0125	-0 1270	
0.00	1 200	0.0125	0.1207	
9.00	1.390	0.0155	-0.1207	
9.50	1.424	0.01/1	-0.1158	
10.00	1.458	0.0192	-0.1116	
10.50	1.488	0.0219	-0.1073	
11.00	1.512	0.0255	-0.1029	
11.50	1.533	0.0307	-0.0983	
12.00	1 5/0	0 0370	-0.0010	
12.00	1.549	0.0370	-0.0949	
12.50	1.558	0.0452	-0.0921	
13.00	1.470	0.0630	-0.0899	
13.50	1.398	0.0784	-0.0885	
14.00	1.354	0.0931	-0.0885	
14.50	1.336	0.1081	-0.0902	
15.00	1.333	0.1239	-0.0928	
15 50	1 326	0 1415	-0 0963	
16 00	1 329	0 1592	-0 1006	
16.00	1 226	0.1332	0.1000	
10.50	1.320	0.1/43	-0.1042	
17.00	1.321	0.1903	-0.1084	
17.50	1.331	0.2044	-0.1125	
18.00	1.333	0.2186	-0.1169	
18.50	1.340	0.2324	-0.1215	
19.00	1.362	0.2455	-0.1263	
19.50	1.382	0.2584	-0.1313	
20 00	1 398	0 2689	-0 1352	
20.00	1 426	0.2005	0.1352	
20.50	1.426	0.2814	-0.1406	
21.00	1.437	0.2943	-0.1462	
22.00	1.418	0.3246	-0.1516	
23.00	1.397	0.3557	-0.1570	
24.00	1.376	0.3875	-0.1623	
25.00	1.354	0.4198	-0.1676	
26.00	1.332	0.4524	-0.1728	
28.00	1 202	0 5192	-0 1922	
20.00	1.295	0.5185	-0.1032	
30.00	1.265	0.5843	-0.1935	
32.00	1.253	0.6492	-0.2039	
35.00	1.264	0.7438	-0.2193	
40.00	1.258	0.8970	-0.2440	
45.00	1.217	1.0402	-0.2672	
50.00	1.146	1.1686	-0.2891	
55.00	1,049	1,2779	-0.3097	
60 00	0 932	1 3647	-0 3290	
65 00	0 700	1 /047	_0 2/71	
70.00	0./33	1 4607	0.34/1	
70.00	0.65/	1.4621	-0.3641	
75.00	0.509	1.4708	-0.3799	
80.00	0.362	1.4544	-0.3946	
85.00	0.221	1.4196	-0.4081	
90.00	0.092	1.3938	-0.4204	
95.00	-0.030	1.3943	-0.4313	
100.00	-0.150	1.3798	-0.4408	
105 00	-0.267	1.3504	-0.4486	
110 00	_0 270	1 2062	-0 1516	
115 00	-0.3/9	1 2401	0.4040	
112.00	-0.483	1.2481	-0.4584	
120.00	-0.578	1.1763	-0.4597	
125.00	-0.660	1.0919	-0.4582	
130.00	-0.727	0.9962	-0.4532	
135.00	-0.777	0.8906	-0.4441	
140.00	-0.807	0.7771	-0.4303	
145.00	-0.815	0.6581	-0.4109	
150 00	-0 797	0 5364	-0 3849	
155.00	-0 750	0.1157	-0 2500	
155.00	-0./50	0.415/	-0.3508	
100.00	-0.6/3	0.3000	-0.30/4	
170.00	-0.547	0.1051	-0.2786	
175.00	-0.274	0.0388	-0.1380	
180.00	0.000	0.0267	0.0000	

B.7 Airfoil-Data Input File - DU25_A17.dat

DU25 airfoi	l with an aspect ratio of 17. Original -180 to 180deg Cl, Cd, and Cm versus AOA data taken from Appendix A of DOW
Cl and Cd va	alues corrected for rotational stall delay and Cd values corrected using the Viterna method for 0 to 90deg AOA by
1	Number of airfoil tables in this file
0.0	Table ID parameter
8.50	Stall angle (deg)
0.0	No longer used, enter zero
0.0	No longer used, enter zero
0.0	No longer used, enter zero
-4.2422	Zero Cn angle of attack (deg)
6.4462	Cn slope for zero lift (dimensionless)
1.4336	Cn extrapolated to value at positive stall angle of attack
-0.6873	Cn at stall value for negative angle of attack
0.00	Angle of attack for minimum CD (deg)
0.0065	Minimum CD value

-180.00	0,000	0,0202	0,0000	
-175 00	0 369	0 0324	0 1945	
-175.00	0.300	0.0324	0.1645	
-170.00	0.735	0.0943	0.3701	
-160.00	0.695	0.2848	0.2679	
-155.00	0.777	0.4001	0.3046	
-150.00	0.828	0.5215	0.3329	
-145 00	0 950	0 6447	0 3540	
-145.00	0.050	0.0447	0.3340	
-140.00	0.846	0.7660	0.3693	
-135.00	0.818	0.8823	0.3794	
-130.00	0.771	0.9911	0.3854	
-125.00	0.705	1,0905	0.3878	
-120 00	0 624	1 1787	0 3872	
115 00	0.024	1 2545	0.0072	
-115.00	0.550	1.2343	0.3841	
-110.00	0.426	1.3168	0.3788	
-105.00	0.314	1.3650	0.3716	
-100.00	0.195	1.3984	0.3629	
-95.00	0.073	1,4169	0.3529	
-90 00	-0 050	1 4201	0 3416	
95.00	0.050	1 4001	0.2202	
-85.00	-0.173	1.4001	0.3292	
-80.00	-0.294	1.3811	0.3159	
-75.00	-0.409	1.3394	0.3017	
-70.00	-0.518	1.2833	0.2866	
-65.00	-0.617	1,2138	0.2707	
-60 00	-0 706	1 1215	0 2530	
-55.00	-0.700	1 0020	0.2009	
-35.00	-0./80	1.03/8	0.2364	
-50.00	-0.839	0.9341	0.2181	
-45.00	-0.879	0.8221	0.1991	
-40.00	-0.898	0.7042	0.1792	
-35.00	-0.893	0.5829	0.1587	
-30.00	-0.862	0.4616	0.1374	
-25 00	-0 002	0 2//1	0 115/	
-23.00	-0.003	0.3441	0.1154	
-24.00	-0.792	0.3209	0.1101	
-23.00	-0.789	0.2972	0.1031	
-22.00	-0.792	0.2730	0.0947	
-21.00	-0.801	0.2485	0.0849	
-20.00	-0.815	0.2237	0.0739	
-10.00	-0 833	0 1000	0 0619	
-19.00	-0.855	0.1330	0.0018	
-18.00	-0.854	0.1/43	0.0488	
-17.00	-0.879	0.1498	0.0351	
-16.00	-0.905	0.1256	0.0208	
-15.00	-0.932	0.1020	0.0060	
-14.00	-0.959	0.0789	-0.0091	
-13 00	-0 985	0 0567	-0 02/3	
12.00	0.005	0.0507	0.0245	
-15.00	-0.965	0.0307	-0.0245	
-12.01	-0.953	0.0271	-0.0349	
-11.00	-0.900	0.0303	-0.0361	
-9.98	-0.827	0.0287	-0.0464	
-8.98	-0.753	0.0271	-0.0534	
-8 47	-0 691	0 0264	-0 0650	
-7.45	-0 555	0 011/	-0 0782	
-7.45	-0.555	0.0114	-0.0702	
-6.42	-0.413	0.0094	-0.0904	
-5.40	-0.271	0.0086	-0.1006	
-5.00	-0.220	0.0073	-0.1107	
-4.50	-0.152	0.0071	-0.1135	
-4.00	-0.084	0.0070	-0.1162	
-3.50	-0.018	0.0069	-0.1186	
-3 00	0 010	0 0069	-0 1200	
-2 50	0.045	0.0000	-0 1203	
-2.50	0.112	0.0000	-0.1231	
-2.00	0.181	0.0068	-0.1252	
-1.50	0.247	0.0067	-0.1272	
-1.00	0.312	0.0067	-0.1293	
-0.50	0.377	0.0067	-0.1311	
0.00	0.444	0.0065	-0.1330	
0.50	0.508	0.0065	-0.1347	
1 00	0 572	0 0066	-0 136/	
1 50	0.575	0.0000	-0 1200	
1.20	0.030	0.000/	-0.1300	
2.00	0./01	0.0068	-0.1396	
2.50	0.765	0.0069	-0.1411	
3.00	0.827	0.0070	-0.1424	
3.50	0.890	0.0071	-0.1437	
4.00	0.952	0.0073	-0.1448	
4 50	1,013	0,0076	-0.1456	
F 00	1 060	0.0070	-0 1//5	
5.00	1.002	0.00/9	-0.1445	
6.00	1.161	0.0099	-0.1419	
6.50	1.208	0.0117	-0.1403	
7.00	1.254	0.0132	-0.1382	
7.50	1.301	0.0143	-0.1362	
8 00	1 336	0 0152	-0 1320	
0.00	1 260	0.0100	-0.1320	
8.50	1.369	0.0105	-0.12/6	
9.00	1.400	0.0181	-0.1234	
9.50	1.428	0.0211	-0.1193	
10.00	1.442	0.0262	-0.1152	
10.50	1.427	0.0336	-0.1115	
11 00	1 37/	0 0120	-0 1021	
	±. J/4	0.0420	-0.TOOT	

11.50	1.316	0.0515	-0.1052	
12.00	1.277	0.0601	-0.1026	
12.50	1.250	0.0693	-0.1000	
13.00	1.246	0.0785	-0.0980	
13.50	1.247	0.0888	-0.0969	
14.00	1.256	0.1000	-0.0968	
14 50	1 260	0 1108	-0 0973	
15 00	1 271	0.1210	-0.0973	
15.50	1 281	0.1215	-0.0501	
16.00	1 200	0.1323	0.00002	
16.00	1.209	0.1435	-0.1000	
16.50	1.294	0.1541	-0.1023	
17.60	1.304	0.1649	-0.1042	
17.50	1.309	0.1/54	-0.1064	
18.00	1.315	0.1845	-0.1082	
18.50	1.320	0.1953	-0.1110	
19.00	1.330	0.2061	-0.1143	
19.50	1.343	0.2170	-0.1179	
20.00	1.354	0.2280	-0.1219	
20.50	1.359	0.2390	-0.1261	
21.00	1.360	0.2536	-0.1303	
22.00	1.325	0.2814	-0.1375	
23.00	1.288	0.3098	-0.1446	
24.00	1.251	0.3386	-0.1515	
25.00	1.215	0.3678	-0.1584	
26.00	1.181	0.3972	-0.1651	
28.00	1.120	0.4563	-0.1781	
30.00	1.076	0.5149	-0.1904	
32.00	1.056	0.5720	-0.2017	
35.00	1.066	0.6548	-0.2173	
40.00	1.064	0.7901	-0.2418	
45.00	1.035	0.9190	-0.2650	
50.00	0.980	1.0378	-0.2867	
55.00	0.904	1.1434	-0.3072	
60.00	0.810	1.2333	-0.3265	
65.00	0.702	1.3055	-0.3446	
70.00	0.582	1.3587	-0.3616	
75.00	0.456	1.3922	-0.3775	
80.00	0.326	1.4063	-0.3921	
85.00	0.197	1.4042	-0.4057	
90.00	0.072	1.3985	-0.4180	
95.00	-0.050	1.3973	-0.4289	
100.00	-0.170	1.3810	-0.4385	
105.00	-0.287	1.3498	-0.4464	
110.00	-0.399	1.3041	-0.4524	
115.00	-0.502	1.2442	-0.4563	
120.00	-0.596	1.1709	-0.4577	
125.00	-0.677	1.0852	-0.4563	
130.00	-0.743	0.9883	-0.4514	
135.00	-0.792	0.8818	-0.4425	
140.00	-0.821	0.7676	-0.4288	
145.00	-0.826	0.6481	-0.4095	
150.00	-0.806	0.5264	-0.3836	
155.00	-0.758	0.4060	-0.3497	
160.00	-0.679	0.2912	-0.3065	
170.00	-0.735	0.0995	-0.3706	
175.00	-0.368	0.0356	-0.1846	
180.00	0.000	0.0202	0.0000	

B.8 Airfoil-Data Input File – DU21_A17.dat

DU21 airfoil with an aspect ratio of 17. Original -180 to 180deg Cl, Cd, and Cm versus AOA data taken from Appendix A of DOW Cl and Cd values corrected for rotational stall delay and Cd values corrected using the Viterna method for 0 to 90deg AOA by 1 Number of airfoil tables in this file 0.0 Table ID parameter 8.00 Stall angle (deg) No longer used, enter zero No longer used, enter zero No longer used, enter zero Zero Cn angle of attack (deg) 0.0 0.0 0.0 -5.0609 6.2047 Cn slope for zero lift (dimensionless) 1.4144 Cn extrapolated to value at positive stall angle of attack -0.5324 Cn at stall value for negative angle of attack Angle of attack for minimum CD (deg) Minimum CD value -1.50 0.0057 -180.00 0.000 0.0185 0.0000 0.394 0.0332 0.1978 -175.00 -170.00 0.788 0.0945 0.3963 -160.00 0.670 0.2809 0.2738 -155.00 0.749 0.3932 0.3118 -150.00 0.797 0.5112 0.3413 -145.00 0.818 0.6309 0.3636 0.813 0.7485 0.3799 -140.00

-135.00	0.786	0.8612	0.3911	
-130 00	0 739	0 9665	0 3980	
125.00	0.755	1 0005	0.3500	
-125.00	0.0/5	1.0625	0.4012	
-120.00	0.596	1.1476	0.4014	
-115.00	0.505	1,2206	0.3990	
-110 00	0 103	1 2905	0 3013	
-110.00	0.403	1.2805	0.3943	
-105.00	0.294	1.3265	0.3878	
-100.00	0.179	1.3582	0.3796	
-95 00	0 060	1 2752	0 3700	
-95.00	0.000	1.3/32	0.5700	
-90.00	-0.060	1.3774	0.3591	
-85.00	-0.179	1.3648	0.3471	
-80 00	-0 295	1 3376	0 3340	
-00.00	-0.255	1.00/0	0.3340	
-75.00	-0.407	1.2962	0.3199	
-70.00	-0.512	1.2409	0.3049	
-65.00	-0.608	1.1725	0.2890	
60.00	0 602	1 0010	0.2000	
-00.00	-0.095	1.0919	0.2/22	
-55.00	-0.764	1.0002	0.2545	
-50.00	-0.820	0.8990	0.2359	
-45 00	-0 857	0 7900	0 2163	
40.00	0.035	0.7500	0.2105	
-40.00	-0.8/5	0.6/54	0.1958	
-35.00	-0.869	0.5579	0.1744	
-30.00	-0.838	0.4405	0.1520	
-25 00	-0 701	0 2256	0 1262	
-25.00	-0./9I	0.5250	0.1202	
-24.00	-0.794	0.3013	0.1170	
-23.00	-0.805	0.2762	0.1059	
-22 00	-0.821	0.2506	0.0931	
21.00	0.021	0.2200	0.0700	
-21.00	-0.843	0.2246	0.0/88	
-20.00	-0.869	0.1983	0.0631	
-19.00	-0.899	0.1720	0.0464	
-18 00	-0 021	0 1/57	0 0206	
-10.00	-0.951	0.143/	0.0200	
-17.00	-0.964	0.1197	0.0102	
-16.00	-0.999	0.0940	-0.0088	
-15.00	-1.033	0.0689	-0.0281	
14 50	1 050	0.0567	0.0279	
-14.50	-1.050	0.056/	-0.03/8	
-12.01	-0.953	0.0271	-0.0349	
-11.00	-0.900	0.0303	-0.0361	
0 08	0 927	0 0297	0 0161	
-9.90	-0.827	0.0287	-0.0464	
-8.12	-0.536	0.0124	-0.0821	
-7.62	-0.467	0.0109	-0.0924	
-7.11	-0.393	0.0092	-0.1015	
6.60	0.000	0.0002	0.1013	
-6.60	-0.323	0.0083	-0.10/3	
-6.50	-0.311	0.0089	-0.1083	
-6.00	-0.245	0.0082	-0.1112	
E EQ	0 170	0 0074	0 1146	
-5.50	-0.1/8	0.0074	-0.1146	
-5.00	-0.113	0.0069	-0.1172	
-4.50	-0.048	0.0065	-0.1194	
-1 00	0 016	0 0063	-0 1213	
-4.00	0.010	0.0005	-0.1215	
-3.50	0.080	0.0061	-0.1232	
-3.00	0.145	0.0058	-0.1252	
-2.50	0.208	0.0057	-0.1268	
2.00	0 270	0 0057	0 1202	
-2.00	0.270	0.0057	-0.1282	
-1.50	0.333	0.0057	-0.1297	
-1.00	0.396	0.0057	-0.1310	
-0 50	0.458	0,0057	-0.1324	
0.00	0.400	0.0057	-0 1227	
0.00	0.521	0.005/	-0.133/	
0.50	0.583	0.0057	-0.1350	
1.00	0.645	0.0058	-0.1363	
1.50	0.706	0,0058	-0.1374	
2.00	0 760	0 0050	_0 130F	
2.00	0.700	0.0059	-0.1303	
2.50	0.828	0.0061	-0.1395	
3.00	0.888	0.0063	-0.1403	
3.50	0.948	0.0066	-0.1406	
4 00	0 006	0 0071	-0 1308	
4.50	1 040	0.0071	0.1300	
4.50	1.046	0.00/9	-0.1390	
5.00	1.095	0.0090	-0.1378	
5.50	1.145	0.0103	-0.1369	
6 00	1 100	0 0112	-0 1252	
0.00	1.192	0.0115	-0.1333	
6.50	1.239	0.0122	-0.1338	
7.00	1.283	0.0131	-0.1317	
7.50	1.324	0.0139	-0.1291	
8 00	1 359	0 01/7	-0 1240	
0.00	1.330	0.014/	-0.1249	
8.50	1.385	0.0158	-0.1213	
9.00	1.403	0.0181	-0.1177	
9.50	1,401	0.0211	-0.1142	
10.00	1 250	0.0211	0.11-72	
10.00	1.358	0.0255	-0.1103	
10.50	1.313	0.0301	-0.1066	
11.00	1.287	0.0347	-0.1032	
11 50	1 27/	0 0/01	-0 1002	
11.50	1.2/4	0.0401	-0.1002	
12.00	1.272	0.0468	-0.0971	
12.50	1.273	0.0545	-0.0940	
13 00	1,273	0.0633	-0.0909	
12 50	1 272	0.0000	0.000	
13.50	1.2/3	0.0/22	-0.0883	
14.00	1.272	0.0806	-0.0865	
	4 070	0 0000	0.0054	

15.00	1.275	0.0987	-0.0849	
15.50	1.281	0.1075	-0.0847	
16.00	1.284	0.1170	-0.0850	
16.50	1.296	0.1270	-0.0858	
17.00	1.306	0.1368	-0.0869	
17.50	1.308	0.1464	-0.0883	
18.00	1.308	0.1562	-0.0901	
18.50	1.308	0.1664	-0.0922	
19.00	1.308	0.1770	-0.0949	
19.50	1.307	0.1878	-0.0980	
20.00	1.311	0.1987	-0.1017	
20.50	1.325	0.2100	-0.1059	
21 00	1 324	0 2214	-0 1105	
22.00	1 277	0.2214	-0 1172	
22.00	1 229	0.2400	-0.1172	
23.00	1 182	0.2700	-0.1205	
25.00	1 126	0.3077	-0.1305	
25.00	1 003	0.3371	-0.1370	
20.00	1.033	0.3004	-0.1455	
20.00	0 962	0.4240	-0.1550	
22.00	0.902	0.4813	0.1071	
32.00	0.937	0.5550	-0.1//0	
40.00	0.947	0.012/	-0.1923	
40.00	0.950	0.7590	-0.2154	
45.00	0.928	0.8623	-0.2374	
50.00	0.884	0.9781	-0.2583	
55.00	0.821	1.0846	-0.2/82	
60.00	0.740	1.1/96	-0.29/1	
65.00	0.646	1.2617	-0.3149	
70.00	0.540	1.3297	-0.3318	
75.00	0.425	1.382/	-0.34/6	
80.00	0.304	1.4202	-0.3625	
85.00	0.179	1.4423	-0.3763	
90.00	0.053	1.4512	-0.3890	
95.00	-0.073	1.4480	-0.4004	
100.00	-0.198	1.4294	-0.4105	
105.00	-0.319	1.3954	-0.4191	
110.00	-0.434	1.3464	-0.4260	
115.00	-0.541	1.2829	-0.4308	
120.00	-0.637	1.2057	-0.4333	
125.00	-0.720	1.1157	-0.4330	
130.00	-0.787	1.0144	-0.4294	
135.00	-0.836	0.9033	-0.4219	
140.00	-0.864	0.7845	-0.4098	
145.00	-0.869	0.6605	-0.3922	
150.00	-0.847	0.5346	-0.3682	
155.00	-0.795	0.4103	-0.3364	
160.00	-0.711	0.2922	-0.2954	
170.00	-0.788	0.0969	-0.3966	
175.00	-0.394	0.0334	-0.1978	
180.00	0.000	0.0185	0.0000	

B.9 Airfoil-Data Input File – NACA64_A17.dat

NACA64 airf	oil with an aspe	ct ratio of 17. Original -180 to 180deg Cl, Cd, and Cm versus AOA data taken from Appendix A of D
Cl and Cd v	alues corrected	for rotational stall delay and Cd values corrected using the Viterna method for 0 to 90deg AOA by
1	Number of airfo	il tables in this file
0.0	Table ID parame	ter .
9.00	Stall angle (de	(g)
0.0	No longer used,	enter zero
0.0	No longer used,	enter zero
0.0	No longer used,	enter zero
-4.4320	Zero Cn angle o	if attack (deg)
6.0031	Cn slope for ze	ro lift (dimensionless)
1.4073	Cn extrapolated	to value at positive stall angle of attack
-0.7945	Cn at stall val	ue for negative angle of attack
-1.00	Angle of attack	for minimum CD (deg)
0.0052	Minimum CD valu	.e
-180.00	0.000 0.0198	0.0000
-175.00	0.374 0.0341	0.1880
-170.00	0.749 0.0955	0.3770
-160.00	0.659 0.2807	0.2747
-155.00	0.736 0.3919	0.3130
-150.00	0.783 0.5086	0.3428
-145.00	0.803 0.6267	0.3654
-140.00	0.798 0.7427	0.3820
-135.00	0.771 0.8537	0.3935
-130.00	0.724 0.9574	0.4007
-125.00	0.660 1.0519	0.4042
-120.00	0.581 1.1355	0.4047
-115.00	0.491 1.2070	0.4025
-110.00	0.390 1.2656	0.3981
-105.00	0.282 1.3104	0.3918

-100.00	0.169	1.3410	0.3838	
-95 00	0 052	1 3572	0 37/3	
- 55.00	0.052	1.3572	0.3743	
-90.00	-0.06/	1.358/	0.3636	
-85.00	-0.184	1.3456	0.3517	
-80.00	-0.299	1.3181	0.3388	
-75 00	-0 109	1 2765	0 32/8	
70.00	0.400	1 22/05	0.3240	
-70.00	-0.512	1.2212	0.3099	
-65.00	-0.606	1.1532	0.2940	
-60.00	-0.689	1.0731	0.2772	
-55 00	-0 759	0 9822	0 2595	
-55.00	-0.755	0.0022	0.2555	
-50.00	-0.814	0.8820	0.2409	
-45.00	-0.850	0.7742	0.2212	
-40.00	-0.866	0.6610	0.2006	
-35 00	-0 860	0 5451	0 1789	
20.00	0.000	0.1205	0.1500	
-30.00	-0.829	0.4295	0.1563	
-25.00	-0.853	0.3071	0.1156	
-24.00	-0.870	0.2814	0.1040	
-23.00	-0.890	0.2556	0.0916	
22.00	0.011	0 2207	0 0795	
-22.00	-0.911	0.2257	0.0785	
-21.00	-0.934	0.2040	0.0649	
-20.00	-0.958	0.1785	0.0508	
-19.00	-0.982	0.1534	0.0364	
-18 00	-1 005	0 1288	0 0218	
17.00	1 000	0 1007	0.0210	
-1/.00	-1.082	0.103/	0.0129	
-16.00	-1.113	0.0786	-0.0028	
-15.00	-1.105	0.0535	-0.0251	
-14.00	-1.078	0.0283	-0.0419	
-13 50	-1 052	0 0159	-0 0521	
12.00	1 015	0.0156	0.0521	
-13.00	-1.015	0.0151	-0.0610	
-12.00	-0.904	0.0134	-0.0707	
-11.00	-0.807	0.0121	-0.0722	
-10 00	-0 711	0 0111	-0 0734	
0.00	0 505	0 0000	0 0772	
-9.00	-0.395	0.0099	-0.0//2	
-8.00	-0.478	0.0091	-0.0807	
-7.00	-0.375	0.0086	-0.0825	
-6.00	-0.264	0.0082	-0.0832	
-5 00	-0 151	0 0079	-0 0841	
1 00	0.151	0.0075	0.0041	
-4.00	-0.017	0.0072	-0.0009	
-3.00	0.088	0.0064	-0.0912	
-2.00	0.213	0.0054	-0.0946	
-1.00	0.328	0.0052	-0.0971	
0.00	0.442	0.0052	-0.1014	
1 00	0 556	0 0052	-0 1076	
1.00	0.550	0.0052	-0.1070	
2.00	0.670	0.0053	-0.1126	
3.00	0.784	0.0053	-0.1157	
4.00	0.898	0.0054	-0.1199	
5.00	1.011	0.0058	-0.1240	
c. 00	1 102	0.0001	0 1224	
0.00	1.105	0.0091	-0.1254	
7.00	1.181	0.0113	-0.1184	
8.00	1.257	0.0124	-0.1163	
8.50	1.293	0.0130	-0.1163	
9.00	1.326	0.0136	-0.1160	
9 50	1 356	0 01/13	-0 1154	
10.00	1 202	0.0143	0.11.04	
10.00	1.382	0.0150	-0.1149	
10.50	1.400	0.0267	-0.1145	
11.00	1.415	0.0383	-0.1143	
11.50	1.425	0.0498	-0.1147	
12 00	1 /2/	0 0612	-0 1159	
12.00	1 442	0.0013	0.1100	
12.50	1.443	0.0/2/	-0.1105	
13.00	1.451	0.0841	-0.1153	
13.50	1.453	0.0954	-0.1131	
14.00	1.448	0.1065	-0.1112	
14.50	1.444	0.1176	-0.1101	
15 00	1.445	0.1287	-0.1103	
15.00	1 447	0.1207	0.1100	
15.50	1.44/	0.1398	-0.1103	
16.00	1.448	0.1509	-0.1114	
16.50	1.444	0.1619	-0.1111	
17.00	1.438	0.1728	-0.1097	
17.50	1.439	0,1837	-0.1079	
18 00	1 1/10	0 1017	_0 1000	
10.00	1 452	0.1947	0.1000	
18.50	1.452	0.205/	-0.1030	
19.00	1.448	0.2165	-0.1086	
19.50	1.438	0.2272	-0.1077	
20.00	1.428	0.2379	-0.1099	
21 00	1 /01	0 2500	-0 1160	
21.00	1 250	0.2350	0.1109	
22.00	1.359	0.2/99	-0.1190	
23.00	1.300	0.3004	-0.1235	
24.00	1.220	0.3204	-0.1393	
25.00	1.168	0.3377	-0.1440	
26.00	1.116	0.3554	-0.1486	
20.00	1 015	0 2016	-0 1577	
20.00	1.012	0.3910	-0.15//	
30.00	0.926	0.4294	-0.1668	
32.00	0.855	0.4690	-0.1759	
35 00	0 800	0 5324	-0 1897	

40,00	0.804	0.6452	-0.2126	
45.00	0.793	0.7573	-0.2344	
50.00	0.763	0.8664	-0.2553	
55.00	0.717	0.9708	-0.2751	
60.00	0.656	1,0693	-0.2939	
65.00	0.582	1,1606	-0.3117	
70 00	0 495	1 2438	-0 3285	
75.00	0.398	1 3178	-0 3444	
80.00	0.291	1.3809	-0.3593	
85 00	0 176	1 4304	-0 3731	
90.00	0.053	1.4565	-0.3858	
95.00	-0.074	1.4533	-0.3973	
100.00	-0.199	1.4345	-0.4075	
105.00	-0.321	1,4004	-0.4162	
110.00	-0.436	1.3512	-0.4231	
115.00	-0.543	1.2874	-0.4280	
120.00	-0.640	1.2099	-0.4306	
125.00	-0.723	1,1196	-0.4304	
130.00	-0.790	1.0179	-0.4270	
135.00	-0.840	0.9064	-0.4196	
140.00	-0.868	0.7871	-0.4077	
145.00	-0.872	0.6627	-0.3903	
150.00	-0.850	0.5363	-0.3665	
155.00	-0.798	0.4116	-0.3349	
160.00	-0.714	0.2931	-0.2942	
170.00	-0.749	0.0971	-0.3771	
175.00	-0.374	0.0334	-0.1879	
180.00	0.000	0.0198	0.0000	

Appendix C Source Code for the Control System DLL

! The swap array, used to pass data to, and r

! A flag used to indicate the success of this

!-----SUBROUTINE DISCON (avrSWAP, aviFAIL, accINFILE, avcOUTNAME, avcMSG) !DEC\$ ATTRIBUTES DLLEXPORT, ALIAS:'DISCON' :: DISCON

- ! This Bladed-style DLL controller is used to implement a variable-speed
- ! generator-torque controller and PI collective blade pitch controller for ! the NREL Offshore 5MW baseline wind turbine. This routine was written by ! J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.

:: avrSWAP (*)

NONE

:: aviFAIL

IMPLICIT

REAL(4),

! Passed Variables:

INTEGER(4), INTENT(OUT)

INTENT(INOUT)

INTEGER(1), INTENT(IN)	:: accINFILE (*)	! The address of the first record of an array
INTEGER(1), INTENT(OUT)	:: avcMSG (*)	! The address of the first record of an array
INTEGER(1), INTENT(IN)	:: avcOUTNAME(*)	! The address of the first record of an array
! Local Variables:		
REAL(4) REAL(4) REAL(4), PARAMETER REAL(4), SAVE REAL(4), SAVE REAL(4) REAL(4) REAL(4), SAVE REAL(4), SAVE REAL(4), SAVE	<pre>:: Alpha :: BlPitch (3) :: ElapTime :: CornerFreq = 1.570796 :: GenSpeed :: GenSpeedF :: GenTrq :: GK :: HorWindV :: IntSpdErr :: LastGenTra</pre>	<pre>! Current coefficient in the recursive, singl ! Current values of the blade pitch angles, r ! Elapsed time since the last call to the con ! Corner frequency (-3dB point) in the recurs ! Current HSS (generator) speed, rad/s. ! Filtered HSS (generator) speed, rad/s. ! Electrical generator torque, N-m. ! Current value of the gain correction factor ! Horizontal hub-heigh wind speed, m/s. ! Current integral of speed error w.r.t. time ! Commanded electrical generator torque the l</pre>
REAL(4), SAVE	:: LastTime	! Last time this DLL was called, sec.
REAL(4), SAVE	:: LastTimePC	! Last time the pitch controller was called.
REAL(4), SAVE	:: LastTimeVS	! Last time the torque controller was called,
REAL(4), PARAMETER	:: OnePlusEps = 1.0 + EPSILON(OnePlusEps)	! The number slighty greater than unity in si
REAL(4), PARAMETER	:: PC_DT = 0.00125	! Communication interval for pitch controlle
REAL(4), PARAMETER	:: PC_KI = 0.008068634	! Integral gain for pitch controller at rated
REAL(4), PARAMETER	:: PC_KK = 0.1099965	! Pitch angle were the the derivative of the
REAL(4), PARAMETER	:: PC_KP = 0.01882681	! Proportional gain for pitch controller at r
REAL(4), PARAMETER	:: PC_MaxPit = 1.570796	! Maximum pitch setting in pitch controller,
REAL(4), PARAMETER	<pre>:: PC_MaxRat = 0.1396263</pre>	! Maximum pitch rate (in absolute value) in
REAL(4), PARAMETER	:: PC_MinPit = 0.0	! Minimum pitch setting in pitch controller,
REAL(4), PARAMETER	:: PC_RefSpd = 122.9096	! Desired (reference) HSS speed for pitch con
REAL(4), SAVE	:: PitCom (3)	! Commanded pitch of each blade the last time
REAL(4)	:: PitComI	! Integral term of command pitch, rad.
REAL(4)	:: PitComP	! Proportional term of command pitch, rad.
REAL(4)	:: PitComT	! Total command pitch based on the sum of the
REAL(4)	:: PitComT	Poitch patce of each blade based on the sum
REAL(4), PARAMETER REAL(4), PARAMETER	:: R2D = 57.295780 :: R2D = 9.549966	 Factor to convert radians to degrees.
REAL(4) REAL(4) REAL(4)	:: SpdErr :: Time :: TrqRate	 Particle converter failants per second to rev Current speed error, rad/s. Current simulation time, sec. Torque rate based on the current and last t
REAL(4), PARAMETER	:: VS_CtInSp = 70.16224	! Transitional generator speed (HSS side) bet
REAL(4), PARAMETER	:: VS_DT = 0.00125	! Communication interval for torque controlle
REAL(4), PARAMETER	:: VS_MaxRat = 15000.0	! Maximum torque rate (in absolute value) in
REAL(4), PARAMETER	:: VS_MaxTq = 47402.91	! Maximum generator torque in Region 3 (HSS s
REAL(4), PARAMETER	:: VS_Rgn2K = 2.332287	! Generator torque constant in Region 2 (HSS
REAL(4), PARAMETER	:: VS_Rgn2Sp = 91.21091	! Transitional generator speed (HSS side) bet
REAL(4), PARAMETER	:: VS_Rgn3MP = 0.01745329	! Minimum pitch angle at which the torque is
REAL(4), PARAMETER	:: VS_RtGnSp = 121.6805	! Rated generator speed (HSS side), rad/s
REAL(4), PARAMETER	:: VS_RtPwr = 5296610.0	! Rated generator generator power in Region 3
REAL(4), SAVE	:: VS_Slope15	! Torque/speed slope of region 1 1/2 cut-in t
REAL(4), SAVE	:: VS_SLOPE25	<pre>! Torque/speed slope of region 2 1/2 inductio</pre>
REAL(4), PARAMETER	:: VS_SLPC = 10.0	! Rated generator slip percentage in Region 2
REAL(4), SAVE	:: VS_SySp	! Synchronous speed of region 2 1/2 induction
REAL(4), SAVE	:: VS_TrGnSp	! Transitional generator speed (HSS side) bet
INTEGER(4) INTEGER(4) INTEGER(4) INTEGER(4)	:: I :: iStatus :: K :: NumBl	<pre>! Generic index. ! A status flag set by the simulation as foll ! Loops through blades. ! Number of blades, (-).</pre>

INTEGER(4), PARAMETER :	: UnDb	= 85	! :	I/O unit for the debugging information
INTEGER(1) :	: iInFile (25	6)	! (CHARACTER string cInFile stored as a 1-byt
INTEGER(1) :	: iMessage (25	6)	! (CHARACTER string cMessage stored as a 1-byt
INTEGER(1), SAVE :	: iOutName (102	4)	! (CHARACTER string cOutName stored as a 1-byt
LOGICAL(1), PARAMETER :	: PC_DbgOut	= .FALSE.	!	Flag to indicate whether to output debuggin
CHARACTER(256) :	: cInFile		! (CHARACTER string giving the name of the par
CHARACTER(256) :	: cMessage		1.0	CHARACTER string giving a message that will
CHARACTER(1024), SAVE :	: cOutName		! (CHARACTER string giving the simulation run
CHARACTER(1), PARAMETER :	: Tab	= CHAR(9)	1.	The tab character.
CHARACTER(25), PARAMETER :	: FmtDat = "(F8.3,99('"//Tab//"',ES10.3E2,:))"	! .	The format of the debugging data

! Set EQUIVALENCE relationships between INTEGER(1) byte arrays and CHARACTER strings:

EQUIVALENCE (iInFile , cInFile) EQUIVALENCE (iMessage, cMessage) EQUIVALENCE (iOutName, cOutName)

! Load variables from calling program (See Appendix A of Bladed User's Guide):

iStatus NumBl		=	NINT(NINT(avrSWAP(1) avrSWAP(61)))
BlPitch BlPitch BlPitch GenSpeed HorWindV Time	(1) (2) (3)			avrSWAP(4) avrSWAP(33) avrSWAP(34) avrSWAP(20) avrSWAP(27) avrSWAP(2)	

! Initialize aviFAIL to 0:

aviFAIL = 0

! Read any External Controller Parameters specified in the User Interface ! and initialize variables:

IF (iStatus == 0) THEN $\ !$.TRUE. if were on the first call to the DLL

! Convert byte arrays to CHARACTER strings, for convenience:

```
D0 I = 1,MIN( 256, NINT( avrSWAP(50) ))
    iInFile (I) = accINFILE (I) ! Sets cInfile by EQUIVALENCE
ENDD0
D0 I = 1,MIN( 1024, NINT( avrSWAP(51) ))
    iOutName(I) = avcOUTNAME(I) ! Sets cOutName by EQUIVALENCE
ENDD0
```

! Inform users that we are using this user-defined routine:

aviFAIL = 1
cMessage = 'Running with torque and pitch control of the NREL offshore '// &
 'SMW baseline wind turbine from DISCON.dll as written by J. '// &
 'Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 ' // &
 'studies.'

! Determine some torque control parameters not specified directly:

```
VS_SySp = VS_RtGnSp/( 1.0 + 0.01*VS_SIPc )
VS_Slope15 = ( VS_Rgn2K*VS_Rgn2Sp *VS_Rgn2Sp )/( VS_Rgn2Sp - VS_CtInSp )
VS_Slope25 = ( VS_RtPwr/VS_RtGnSp )/( VS_RtGnSp - VS_SySp )
IF ( VS_Rgn2K == 0.0 ) THEN ! .TRUE. if the Region 2 torque is flat, and thus, the denominator in the ELSE condition is
VS_TrGnSp = VS_SySp
ELSE ! .TRUE. if the Region 2 torque is quadratic with speed
VS_TrGnSp = ( VS_Slope25 - SQRT( VS_Slope25*( VS_Slope25 - 4.0*VS_Rgn2K*VS_SySp ) ) )/( 2.0*VS_Rgn2K )
ENDIF
! Check validity of input parameters:
IF ( CornerFreq <= 0.0 ) THEN</pre>
```

aviFAIL = -1

```
cMessage = 'CornerFreq must be greater than zero.'
ENDIF
IF (VS_DT <= 0.0) THEN
aviFAIL = -1
   cMessage = 'VS_DT must be greater than zero.'
ENDIF
IF ( VS_CtInSp < 0.0 ) THEN
   aviFAIL = -1
cMessage = 'VS_CtInSp must not be negative.'
ENDIF
IF ( VS_Rgn2Sp <= VS_CtInSp ) THEN</pre>
   aviFAIL = -1
   cMessage = 'VS_Rgn2Sp must be greater than VS_CtInSp.'
ENDIF
IF ( VS_TrGnSp < VS_Rgn2Sp ) THEN
   aviFAIL = -1
   cMessage = 'VS_TrGnSp must not be less than VS_Rgn2Sp.'
ENDIF
IF ( VS_S1Pc <= 0.0 ) THEN
   aviFAIL = -1
   cMessage = 'VS_SIPc must be greater than zero.'
ENDTE
IF ( VS_MaxRat <= 0.0 ) THEN
   aviFAIL = -1
cMessage = 'VS_MaxRat must be greater than zero.'
ENDIF
IF ( VS_RtPwr < 0.0 ) THEN
aviFAIL = -1
cMessage = 'VS_RtPwr must not be negative.'</pre>
ENDIF
IF ( VS_Rgn2K < 0.0 ) THEN
   aviFAIL = -1
   cMessage = 'VS_Rgn2K must not be negative.'
ENDIF
IF ( VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp ) THEN
   aviFAIL = -1
cMessage = 'VS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.'
ENDIF
IF ( VS_MaxTq
                                    < VS_RtPwr/VS_RtGnSp ) THEN
   aviFAIL = -1
   cMessage = 'VS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.'
ENDIF
IF ( PC_DT <= 0.0 ) THEN
aviFAIL = -1
   cMessage = 'PC_DT must be greater than zero.'
ENDIF
IF ( PC_KI <= 0.0 ) THEN
aviFAIL = -1
   cMessage = 'PC_KI must be greater than zero.'
ENDIF
IF ( PC_KK <= 0.0 ) THEN
aviFAIL = -1
   cMessage = 'PC_KK must be greater than zero.'
ENDIF
IF ( PC_RefSpd <= 0.0 ) THEN
   aviFAIL = -1
   cMessage = 'PC_RefSpd must be greater than zero.'
ENDIF
IF ( PC_MaxRat <= 0.0 ) THEN
   aviFAIL = -1
   cMessage = 'PC_MaxRat must be greater than zero.'
ENDTE
IF ( PC_MinPit >= PC_MaxPit ) THEN
   aviFAIL = -1
cMessage = 'PC_MinPit must be less than PC_MaxPit.'
ENDIF
```

! If we're debugging the pitch controller, open the debug file and write the

! header:

```
IF ( PC DbgOut ) THEN
              OPEN ( UnDb, FILE=TRIM( cOutName )//'.dbg', STATUS='REPLACE' )
             WRITE (UnDb,'(////)')
WRITE (UnDb,'(A)') 'Time '//Tab//'ElapTime'//Tab//'HorWindV'//Tab//'GenSpeed'//Tab//'GenSpeedF'//Tab//'RelSpdErr'//Tab
WRITE (UnDb,'(A)') 'Time '//Tab//'ElapTime'//Tab//'HorWindV'//Tab//'GenSpeed'//Tab//'PitComT'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'/Tab//'RelSpdErr'/'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSpdErr'//Tab//'RelSp
RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/RelSpdErr'/Rel
                                                                                                                      'SpdErr '//Tab//'IntSpdErr'//Tab//'GK '//Tab//'PitComP'//Tab//'PitComI'//Tab//'PitComT'//Tab//
                                                                                                                     'PitRate1'//Tab//'PitCom1'
                                                                                                                   '//Tab//'(%) '
Tab//'(deg) '//Tab//
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         '//Tab
             WRITE (UnDb, '(A)')
```

ENDIF

```
! Initialize the SAVEd variables:
! NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller
         below for simplicity, not here.
1
GenSpeedF = GenSpeed
                                                    ! This will ensure that generator speed filter will use the initial value of
PitCom
           = BlPitch
                                                    ! This will ensure that the variable speed controller picks the correct contr
             = 1.0/( 1.0 + PitCom(1)/PC_KK ) ! This will ensure that the pitch angle is unchanged if the initial SpdErr is
GK
IntSpdErr = PitCom(1)/( GK*PC_KI )
                                                   ! This will ensure that the pitch angle is unchanged if the initial SpdErr is
LastTime = Time
LastTimePC = Time - PC_DT
LastTimeVS = Time - VS_DT
                                                   ! This will ensure that generator speed filter will use the initial value of
                                                   ! This will ensure that the pitch controller is called on the first pass
! This will ensure that the torque controller is called on the first pass
```

ENDIF

```
Main control calculations:
```

```
IF ( ( iStatus >= 0 ) .AND. ( aviFAIL >= 0 ) ) THEN ! Only compute control calculations if no error has occured and we are
```

```
! Abort if the user has not requested a pitch angle actuator (See Appendix A
   of Bladed User's Guide):
1
IF ( NINT(avrSWAP(10)) /= 0 ) THEN ! .TRUE. if a pitch angle actuator hasn't been requested
  aviFAIL = -1
cMessage = 'Pitch angle actuator not requested.'
ENDTE
```

! Set unused outputs to zero (See Appendix A of Bladed User's Guide):

```
avrSWAP(36) = 0.0 ! Shaft brake status: 0=off
avrSWAP(41) = 0.0 ! Demanded yaw actuator torque
avrSWAP(46) = 0.0 ! Demanded pitch rate (Collective pitch)
avrSWAP(48) = 0.0 ! Demanded nacelle yaw rate
avrSWAP(65) = 0.0 ! Number of variables returned for logging
avrSWAP(72) = 0.0 ! Generator startup resistance
avrSWAP(79) = 0.0 ! Request for loads: 0=none
avrSWAP(80) = 0.0 ! Variable slip current status
avrSWAP(81) = 0.0 ! Variable slip current demand
```

! Filter the HSS (generator) speed measurement: ! NOTE: This is a very simple recursive, single-pole, low-pass filter with 1 exponential smoothing. ! Update the coefficient in the recursive formula based on the elapsed time since the last call to the controller:

= EXP((LastTime - Time)*CornerFreq) Alpha

! Apply the filter:

1

GenSpeedF = (1.0 - Alpha)*GenSpeed + Alpha*GenSpeedF

! Variable-speed torque control:

! Compute the elapsed time since the last call to the controller: ElapTime = Time - LastTimeVS ! Only perform the control calculations if the elapsed time is greater than or equal to the communication interval of the torque controller: ! NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called at every time step when VS_DT = DT, even in the presence of numerical precision errors. IF ((Time*OnePlusEps - LastTimeVS) >= VS_DT) THEN ! Compute the generator torque, which depends on which region we are in: IF (($GenSpeedF \ge VS_RtGnSp$) .OR. ($PitCom(1) \ge VS_Rgn3MP$)) THEN ! We are in region 3 - power is constant GenTrq = VS_RtPwr/GenSpeedF ELSEIF (GenSpeedF <= VS_CtInSp) THEN</pre> ! We are in region 1 - torque is zero GenTrq = 0.0ELSEIF (GenSpeedF < VS_Rgn2Sp) THEN ! We are in region 1 1/2 - linear ramp in to GenTrq = VS_Slope15*(GenSpeedF - VS_CtInSp) ELSEIF (GenSpeedF < VS_TrGnSp) THEN ! We are in region 2 - optimal torque is pro GenTrq = VS_Rgn2K*GenSpeedF*GenSpeedF ELSE ! We are in region 2 1/2 - simple induction GenTrq = VS_Slope25*(GenSpeedF - VS_SySp) ENDIF ! Saturate the commanded torque using the maximum torque limit: GenTrq = MIN(GenTrq , VS_MaxTq $\)$ $\ !$ Saturate the command using the maximum torque limit ! Saturate the commanded torque using the torque rate limit: IF (iStatus == 0) LastGenTrq = GenTrq ! Initialize the value of LastGenTrq on the first pass only IF (Istatus == 0) LastGenTrq - GenTrq TrqRate = (GenTrq - LastGenTrq)/ElapTime TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat) ! Saturate the torque rate using its maximum absolute value ! Saturate the torque rate using its maximum absolute value ! Saturate the command using the torque rate limit GenTrq = LastGenTrq + TrqRate*ElapTime ! Reset the values of LastTimeVS and LastGenTrq to the current values: LastTimeVS = Time LastGenTrg = GenTrg ENDIF ! Set the generator contactor status, avrSWAP(35), to main (high speed) ! variable-speed generator, the torque override to yes, and command the ! generator torque (See Appendix A of Bladed User's Guide): avrSWAP(35) = 1.0! Generator contactor status: 1=main (high speed) variable-speed generator avrSWAP(56) = 0.0! Torque override: 0=yes avrSWAP(47) = LastGenTrq ! Demanded generator torque 1_____ ! Pitch control: ! Compute the elapsed time since the last call to the controller: ElapTime = Time - LastTimePC ! Only perform the control calculations if the elapsed time is greater than ! or equal to the communication interval of the pitch controller: ! NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called at every time step when PC_DT = DT, even in the presence of numerical precision errors. IF ((Time*OnePlusEps - LastTimePC) >= PC_DT) THEN ! Compute the gain scheduling correction factor based on the previously commanded pitch angle for blade 1: 1

GK = 1.0/(1.0 + PitCom(1)/PC_KK)
```
! Compute the current speed error and its integral w.r.t. time; saturate the
   I.
      integral term using the pitch angle limits:
               = GenSpeedF - PC_RefSpd
                                                                        ! Current speed error
      SpdErr
      IntSpdErr = IntSpdErr + SpdErr*ElapTime
                                                                        ! Current integral of speed error w.r.t. time
      IntSpdErr = MIN( MAX( IntSpdErr, PC_MinPit/( GK*PC_KI ) ), &
                                       PC_MaxPit/( GK*PC_KI )
                                                                 ) ! Saturate the integral term using the pitch angle li
   ! Compute the pitch commands associated with the proportional and integral
      gains:
      PitComP
              = GK*PC KP* SpdErr
                                                                        ! Proportional term
      PitComI = GK*PC_KI*IntSpdErr
                                                                        ! Integral term (saturated)
   ! Superimpose the individual commands to get the total pitch command;
      saturate the overall command using the pitch angle limits:
   1
     PitComT = PitComP + PitComI
PitComT = MIN( MAX( PitComT, PC_MinPit ), PC_MaxPit )
                                                                        ! Overall command (unsaturated)
                                                                        ! Saturate the overall command using the pitch angle
    Saturate the overall commanded pitch using the pitch rate limit:
     NOTE: Since the current pitch angle may be different for each blade
           (depending on the type of actuator implemented in the structural
           dynamics model), this pitch rate limit calculation and the
          resulting overall pitch angle command may be different for each
   T
          blade.
      DO K = 1,NumBl ! Loop through all blades
        PitRate(K) = ( PitComT - BlPitch(K) )/ElapTime
PitRate(K) = MIN( MAX( PitRate(K), -PC_MaxRat ), PC_MaxRat )
PitCom (K) = BlPitch(K) + PitRate(K)*ElapTime
                                                                        ! Pitch rate of blade K (unsaturated)
                                                                       ! Saturate the pitch rate of blade K using its maximu
                                                                        ! Saturate the overall command of blade K using the p
      ENDDO
                     ! K - all blades
   ! Reset the value of LastTimePC to the current value:
      lastTimePC = Time
   ! Output debugging information if requested:
     ENDIF
   ! Set the pitch override to yes and command the pitch demanded from the last
      call to the controller (See Appendix A of Bladed User's Guide):
   avrSWAP(55) = 0.0
                           ! Pitch override: 0=yes
   avrSWAP(42) = PitCom(1) ! Use the command angles of all blades if using individual pitch
  avrSWAP(43) = PitCom(2) ! "
avrSWAP(44) = PitCom(3) ! "
   avrSWAP(45) = PitCom(1) ! Use the command angle of blade 1 if using collective pitch
! Reset the value of LastTime to the current value:
  LastTime = Time
ENDTE
   ! Convert CHARACTER string to byte array for the return message:
DO I = 1,MIN( 256, NINT( avrSWAP(49) ) )
    avcMSG(I) = iMessage(I) ! Same as cMessage by EQUIVALENCE
ENDDO
```

RETURN END SUBROUTINE DISCON !------

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.						
1. REPORT DATE (DD-MM-YY	RT DATE (DD-MM-YYYY) 2. REPORT TYPE				3. DATES COVERED (From - To)	
February 2009	te	chnical report		1 5- 001		
A. TITLE AND SUBTILE Definition of a 5-MW Reference Wind Turbine for Offshore System				DE-AC36-08-GO28308		
Development						
				5D. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) 5d.				5d. PRO	J. PROJECT NUMBER	
J. Jonkman, S. Butterfield, W. Musial, and G. Scott				NR	NREL/TP-500-38060	
5				5e. TAS	5e. TASK NUMBER	
				WE	R5.3301	
				5f. WOF	RK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					8. PERFORMING ORGANIZATION	
National Renewable Energy Laboratory						
1617 Cole Blvd.					NREL/1P-500-38060	
Golden, CO 80401-3393						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S) NREL		
					11. SPONSORING/MONITORING AGENCY REPORT NUMBER	
12. DISTRIBUTION AVAILABILITY STATEMENT						
National Technical Information Service						
U.S. Department of Commerce						
Springfield, VA 22161						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT (Maximum 200 Words)						
This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology						
15. SUBJECT TERMS						
offshore wind energy development; wind turbine design model; wind turbine specifications						
16. SECURITY CLASSIFICATIO	17. LIMITATION 18. NUMBER OF ABSTRACT OF PAGES		19a. NAME OF RESPONSIBLE PERSON			
a. REPORT b. ABSTRACT Unclassified Unclassified	c. THIS PAGE Unclassified	UL		19b. TELEPHONE NUMBER (Include area code)		

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18