Stability Of CIS/CIGS Modules At The Outdoor Test Facility Over Two Decades

J. A. del Cueto

National Renewable Energy Laboratory, Golden, CO USA 33rd IEEE PVSC, San Diego, CA

Thursday, May 15, 2008

1:30 - 3:00 PM

NREI /PR-520-43255 Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

Outline

□ Introduction

≻ Rationale for thin-film CIS PV modules: cost & high efficiency

- Loss modes in CIS/CIGS modules
- □ Experimental Tests at NREL OTF
 - > Multiple modules from two manufacturers, types 'A' & 'B'
 - ➤ Modules deployed on 3 separate testbeds
- □ Analyses
 - ➤ 3 types of data and data analysis
- Data
- □ Conclusions
 - ➢ FF degradation is predominant loss mode
 - Type 'A' can show very low loss rate to moderately loss rate
 - ✓ Series-resistance increases emblematic of A modules failure mechanism
 - *Type 'B' can show very low loss rate to nominal loss rate
 - ✓ Shunt increases & other changes emblematic of B modules failure mechanisms
 - Some transient behavior observed especially in Voc
- □ Acknowledgements

Introduction

Thin-film PV technologies (CIGS, CdTe, a-Si/nc-Si) are expected to achieve and compete for lowest cost per watt vs. bulk technologies (c-Si, poly-c-Si) largely because of economy in and costs of semiconductor materials usage;

□ Copper indium diselenide (CIS) and/or gallium-alloyed CIGS photovoltaic (PV) modules achieve some of highest PV conversion efficiency of the thin-films:

Current state-of-the-art CIGS efficiency at Standard Test Conditions (STC):

✤ cells attain 19.9%

✤ modules attain ~12%

□ CIGS PV module stability is a key issue that needs to be addressed (as well by other thin-film technologies) in order to achieve low levelized cost of electrical power

Introduction: Stability Heat/Humidity Stress

□ FF losses:

 \succ Rse increases may result due to:

- degradation of top TCO (ZnO) resistivity due to chemical reaction (especially if doped with Al)
- Increase in CB offset/barrier height at CdS/CIS interface through which electrons must travel
- Sh changes: may either increase/decrease due to point defects

□ Voc losses:

- Change in doping density in CIS
- Induction of deep acceptor states/traps in bulk
- Decrease in VB offset/barrier height at CdS/CIS interface & increase in interface recombination

□ Isc losses:

- > Not typically observed, but can arise if :
 - transparency of top TCO degrades
 - *Rse increases are very large

Experimental Tests

□ Two types of modules 'A' & 'B' ≥ glass/Mo/CIGS/CdS/ZnO/glass laminates \succ type A began to deploy in array field at OTF in 1988 > type B began deploying at OTF in 2002 □ Study CIS/CIGS modules deployed on 3 testbeds: > Single, free-standing, long-term exposure, loaded at Pmax (STC) with fixed resistor, 8 total High Voltage Stress Testbed (HVST2) Array \diamond consists of bipolar strings, nominally \pm 300 VDC ✤12 type 'A' CIGS modules per string, 24 total ◆I-V traces monitored & loaded continuously with DAS > Performance & Energy Ratings Testbed (PERT) ✤I-V traces monitored & loaded continuously with DAS **☆**A module 1997, B module 2002 **ACP NREL** National Renewable Energy Laboratory

Analysis of Data

□ Single I-V curves at STC or dark at 25°C \succ Module data reduced to unit area cell level (J-V) by: ✤ dividing voltage by series cell count (Ncell) dividing current by area per cell (Acell = AperArea / Ncell) > Standard PV device diode circuit model with parasitic series resistance (Rse) and shunt conductance (Gsh) > determined Rse, Gsh (dark) allow raw data to be corrected and then to derive A, J_0 $J = J_0 * \left[e^{(V-RseJ)/AkT} - 1 \right] - \tilde{G}_{SH}V - J_1$ Dark J-V $dV/dJ = R_{se} + (AkT/q) / J$ $V - R_{se}^* J = (AkT/q)^* Log[1 + (J + G_{sh}^* V) / J_o]$ Light J-V $dV/dJ = R_{se} + (AkT/q) / [J_1 + J]$ $V - R_{se}^* J = (AkT/q) * Log[1 + (J + J_1 + G_{sh}^* V) / J_0]$ National Renewable Energy Laboratory

Analysis of Data

D PERT real-time outdoor data measured in-situ with DAS

- > I-V power parameters (Voc, FF, etc.) data derived from traces segregated into narrow irradiance bands 500±25, 1000±25 W/m².
- > Linear temperature corrections determined to power parameters by performing regression of data in 30 day intervals

> Changes in power parameters vs. time calculated □ HVST2 array real-time outdoor data measured in-situ with DAS for each string done same as PERT except only at one irradiance window 1000 ± 25 W/m².

Analysis of Data

□ HVST2 array: PVUSA Test Conditions Regression

- Perform regression of power vs. irradiance, air temp., wind speed conditions for coefficients A, B, C & D monthly, for data where irradiance > 800 W/m²
- ➢ monthly calculated coefficients (A, B, C, D) then used to evaluate rated power (P_{PTC}) at PVUSA conditions
 ★E₀ = 1000 W/m², Tair = 20°C, Ws = 1 m/s

 $P_{max} (E, Tair, Ws) / E = (A + B^*E_0 + C^* T_{air} + D^*W_S)$ $P_{PTC} = E_0^* (A + B^*E_0 + C^*T_{air} + D^*W_S)$

Data: single module stability at STC

- □ Type A 1988, 1990, 1992, 1994, 1998; type B 2002:
 - Isc, Voc, FF and Efficiency at STC on the SPIRE shown
 - Type A initial efficiency improved from 8% (1988) to just under 12% (1998)
 - stability of A modules became more of an issue:
 - ✤ FF losses account for most decline
 - Voc increases in initial years, partly offset FF losses, but subsequently can degrade
- Type B module initial efficiency ~11% show slight decline mostly in FF, is also offset by Voc increase

Data: series resistance changes single modules

□ Dark & Light Slopes dV/dJ plotted vs.

- 1/J for dark data read along lower ordinate axis
- 1/(J+J_{Light}) for light data, read along upper ordinate axis
- 2002 B in upper pane ('02, '05, '08)
 1998 A in lower pane ('99, '02, '07)
- For 2002 B no increase in Rse intercept in both dark & light data over time

curvature suggestive of other effects

> For 1998 A substantial increase in Rse intercept in dark (~ 4 Ω -cm²) & some in light (1-2 Ω -cm²) data with time

Data: series resistance vs. time (single modules)

Dark (filled symbols), Light (open symbols) □ 1988 A

- \blacktriangleright Dark increase ~ 1.2 to 2.0 Ω -cm²
- > Light increase ~ 0.8 to 1.4 Ω -cm²
- □ 1994 A #1 & #2
 - \blacktriangleright Dark increase ~ 2.3–2.8 to 5–6 Ω -cm²
 - > Light increase ~ 1.4 to 2.0 Ω -cm²

□ 1998 A

- \triangleright Dark increase: 1.2 to 5 Q-cm²
- > light increase: 1 to 2.8 Ω -cm²

□ 2002 B

- \succ Dark 1.5 to 2.3 Ω -cm²
- \succ Light 0.6 to 1.4 Ω -cm²
- □ 2002 PERT B (2002 to 2006)
 - > Dark nearly no change ~ 1.8Ω -cm²
 - > light nearly no change ~ 1.5Ω -cm²
- □ Rse increases impact type A more than type B because of higher Jsc for A
 - $> \sim 30 \text{ mA/cm}^2$ for A-type, 1-sun
 - $> \sim 24 \text{ mA/cm}^2$ for B-type, 1-sun

Data: HVST2 Array PTC Regression

□ 24 Type A 2004 CIGS modules > 12 per string in positive (+) & negative (–) configuration □ PTC rated power: start out with ~425 W each string in Feb. 2005 Degradation rate is un-even: > + string ~ -2.5 %/yr (relative) > - string ~ -3.8 %/yr (relative) □ PTC regression analysis rating mitigates environmentally-induced fluctuations in performance (like temperature cycles) but not entirely, as evidence of higher/lower power cycles in winter/summer are still observed

Data: HVST2 Array data at 1000 ± 25 W/m²

24 Type A 2004 CIGS modules
 Bipolar (+/-) strings I-V power parameters, corrected to 25°C temperature vs. time shown:

Isc, Voc, FF & Eff top to bottom
 Efficiency of each string clearly declining between 2005 and 2008, relative loss rates:

- > + string ~ -2.9 %/year
- > string ~ -4.7%/year

□ FF losses account for most of changes:

> + string ~ -2 %/year

> - string ~ -4 %/year

 \Box Voc declines ~ -0.2%/yr to -0.4%/yr

Data: PERT type 'A' at 500 & $1000 \pm 25 \text{ W/m}^2$

 1997 A I-V power parameters, corrected to 25°C temp. vs. time:
 Isc, Voc, FF & efficiency shown from top to bottom

- > FF losses lead degradation rates
- similar loss rates for FF data in 500 & 1000 W/m² irradiance windows, -0.71%/yr & -0.75 %/yr, respectively
 - consistent with series resistance source
- Data gap in 2006-07: module lay indoors
 - Transient improvement in FF, ~5%, just after re-deployment in 2007

Data: PERT type 'B' at 500 & 1000 ± 25 W/m²

2002 B I-V power parameters,
corrected to 25°C temp. vs. time

- Isc, Voc, FF & efficiency shown from top to bottom
- Uneven loss rates for FF data in 500 & 1000 W/m² irradiance windows:
 - ✤ -0.93%/yr & -0.49 %/yr, respectively
 - Consistent with shunt-related increases with time as source
- Transient improvement in Voc by 1-2 V with re-deployment after low light level storage in 2002 & 2007

NCEL National Renewable Energy Laboratory

Conclusions: Performance Loss Rates

□ Loss rates type A modules:

- \blacktriangleright range from negligible (-0.3%/yr), to nominal (1%/yr) and moderate (2%/yr) for later types
- > FF worsens due to series resistance increases
- > Moderate larger loss rates observed when deployed at high-voltage bias:
 - + HV bias ~ -2.5%/yr to -2.8%/yr
 - \bullet HV bias ~ -3.8%/yr to -4.7%/yr
- □ Loss rates type B modules:
 - > Not significant from STC data, due to
 - ✤ opposing FF & Voc trends
 - ✤ Not as much Rse increase & lower Jsc
 - \succ FF loss mode more tied to shunt conductance increases:
 - \therefore Nominal ~ -1%/yr from PERT data around 1000 W/m² irradiance
 - Slightly larger ~ -1.8%/yr from PERT data at 500 W/m² irradiance

Туре	∆Eff/Eff₀ (%/yr)	±95% (%/yr)	TEST CONDITION	TimeLine
1988A	-0.90	0.13	STC	Nov-90-Mar-08
1990 A	-0.27	0.15	STC	Oct-91–Mar-08
1992A	-0.43	0.20	STC	Aug-92-Mar-08
1994 A	-1.01	0.22	STC	Mar-95-Mar-08
1998A	-2.19	0.22	STC	Jan -99-Nov-02
2002B	-0.67	3.30	STC	Aug-02–Mar-08
1997 A	-2.10	1.06	STC	Aug-97–May-07
1997 A	-1.35	0.14	500 PERT	Jan -02-Dec-07
1997 A	-1.27	0.04	1000PERT	Jan -02-Dec-07
2002B	-1.80	0.16	500 PERT	Aug-02–Dec-07
2002B	-0.89	0.14	1000PERT	Aug-02-Dec-07
2004 A	-2.87	0.15	1000HVST2 POS.STR.	Apr-05-Mar-08
2004 A	-4.68	0.15	1000HVST2 NEGSTR.	Apr-05 – Mar-08
2004 A	-2.55	0.86	PTC HVST2 POS.STR.	Apr-05-Mar-08
2004 A	-3.77	0.82	PTC HVST2 NEG.STR.	Apr-05 – Mar-08

Acknowledgements

□ Contributing Coauthors

- Ben Kroposki
- Carl Osterwald
- Steve Rummel
- Alan Anderberg

□ This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337

Thank you for your consideration

