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Introduction

» 7ZnO is a promising material for short wave-length opto-electronic devices
such as UV lasers and LEDs due to its large exciton binding energy and low
material cost

» ZnO can be doped easily n-type, but the realization of stable p-type ZnO is
rather difficult

Using first-principles band structure methods

we will address:

» What causes the p-type doping difficulty in ZnO

» How to overcome the p-type doping difficulty in ZnO
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Method of calculation

Band structure and total energy are calculated using the first-
principles band structure method (FLAPW, PP) with local density
approximation (LDA)

Defects are described using the supercell approach. A uniform
background charge is added for charged defect calculation

All the internal structural parameters are optimized by minimizing
the quantum mechanical forces

Band 1n different supercell calculations are aligned using atomic

core levels or average potentials
S.-H. Wei, Computational Materials Science 30, 337 (2004)
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Main reasons of failure-to-dope

* The impurity atom has limited solubility in the host
material, so not enough dopants are introduced

* The defect transition energy levels are too deep, so not
enough charge carrier are generated at working
temperature

* Spontaneous formation of opposite-charged “killer
defects” (cation vacancy, anion vacancy, etc.), which
pins the Fermi energy

S.-H. Wei, Computational Materials Science 30, 337 (2004)



Origin of p-type doping difficulty in ZnO:
high acceptor formation energy

0 _ ] ] l l l —-

O-poor Ko O-rich
Due to the strong bonding and Calculate minimum defect
large formation energy of ZnO, formation energy of neutral N,

intrinsic defect formation

energies are large H{(No)min = 1.2V (Ny)



Origin of p-type doping difficulty in ZnO:
high acceptor 1onization energy

Acceptor energy levels in ZnO
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* For group V on oxygen site acceptor, the lowest transition energy
level N, is 0.35 eV above the VBM

» For group IB on Zn site acceptor, the lowest transition energy level
is also deep, at 0.40 eV for Ag,

« Group IA on Zn site has relatively shallow defect level, but self
compensation limits their use as effective acceptor
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Origin of p-type doping difficulty in ZnO:
high acceptor 10nization energy
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> An acceptor level above VBM
has a wavefunction character similar
to the VBM, 1.e. 1t has an anion p
and cation d orbital characters

» Oxygen p orbital energy is very
low, there are no group-V elements
that are more electronegative than O

» p-d coupling between host
elements and dopants (e.g., N, with
Zn or Cu,, with O) 1s large
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Strategies to overcome the doping limait

» Increase defect solubility by “defeating” bulk defect
thermodynamics

» Reduce defect ionization level through proper
codoping techniques

» Reduce defect compensation and ionization level
by modifying the band edge states
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Increase defect solubility using non-equilibrium
thermodynamics

» What controls the dopant solubility is the dopant chemical

potential, u,. Therefore, the key to enhance the solubility of the
dopant is to raise the chemical potential and avoid the formation of
the precipitates of the dopants

AH®(E, 1) = AECD(E=0,1=0) + X np; + qE¢

» Choose the optimal host element chemical potentials
» Enhance solubility by metastable molecular doping

» Enhance solubility by epi-growth (e.g., MBE)

S.-H. Wei, Computational Materials Science 30, 337 (2004)



Choose the optimal host element chemical potentials

= The formation energy of N, is the lowest under O-poor condition,
whereas V,, is the lowest under the O-rich condition

O-poor Ko O-rich
AH; = E(ZnO:N) - E(ZnO) + po— 1y

AH;= E(ZnO:V, ) - E(ZnO) + pu,,



Enhanced solubility by molecular doping: ZnO:N

AH, = E(ZnO:N) - E(ZnO) + g — 1y
AHe= E@ZnO:N) - E(ZnO) + 2u0 - ting
un(N,) < uy(N,O) < uy(NO) < py(NO,)

N chemical potential depends on the
doping sources (N,, N,O, NO, NO,)

N solubility in ZnO is much higher if
NO or NO, 1s used as dopant

NO or NO, doping also avoids the
formation of (N,),, which is a
compensation donor in ZnO

Yan et al., Phys. Rev. Lett. 86, 5723 ("01)




Single N atom in ZnO

Transition energy level of N,

E(0/-) = VBM + 0.35 eV

Calculate minimum defect
formation energy N

H{Ng)... = 1.2 eV (N,)

min

H{Ng)... = 0.4 eV (NO, Zn,N,)

min
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Design shallow defect levels in ZnO
using band structure calculation method
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Effects of conventional co-doping

Can co-doping lower the defect transition energy levels?

VZn + GaZn
CBM
Gag,, a
—oe— 4 o
VZn’ 1:2
o o5 A
VBM

2N, + Ga,,
CBM
Ga,,, a,
m
2N, t, A
VBM °—o

» The level repulsion effect is rather small because the donor
state and the acceptor states have different symmetry

» The defect transition energy level may be lowered only if the
defect complex consists a single donor and a single acceptor




Design shallow p-type dopants in ZnO

(@) Vy, (b) Vy, +F ~ » Defect wavefunction has
large weight on its
neighboring atoms

» Replace O by the more
electronegative F 1s
expected to lower V.,
energy level

» Remove p-d coupling
between N and cation
by replacing Zn with Mg
or Be 1s also expected to
reduce the acceptor
energy level




Design shallow p-type dopants in ZnO

Defect Eyp (0/-) (-/2-)
No 0.31 -
No-Mgzn 0.3 0.29 _
No-4Mg 7, 1.6 0.23 —
No-Bez, 0.1 0.22 _
Nop-4Bez, 1.9 0.12 —

Van 0.18 0.34
Vzn-Fo —-2.3 0.16 —

» The calculated defect ionization energy levels suggest that
F and Be could be good p-type co-dopant for ZnO

[J. Li, S.-H. Wei, S.-S. Li, J. B. Xia, Phys. Rev. B 74, 081201R (2006)]



Reduce self-compensation by introducing
Group-IB acceptors in ZnO

an uZn
-0
Cu,,
) 1 I 1
0 1 2 3
Ep (eV)

» Cu,, has very deep acceptor level because of the large p-d coupling, but Ag,
has relatively shallower levels

» 1B. is highly unstable, so self-compensation for IB dopants is low

Y. Yan, M. M. Al-Jassim, and S.-H. Wei, APL 89, 181912 (2006)



Large size mismatched p-type doping in ZnO:As

Background:

» p-type conductivity in As and P-doped ZnO have been observed and conventional
doping model attributed the dopants to As,and P,

» We have show that As, and P, are unlikely to be the measured acceptor because
- The formation energy is high (As and P 1s much larger than O)
- The 10nization energy of As, and PO are very high ~ 0.8 eV

A levels i
cceptor energy levels in ZnO CEM

Sby  1.10
As 0 0.90
P, _ 0.70 (0/-)
Ng 040

VBM




Large size mismatched p-type doping in ZnO:As

The new model:

- Atomic size of As and Zn are similar

- As,  has relatively lower formation energy but
it 1s a (triple) donor

-V, 1s a native (double) acceptor with low
formation energy

- One As,, and two V,_ bind strongly and form
a new acceptor complex (As, -2V,.)

- The complex has low formation energy and
low ionization energy (~ 150 meV) [As, -2V, complex]

Limpijumnong, Zhang, Wei, and Park PRL 92, 155504 (2004).



Large size mismatched p-type doping in ZnO:As

Calculated binding energy and defect formation energy for various
As-related defect complexes in ZnO

Formation energy (eV)

[um—

O

() | | A; +VI +VI_>[As 2\;] |

/% V, 1+V, —> [As, -2V ]\

/I As, +V —>[As, -V, ]

5 : l | ; i

( ) l""O: O // ASZn
__ VZn l"" AS:O // /.\ ]
[ASZn_VZn] \
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Fermi level (eV)

» Strong Coulomb interaction
and strain compensation lowers
the formation energy of the
As, -2V, defect complex

» Coupling between the As,,
donor states and the V,,
acceptor states lowers the
lonization energy of the
complex relative to 'V,
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Modity the host band structure to
reduce 1onization energy and
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Universal approach to overcome the doping
asymmetry in wide-band-gap semiconductors

» First, through effective doping
of mutually passivated defect
pairs, we introduce a fully
compensated defect band near
the VBM or CBM of the host

» Second, after the fully
Excess dopant states compensated insulating phase
Defect band .
1s formed, use excess dopants

to dope the passsivated system
\ Host band

by 1onizing the defect band

Y. F. Yan, et al., Phys. Rev. Lett. 98, 135506 (2004)



Modity the valence band edge of ZnO by
passivate doping of Ga with N

100

80 |-

(o2}
o
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o

DOS (1/eV cell)

N
o

i ZnO(Ga,N)
L Zn0O !
0 1 1 1 1 I 1 L 1 1
-4 -2 0 2 4 6

Energy

» N combined with Ga creates a passivated defect band
above the host ZnO VBM



Create shallow acceptor level by doping the
passivated ZnO:(Ga+N) system using
excess N

» The calculated defect level of N is about 0.1 — 0.2 eV
above the defect band

[Y. Yan, J. L1, S.-H. Wei, M. M. Al-Jassim, Phys. Rev. Lett. 98, 135506 (2007)]



Possible dopants or dopant complexes for
p-type doping in ZnO

» Based on defect wavefunction analysis, various microscopic
models have been proposed to reduce the ionization energy of
acceptor level in ZnO

Aan : VZn T FO
Man T NO . BeZn T NO

Asz, +2V, ; Py +2V,,

» Doping of defect band is an effective and universal approach
to doped wide band gap materials such as ZnO

NO + (NO + GaZn)defect band



Summary

We have analyzed the origin of p-type doping difficulty in ZnO.
Several strategies have been proposed to overcome the doping
difficulty

* Increase defect solubility by “defeating” bulk defect thermodynamics using
 optimized host elements chemical potential
« surface enhanced defect solubility
* molecular doping
* large size-mismatched antisite doping

* Reduce defect ionization level by
« combining donor with acceptor to modify defect wavefunctions

* reducing p-d coupling between defect level and host states

» Design new dopable materials by adjusting the band edges states using
passivated doping and subsequent doping using the same dopants

http://www.nrel.gov/cms/
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