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ABSTRACT 
 
We recently reported a new record total-area 
efficiency, 19.9%, for CuInGaSe2 (CIGS)-based 
thin-film solar cells [1]. Current-voltage analysis 
indicates that improved performance in the record 
device is due to reduced recombination. The 
reduced recombination was achieved by 
terminating the processing with a Ga-poor (In-rich) 
layer, which has led to a number of devices 
exceeding the prior (19.5%) efficiency record. This 
paper documents the properties of the high-
efficiency CIGS by a variety of characterization 
techniques, with an emphasis on identifying near-
surface properties associated with the modified 
processing. 
 

INTRODUCTION 
 
Understanding the physical mechanisms that lead 
to champion CIGS devices is important for a 
number of reasons. First, this understanding helps 
define a pathway to future performance 
improvements. It also helps identify performance 
sensitivities that can improve yield and efficiency for 
CIGS devices deposited by related industrial 
techniques. 
 
In this paper, we document the properties of high-
efficiency (19.9%) CIGS by a variety of 
characterization techniques, with an emphasis on 
identifying near-surface properties associated with 
the modified processing. 
 

FILM GROWTH AND DEVICE PERFORMANCE 
 
The standard device layers and the processing 
used in the record CIGS devices have been 
described elsewhere [2,3,4,5,6]. The processing 
change responsible for the recent 0.4% (absolute) 
efficiency improvement is the termination of the 
three-stage process without Ga for the last ~100 Å 
of deposition. This modified termination is illustrated 
in Figure 1, which shows the In and Ga rates as 
measured by electron emission impact 
spectroscopy at the end of the three-stage CIGS 
deposition. Instead of maintaining the atomic ratio 
Ga/(In+Ga)~0.3 as throughout the rest of the 

deposition, about 30 Å of In (resulting in ~100 Å of 
chalcopyrite) is deposited without Ga at the end of 
the deposition. 
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Figure 1:  In and Ga rates at the end of three-stage 
CIGS deposition process for 19.9%-efficient device.  
Zero-rate background signal has been removed. 

 
The processing variation illustrated in Figure 1 has 
led to the fabrication of a number of devices 
exceeding the previous efficiency record, 19.5% for 
a 0.42-cm2 device [7]. Improved devices have been 
demonstrated in more than one evaporator and by 
several operators. The repetition of improved 
results is summarized in Table 1, which lists 
devices exceeding the previous efficiency records. 
Shown are the device name, device area, efficiency 
(η), open-circuit voltage (Voc), fill factor (FF), and 
short-circuit current density (Jsc). The column in 
Table 1 titled “Official Measurement?” is listed as 
“Yes” for current density-voltage (J-V) 
measurements made by the National Renewable 
Energy Laboratory (NREL) Device Performance 
Group [8]. This column is listed as “No” for J-V 
measurements performed at the NREL thin-film 
group user facility. 
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Table 1:  Summary of devices made using modified 
processing termination with performance exceeding 
prior record values for 0.42- and 1-cm2 devices. 
 

Device 
Name 

Area 
(cm2) 

η 
 (%) 

Voc 
(mV) 

FF 
(%) 

Jsc 
(mA/ 
cm2)

Official 
Measure
ment? 

M2992-
11#5 

0.419 19.9 690 81.2 35.4 Yes 

C2183-
12#5 

0.416 19.9 697 80.0 35.7 Yes 

C2219-
21#7 

0.417 19.8 714 79.1 35.1 Yes 

M2992-
11#4 

0.419 19.7 690 81.2 35.1 Yes 

M2992-
11#6 

0.419 19.7 690 81.1 35.3 Yes 

C2183-
12#4 

0.417 19.7 695 80.0 35.5 Yes 

C2200-
22#1 

0.420 19.6 725 80.6 33.6 No 

C2213-
22#2 

0.994 19.2 716 80.4 33.4 Yes 

 

MATERIALS CHARACTERIZATION 

 
Two features of the high-efficiency material are of 
particular interest:  reduced recombination, and the 
effect of the Ga-poor process termination on the 
surface layer. We examined these features using 
grazing-incidence X-ray diffraction (GIXRD), time-
resolved photoluminescence (TRPL), transmission 
electron microscopy (TEM), energy-dispersive 
spectroscopy (EDS), capacitance-voltage (CV) 
profiling, scanning tunneling luminescence 
spectroscopy (STL), and cathodoluminescence 
(CL) spectrum imaging. 
 
STL and CL 
 
We modified a scanning tunneling microscope at 
NREL to map STL in conjunction with CL [9]. The 
estimated penetration depth for tunneling electrons 
used to excite luminescence during STL 
measurements is estimated to be no more than 50 
nm [10]. On the other hand, the 15-keV electrons 
used to excite luminescence during CL 
measurements are estimated to penetrate about 1 
μm into the film. Thus, the STL probes the film very 
near the surface, whereas the CL probes into the 
bulk of the film. The luminescence from 19.9%-
efficient CIGS was characterized in terms of 
excitation source (CL vs. STL) and position. These 
data were compared with earlier data on 13%- and 
19.5%-efficient CIGS. 
 
When room-temperature CL mapping is performed, 
the 19.9%-efficient CIGS exhibits a 5%–10% 
reduction in luminescence intensity at the grain 
boundaries, compared to the grain interiors. This 

magnitude of intensity loss is typical of devices with 
efficiency greater than 18%. Lower-efficiency 
devices exhibit more nonradiative recombination 
(20%–30% intensity loss) at the grain boundaries. 
Scanning electron microscope (SEM) plan views and 
the corresponding CL intensity maps are shown in 
Figure 2 for 19.9%- and 13%-efficient absorbers. 
 

Figure 2:  SEM plan view of a) 19.9%- and b) 13%-
efficient CIGS. Corresponding CL maps for c) 
19.9%- and d) 13%-efficient CIGS. 

 
STL, however, reveals a difference between the 
19.9% device and all earlier material measured by 
this technique. Figure 3 compares a room-
temperature CL spectrum from the 19.9% sample 
(pink), STL spectrum from the same point on the 
19.9% sample (dark blue), STL spectrum from an 
18% reference sample (yellow), and CL spectrum 
from the 18% reference sample (light blue). The 
reference sample exhibits the typical red shift 
between the CL and STL. Presumably, the red shift 
occurs because the surface of the CIGS contains a 
higher density of band-tailing defect states than the 
bulk.  In the 19.9% sample, however, there is no 
red shift between the CL and STL. The lack of red 
shift implies that the material quality near the 
surface has been improved in the 19.9% material. 

a) b) 

c) d) 
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Figure 3:  Comparison of cathodoluminescence 
spectrum from 19.9%-efficient sample (in pink), 
tunneling luminescence spectrum from 19.9% 
sample (dark blue), cathodoluminescence spectrum 
from 18% reference sample (light blue), and 
tunneling luminescence spectrum from 18% 
reference sample (yellow). 
 
TEM 
 
Earlier measurements at NREL on CIGS that 
produced 19.5%-efficient devices indicated 
nanodomains when examined with high-resolution 
TEM (HRTEM), high-angle annular dark-field 
(HAADF) images, and EDS [11]. Similar 
measurements on the new 19.9%-efficient material 
show less evidence of nanodomains. Figure 4a 
shows an atomic number (Z) contrast TEM image 
of the 19.9% CIGS. The interior of the film is at the 
upper left corner of the image, and vacuum appears 
as the dark area in the lower right corner. A small 
gradual change in brightness is seen across the 
sample, most likely due to a gradient in cleaved 
sample thickness and gradual composition change 
toward the surface. However, no nanodomains are 
visible. For contrast, Figure 4b shows the same 
type of image from the early 19.5%-efficient 
material. Nanoscale composition domains are 
clearly visible. 
 
EDS data also indicate less pronounced 
nanodomains in the new material. In the 19.5%-
efficient CIGS, Cu ratio (Cu/(In+Ga)) and Ga ratio 
(Ga/(In+Ga)) exhibit large fluctuations (~2x) when 
measured by EDS in 5-nm steps over 70 nm. The 
new data exhibit somewhat smaller variations in the 
Cu and Ga ratios (~1.5x). Figure 5a shows Cu and 
Ga ratios as measured by EDS. The electron-probe 
size is estimated to be about 5 Å. The system 
detection error bar is estimated to be ±2%. 
 
Figure 5b is a TEM image that shows the path of 
the EDS measurements. The top of the red line 
corresponds to 0-nm displacement. 

 
 
 

 
 

 

Figure 4:  Z-contrast TEM image of a) 19.9%-
efficient CIGS, and b) earlier 19.5%-efficient CIGS. 
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Figure 5:  a) Composition as a function of position 
in the 19.9%-efficient CIGS, and b) TEM image 
showing the line along which these measurements 
were taken. 
 
TRPL 
 
Carrier lifetime was measured by TRPL, both on 
the CIGS film and the device. The measurement 
and analysis technique has been described 
elsewhere [12]. The lifetime measured in the 
19.9%-efficient device, 5.5 ns, is somewhat longer 
than what has been measured on other devices. 
For example, Figure 6 shows efficiency versus 
lifetime for the record device, and for other recent 
samples made at NREL with variations in the Ga 
contents and composition profiles. The increased 
lifetime is consistent with improved diode quality 
factor in the device. However, one should not 
strictly associate the measured lifetime with 
reduced recombination, because several other 
factors—including charge separation in the 
depletion region, measurement intensity, and fitting 
algorithm—also influence the apparent lifetime 
value [13,14]. Furthermore, variations in 
measurement and analysis procedures from one 
study to the next preclude a straightforward 

comparison of the new results with many of those in 
the literature. 
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Figure 6:  Efficiency versus lifetime measured in 
CIGS devices with a variety of Ga contents and 
composition gradings. 

 
CV 
 
CV measurements were used to examine carrier 
density. Data taken at 50 kHz are shown in Figure 
7. Zero-bias depletion width is marked with a 
diamond. Capacitance as a function of frequency 
varied little in the range from 1 to 200 kHz. The 
maximum carrier density of about 2 x 1016 cm-3 and 
zero-bias depletion width less than 0.5 μm are 
typical of CIGS devices made at NREL with 
efficiencies greater than 19% [15]. Lower-efficiency 
devices made at NREL tend to have a slightly lower 
carrier density (≤1 x 1016 cm-3) and slightly longer 
zero-bias depletion widths [12,16,17]. 
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Figure 7:  Carrier density versus distance from the 
junction as derived from CV profiling. The zero-bias 
depletion width is marked with a diamond. 

 
GIXRD 
 
GIXRD data were taken at the Institute for Energy 
Conversion (IEC). For incident angles from 0.5 to 4 
degrees (estimated penetration depths of 0.13 to 
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1.0 μm), the (112) peak centered near 27 degrees 
shows the expected progression to lower values of 
2Θ, due to decreasing Ga content as the incident 
beam penetrates the notched Ga profile [18].  
Typical of high-efficiency devices, the peaks are 
relatively narrow. For example, the half width at half 
maximum of the (112) peak was measured at 0.166 
degrees using a 4-degree incident angle. However, 
this narrow peak width does not distinguish the 
record material from other high-quality CIGS. 
 
Low incident angles were used to probe the 
material structure as near as possible to the 
surface. GIXRD measurements at 0.25-degree 
incident angle should probe about 50 nm into the 
film. Such measurements were compared for the 
record sample, a sample made with the same 
recipe but terminating the process with Ga 
(opposite of what is shown in Figure 1), and a 
sample made without any intentional Ga grading. 
These samples exhibited nearly identical 
compositions when measured by EDS. GIXRD 
scans of the (112) peak for the three samples are 
shown in Figure 8. All samples show a peak 
centroid shift to angles significantly higher than that 
expected from the 0.36 Ga ratio measured by EDS. 
These peak shifts are not associated with the 
alignment of the diffractometer. To account for the 
peak shifts of Figure 8 by Ga content alone, the 
ratio Ga/(In+Ga) near the surface would need to be 
0.46 for sample 34186, 0.60 for M2995, and 0.71 
for M2992. Instead, it is likely that the peak shifts 
are due to decreased Cu content near the film 
surface [19] or to lattice strain. The 19.9%-efficient 
CIGS exhibits the largest peak shift. 
 

 
Figure 8:  GIXRD (112) scans of 19.9%-efficient 
CIGS film (M2992, black), similar film with Ga 
process termination (M2995, red), and CIGS film 
without Ga grading (IEC 34168, blue). 

 
 

CONCLUSIONS 
 
A modification to the termination of the three-stage 
co-evaporation process has recently improved the 
performance of CIGS devices at NREL. We applied 
a variety of characterization techniques to the 
19.9%-efficient CIGS. Several of the extracted 
properties are typical of CIGS with efficiency 
exceeding ~19%. These properties include carrier 
density around 2 x 1016 cm-3, zero-bias depletion 
width just under 0.5 μm, a relatively long PL decay 
time on devices, relatively high luminescence 
intensity at the grain boundaries, and narrow 
GIXRD peaks. Other properties appear to be new 
to the improved material:  absence of a red shift in 
the luminescence spectrum near the CIGS surface, 
diminished manifestation of nanodomains, and 
increased shifting of the GIXRD (112) peak to 
smaller lattice parameters. 
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