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COMPARISON BETWEEN RESEARCH-GRADE AND COMMERCIALLY AVAILABLE 
SnO2 FOR THIN-FILM CdTe SOLAR CELLS  

 
Xiaonan Li, Joel Pankow, Bobby To, and Timothy Gessert 

National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, CO 80401 
 

 
ABSTRACT 

 
A comparison between research-grade, tin-oxide 

(SnO2) thin films and those available from commercial 
sources is performed.  The research-grade SnO2 film is 
fabricated at NREL by low-pressure metal-organic 
chemical vapor deposition.  The commercial SnO2 films 
are Pilkington Tec 8 and Tec 15 fabricated by 
atmospheric-pressure chemical vapor deposition. 
Optical, structural, and compositional analyses are 
performed.  From the optical analysis, an estimation of 
the current losses due to the SnO2 layer and glass is 
provided.  Our analysis indicates that the optical 
properties of commercial SnO2 could be improved for PV 
usage.  

  
INTRODUCTION 

 
Fluorine-doped SnO2 films are used extensively as 

transparent electrodes for thin-film photovoltaics (PV). It 
is a major component of the thin-film PV device.  Thus, 
obtaining high-quality SnO2 is critical for high-efficiency 
thin-film PV. This is especially true for thin-film α-Si, μc-
Si and CdTe solar cells, in which SnO2-coated glass is 
used as a substrate, and the rest of the device is 
deposited on it.  Thus, the SnO2 properties heavily 
impact the junction that is grown on it. 

   
The SnO2-coated glass substrates used in PV 

devices come mainly from two sources. Research 
laboratories and universities generally fabricate the SnO2 
themselves.  PV manufacturers (such as First Solar) use 
commercially available SnO2-coated glass.  However, 
the commercial SnO2-coated glasses available on the 
market are not optimized for the PV industry.  In this 
study, we will compare the film properties of research-
grade SnO2 films and those available from commercial 
sources.  We will identify the differences and what could 
be improved.  The research-grade SnO2 film used in this 
study is fabricated at NREL by low-pressure metal-
organic chemical vapor deposition.  The commercial 
SnO2 films are Pilkington Tec 8 and Tec 15, because 
these SnO2-coated glass substrates are used by most 
PV manufacturers. 

  
Optical, structural, and compositional analyses are 

performed.  Our analysis indicates CdTe solar cell 
efficiency could be improved by optimizing the optical 
properties of commercial SnO2 films. 

    

The device results indicate that when using 
commercial SnO2 substrates, the short-circuit current 
densities (Jsc) of CdTe solar cells are typically about 
20 mA/cm2. With research-grade SnO2, however, a Jsc of 
~23 mA/cm2 was achieved.  In this study, we present a 
detailed analysis to indicate where the current could be 
gained if the improved SnO2 is used.  

 
EXPERIMENTAL 

 
The research-grade SnO2 film is fabricated at NREL 

with tetramethyltin (TMT), oxygen, and 
bromotrifluoromethane (CBrF3) as precursors [1].  The 
commercial SnO2 films are Pilkington Tec 8 (I) and Tec 
15 (II) fabricated by atmospheric-pressure chemical 
vapor deposition [2].  The substrate used for research-
grade SnO2 is Corning 7059, and soda-lime glass is 
used for commercial SnO2. 

   
The electrical properties of SnO2 film were 

characterized with a Bio-Rad HL5500 Hall system. The 
total transmittance (T) and reflectance (R) spectrum were 
measured by a Cary 5G spectrophotometer with an 
integrating-sphere detector.   The optical absorption (A) 
was calculated from A=1-T-R.  Using the obtained optical 
absorption from the above characterization and AM 1.5 
solar spectrum, the estimated current loss was 
calculated. The crystal properties and surface 
topography were assessed using X-ray diffraction (XRD, 
Scintag Model PTS) and atomic force microscopy  (AFM, 
Autoprobe LS from Park Scientific Instruments with Si 
Cantilevers).  SnO2 coated glass samples were 
examined with a PANalytical Axios wavelength 
dispersive X-ray fluorescence spectrometer using a 
standard rhodium anode.  Different  conditions were 
utilized for various goniometer scan ranges depending 
on the elements of interest.  Both the uncoated and tin 
oxide coated sides of the glass were scanned.   

 
RESULTS AND DISCUSSIONS 

 
Optical analysis is performed on SnO2-coated glass 

substrates.  Figure 1 shows the optical transmission and 
absorption of the research-grade and commercial 
(sample I, Tec 8) SnO2 films.  These two samples have 
similar film thickness and sheet resistance, but different 
optical transmission and absorption values. Of course, 
for commercial SnO2-coated glass, the glass substrate 
contributes a large portion of the optical absorption.  
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Figure 2 provides a characterization that separates 
the effect of glass substrate and SnO2 film. Because the 
corning 7059 glass has very small optical absorption, the 
calculation on the research-grade SnO2 sample should 
be fairly accurate.  The calculation on the commercial 
sample may indicate only a close estimate because of 
the high optical absorption of the soda-lime glass 
substrate.  From Fig. 2, we can see that the glass 
substrate absorption of the commercial SnO2 contributes 
a large portion in the long-wavelength range.  In the 
short-wavelength range, the absorption due to the SnO2 
film is dominant.  
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Fig. 1. Optical transmission and absorption taken from 
research-grade and commercial SnO2-coated 
glass.    

 
The SnO2 film quality (e.g., structural defects and 

impurity levels) could cause the high optical absorption in 
the short wavelength, and the free-carrier scattering may 
account for the long-wavelength absorption. First, the 
optical absorption in the short-wavelength range could 
be due to the presence of reduced species such as Sn or 
SnO.  In previous experiments, we found, by grazing-
incidence X-ray diffraction, that annealing SnO2 in H2 gas 
will form the species Sn or SnO.  Meanwhile, the optical 
absorption at the short-wavelength range increased 
significantly [3].  XRF composition analysis also found 
that in addition to the fluorine impurity, the commercial 
SnO2 films have chlorine and other impurities, which are 
likely due to incorporation from CVD process.  
Furthermore, the saturated dopants must be considered. 
The classical formula for the free-carrier absorption 
coefficient af can be written as [4]: 

 

α f =
Nq2λ2

m* 8π 2nc3τ
 (1) 

 
Where N is the carrier concentration, q is electron 
charge, λ is photon wavelength, m* is effective mass, n 
is the optical index of refraction, and τ is the relaxation 
time.  From Eq. (1), it can be seen that the optical 
absorption caused by free-carrier scattering would 

increase with increasing carrier concentration and 
photon wavelength. Thus the high carrier concentration 
would cause the high absorption.  Figure 3 shows that for 
similar film thickness, the doped SnO2 film has higher 
optical absorption than the undoped film in long-
wavelength range. However, in the short-wavelength 
range, the optical absorption of the doped SnO2 film still 
high, which is not due to the free-carrier effect.  
Therefore, we suspect that the possible existence of 
reduced species and a high level of impurities could be 
the reasons for the high absorption of the commercial 
SnO2 film in the short wavelength. 
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Fig. 2. Optical absorptions from (a) research-grade and 

(b) commercial SnO2-coated glass (same 
samples as in Fig. 1.   The color indicates the 
absorption due to different parts of the structure. 

 
 

The commercial SnO2 sample II has lower optical 
absorption compared to research-grade SnO2, which is 
due to it being a thinner film.  Thus, its sheet resistance 
is about 15 Ω/sq, which may be too high for CdTe thin-
film solar cells. A figure of merit, (ΦTC)=T10/Rs, that can 
reflect both electrical and optical properties of the film is 
used as a comprehensive index to characterize the 
quality of the transparent conducting oxide (TCO) 
substrate.  Table 1 lists electrical and optical parameters 
of research-grade and commercial SnO2 films. The 
transmittance used for calculation ΦTC in Table 1 is an 
average between the wavelength regions from 350 to 
860 nm and taken with glass substrates. From Table 1, 

2 



we can see that considering the comprehensive index, 
the research-grade SnO2-coated substrate is superior to 
the commercial SnO2-coated substrate. It should be 
noted that for commercial SnO2 films (with similar 
material properties), reducing the film thickness will 
increase the film transmittance, but will also increase the 
film sheet resistance. Thus, the comprehensive index will 
not change very much.  

 
Table 1. SnO2 Electric and Optical Properties 

Sample ID Rsq  
(Ω/sq) 

*Average 
Transmittance 
(T %) 
(350-860 nm) 

Figure of 
Merit 
(ΦTC=T10/R) 
(x10-2)

Research-
grade 
SnO2:F 

6.7 80.17 1.636 
 

Commercial 
SnO2:F  I 

8.1 74.80 0.678 

Commercial  
SnO2:F  II 

14.6 79.38 0.680 

*The values of average transmittance listed here are 
taken from film/glass structure. 
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Fig. 3. Optical absorption from two research-grade 

SnO2 samples.    
 

The XRD pattern taken from the research-grade and 
commercial SnO2 films are plotted in Fig. 4. Both SnO2 
films are polycrystalline. Only a single phase (tetragonal) 
can be identified.  The commercial SnO2 films are 
randomly oriented.  The orientation of research-grade 
SnO2 is a function of deposition temperature and fluorine 
doping level.  At low deposition temperature and low 
fluorine doping condition, the SnO2 film is randomly 
oriented. Otherwise, the SnO2 film is the (200) preferred 
orientation [1]. The analyses on the XRD results indicate 
that the lattice constant of commercial SnO2 film is larger 
than the bulk value, which indicates that it is under a 
tensile stress.  The research-grade SnO2 film shows 
much less stress and demonstrates high optical 
transparency and high electron mobility.  The difference 

in the film’s crystal quality may partially contribute to the 
differences in the film's optical and electrical properties. 
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Fig. 4. XRD patterns taken from research-grade and 
commercial SnO2 samples. Research-grade SnO2 
film is in (200) preferred orientation and 
commercial SnO2 film is randomly oriented.  The 
peak position of commercial SnO2 film is moved to 
a lower angle, which indicates a larger lattice 
constant. 
 

The possible current losses for CdTe solar cells that 
may be attributed to the different glass substrates and 
SnO2 film coatings are listed in Table 2.  Optical 
absorption losses were first computed from the 
integrated reflectance and transmittance measured on 
the bare glass samples and the SnO2 films with glass 
substrate.  We then multiplied these numbers by the 
AM1.5 global spectrum photon density and integrated the 
product in the wavelength range of 350–860 nm for CdTe 
and 350–1200 for μc-Si solar cells [5].  For the 
commercial SnO2 sample I, the soda-lime glass 
substrate causes a portion of the optical loss, but the 
SnO2 film still contributes about two-thirds of the optical 
loss.  Changing the glass substrate to a type with low 
optical absorption should help the device gain an 
additional ~1 mA/cm2 in Jsc.  Improving the SnO2 material 
property could lead to a gain of more than 1 mA/cm2 in 
Jsc. For a μc-Si solar cell, the impact due to soda-lime 
glass absorption is very serious. 

 
Furthermore, the SnO2 quality impacts the formation 

of the next layer that grows on it.  For the front-wall-
structure CdS/CdTe device, the topography of the front 
TCO electrode could affect the CdS and CdTe layers that 
grow on it.  The smooth SnO2 surface and addition of a 
high-resistance buffer layer between SnO2 and CdS will 
make thinner CdS possible [1]. Hence, another 1 mA/cm2 
would be possible depending on the final CdS layer 
thickness achieved.   
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Table. 2.  Possible Current Loss for the Device Due 
to the Optical Absorption Loss Introduced by the 

Sno2-Coated Glass Substrate 
Materials Current Loss  

(mA/cm2) 
Current Loss  
(mA/cm2)

 350-860 nm 350-1200 nm 
Research-grade 
SnO2/G 

1.64 3.47 

1.1 nm 7059 Corning 
glass substrate 

0.19 0.31 

   
Commercial I SnO2/G 4.50 8.19
Commercial II SnO2/G 2.70 6.12
3.2 mm Soda-lime glass 
substrate 

1.70 4.17 

 
An AFM image shows that the surface roughness 

(Rrms) of both the i-SnO2 and SnO2:F films depend 
strongly on the growth temperature and the film 
thickness.  With a growth temperature of 500°C and a 
film thickness of 6000 Å, the surface roughness of SnO2 
films was about 8 nm.  Table 3 lists the surface 
roughness of several research-grade and commercial 
SnO2 samples.  

 

 
 
Fig. 5. AFM of (a) research-grade and (b) commercial 

SnO2. Research-grade SnO2 is fabricated at 
550°C with film thickness of 1 μm, and 
commercial SnO2 films have a film thickness of 
0.6 μm. 

 
 

Table 3. Atomic Force Microscopy Data 

Sample ID Deposition 
temperature  
(°C) 

Film 
Thickness 
(μm) 

Rms 
(nm) 

Research-grade    
SnO2:F-144 500 0.61 8.2
SnO2:F-2374A 600 0.68 15
Commercial    
SnO2/G sample I  0.6 34.8 
SnO2/G sample II  0.3 12.5 

 
For research-grade SnO2, an i-SnO2 buffer layer is 

added to the structure, which further enhances its 
function as a front window layer for a CdTe/CdS solar 
cell.  The device results indicate that adding an i-SnO2 
buffer layer between the SnO2:F and CdS layers will help 

to maintain the device properties.  This buffer layer also 
helps reduce the thickness of the CdS layer.  Figure 6 
indicates the possible current loss as the thickness of the 
CdS layer increases. If smooth SnO2 and i-SnO2 buffer 
layers are used, the CdS layer thickness could be 
reduced considerably.   
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Fig. 6. Optical absorptions for three CdS samples that 

have different film thickness.  We can see that 
the optical absorptions in the wavelength range 
of 350–550 nm are closely related to the CdS 
film thickness.  

 
CONCLUSIONS 

 
In summary, compared to commercial SnO2 (with 

similar film thickness and sheet resistance), the 
research-grade SnO2 has higher optical transmittance 
and higher electron mobility. The high optical absorption 
of the commercial SnO2 substrate is due partially to the 
glass substrate and partially to the SnO2 film quality.  
The high impurity level could contribute to the high 
optical absorption of commercial SnO2. When SnO2-
coated glass used as a front conducting window layer for 
a CdTe solar cell, not only are high conductivity and high 
optical transmission required, a smooth surface also is 
prefered.  The smooth SnO2 surface and i-SnO2 buffer 
layer will make the thin CdS layer possible.  Optical 
absorption analyses indicate that, for commercial SnO2, 
changing the glass substrate to low optical absorption 
glass and improving the SnO2 film property could help a 
CdTe solar cell improve the photon collection and gain 
additional photocurrent. Furthermore, the bi-layer 
structure of SnO2 with a smooth surface will make 
thinner CdS layers possible.  With this characterization, 
a gain in Jsc by as many as 3 mA/cm2 is possible with the 
improvement in the SnO2-coated substrate.  
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