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Subcontract Executive Overview  
This research program investigated chemical and physical methods for Si surface 

passivation for application in crystalline Si and thin Si film photovoltaic devices.   
Overall, our efforts during the project were focused in three areas: i) synthesis of silicon 
nitride thin films with high hydrogen content by hot wire chemical vapor deposition ii) 
investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar 
cells by out diffusion from hydrogenated silicon nitride films  iii) investigation of the 
growth kinetics and passivation of hydrogenated polycrystalline  Si grown by hot wire 
chemical vapor deposition.   

Work on hydrogen-passivated silicon nitride synthesis was applied to solar cell 
passivation in collaboration with industrial partners at Evergreen Solar and thin film 
silicon passivation in collaboration with BP Solar.  By way of enumeration, under this 
contract 3 PhD theses were published, along with 16 journal publications.  Researchers 
working under this subcontract have also been actively serving the photovoltaics 
technical community -- the Principal Investigator served as a co-organizer for the 
Materials Research Society Symposium A in 2006 and served as a subpanel chair for the 
DOE Basic Energy Sciences Workshop on Basic Research in Solar Energy Utilization in 
2005. 
 
1. Silicon Nitride Synthesis by Hot Wire Chemical Vapor Deposition: 
 
Introduction 
 A major focus of our subcontract was on silicon nitride (SiNx) films, which have been 
widely used in the semiconductor industry for use as a lithographic mask and gate 
dielectric.  Particularly for gate dielectric applications, silicon nitride offers the advantage 
of lower deposition temperature (300oC) as compared with other materials, avoiding the 
problems of impurity diffusion that can occur at conventional processing temperatures of 
900oC1.  For photovoltaic applications, silicon nitride acts as an effective anti-reflection 
(AR) coating due to its high refractive index (2.0-2.5).  These films may also serve as 
passivation coatings for surface and bulk defects in the underlying silicon, due to the 
large fraction of hydrogen that may be incorporated (up to 25 atomic %)2. 
 A promising technique for low temperature SiNx growth is hot-wire CVD (HWCVD), 
also known as catalytic CVD (Cat-CVD)3.  Recent work on SiNx growth by HWCVD has 
focused gate dielectric applications1, with one group fabricating a thin-film transistor 
made entirely by this technique4.  Our subcontract research focused on use of HWCVD 
SiNx for photovoltaic applications, with particular attention paid to the refractive index 
and hydrogen content of the films. 
 
Summary of Technical Accomplishments: 
 Silicon nitride films were grown by hot-wire chemical vapor deposition and film 
properties have been characterized as a function of SiH4/NH3 flow ratio.  It was 
demonstrated that hot wire chemical vapor deposition leads to growth of SiNx films with 
controllable stoichiometry and hydrogen.  The following findings resulted from our 
subcontract research: 
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• The decomposition rate of NH3 on tungsten is low relative to SiH4, explaining the 

large excess flow of NH3 needed to produce stoichiometric silicon nitride films.   
 
• The NH3 decomposition reaction is catalyzed, however, with an activation energy 

of 31 kcal/mole.  
 

• Varying the ratio of SiH4/NH3 from 1-8% produced films ranging in refractive 
index from 1.8-2.5, with hydrogen content ranging from 9-18 atomic %.  

 
• Transmission measurements using FTIR revealed an abrupt transition in the 

bonding of H (going from N to Si) in SiNx as the flow ratio was increased beyond 
6% SiH4/NH3.  As this ratio was increased, the overall H-content increased in the 
film, suggesting that SiH4 is the primary source of H under these conditions.   

 
• Films deposited with a low flow ratio of SiH4/NH3 of 1% showed a prominent Si-

O-Si feature suggesting post-growth oxidation, a result further confirmed with 
RBS, indicating 23% oxygen incorporation in the film.   

 
• Post-deposition H2 treatments were found to have little impact on the overall 

atomic percentage of H in the film, but did appear to have an etching effect with 
the Si-rich samples used.   

 
• Annealing studies revealed different kinetics for H release from Si versus N, 

consistent with a mechanism involving bond dissociation, followed by molecular 
diffusion9. 

Experimental Approach 
 The system used in the deposition of SiNx is a high vacuum chamber with a base 
pressure of order 10-9 Torr.  Source gases, consisting of SiH4 (diluted to 1% in He), NH3 
(and H2 for post-deposition treatments) are introduced through a gas inlet and 
decomposed on a W wire (0.5 mm diameter, 12 cm length, 1800oC temperature).  Flow 
rates of the various gases range from 4-48 sccm, with SiH4/NH3 ratios ranging from 1-
8%, and pressures in the range of 20-100 mTorr.  A substrate heater is located 
approximately 5 cm from the wire, and a shutter is used to protect substrates from the 
evaporation of impurities from the wire during its initial heating; growth temperatures 
were approximately 300oC for this study.  The substrates used were lightly doped p-type 
(350 Ω-cm), double-side polished, float-zone Si.  A quadrupole mass spectrometer is put 
in place of the substrate heater during experiments aimed at measuring radicals desorbed 
from the filament. 

Radical Measurements – NH3 Decomposition 
 As a means to probe the kinetics of NH3 decomposition on the wire, low-pressure 
radical species measurements were made using a quadrupole mass spectrometer with the 
capability of tunable electron energy for selective radical ionization.  This method is 
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detailed in another study by these authors5.  Mass spectra were acquired of the NHx 
species desorbed from the wire under conditions of 3x10-6 Torr NH3, at a wire 
temperature of 2100oC.  Even at such a high temperature, there is an extremely small 
yield of NH2 produced from NH3 decomposition.  Relative to the decomposition 
probability of SiH4 at a similar temperature, NH3 is (at minimum) a factor of 10 less.  
This suggests that to produce stoichiometric (Si3N4) films, the feed gas must contain SiH4 
in a large dilution of NH3, a common observation in the growth of these films1,4.  The 
intensity of the NH2 yield was also measured as a function of wire temperature, from 
1550-2100oC.  These data yield an approximate activation energy for the NH3 
decomposition reaction: 
 

              NH3 + W = NH2 + W-H                                                 (1) 
 
where “W” represents a bare surface site on the W wire, and “W-H” is a hydrogenated 
surface site on the wire.  The value of 31 kcal/mole obtained is significantly smaller than 
the known N-H bond dissociation energy of 93 kcal/mole6, indicating that as with the 
reaction of SiH4 to SiH35, the reaction in Eqn. 1 is catalyzed. 

Film Growth Results 

FR QS 
(sccm) 

QN 
(sccm) 

T 
(nm) n 

1% 8 8 62 1.8 

2% 16 8 128 1.8 

4% 32 8 287 1.9 

8% 32 4 129 2.5 

 
Table 1.  Film growth conditions and results.  
FR refers to diluted SiH4 (1% in He)/NH3 flow 
rate ratio; QS and QR refer to SiH4(1% in He) 
and NH3 flow rates in sccm, respectively; T 
refers to SiNx film thickness in nm; n refers to 
film index of refraction 

 SiNx films were initially prepared under conditions of 1.8% SiH4 in NH3 (16 sccm 
1% SiH4 mixture, 8.7 sccm NH3), 20 mTorr total pressure, and a substrate temperature of 
280oC, with a growth time of 60 minutes.  Resulting films were analyzed with a single 
wavelength (633 nm) ellipsometer, yielding a thickness of 185 nm and refractive index of 
1.8.  Subsequent analysis was performed using X-ray Photoelectron Spectroscopy (XPS) 
to gain insight into the bonding structure of the film.  A HWCVD and standard 
(stoichiometric nitride) grown by 
conventional PECVD (50 nm Si3N4 
on Si substrate) were examined with 
this technique.  Results indicated a 0.8 
eV core level shift in the N 1s 
spectrum for the hot-wire film, 
relative to the spectrum of the plasma-
grown film.  These shifts to higher 
binding energy could be associated 
with an N-Si2 bond structure7 
(unsaturated bond on N), as opposed 
to the N-Si3 structure expected of 
stoichiometric silicon nitride.  Larger 
percentages of oxygen were present in 
the HWCVD film, suggestive of SiO2, 
and an examination of the Si signal 
yielded a Si/N ratio of approximately 
1.3.  These results suggest that the 
film was a combination of SiO2 and 
SiNx, possibly a silicon oxynitride 
(SixOyNz). 
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Variation of SiH4/NH3 Flow Ratio 

Prompted by the results indicating that the initial growth conditions led to a film of low 
index (1.8), a series of different SiH4/NH3 flow ratios were used to examine the effects 
on film properties.  The films to be described were grown at a substrate temperature of 
300oC for a period of 40 min, with a wire temperature of 1800oC and a total pressure of 
100 mTorr.  Fig. 1 provides the Fourier Transform Infrared (FTIR) transmission spectra 
for a series of four SiNx films grown under different SiH4/NH3 flow ratios: 1, 2, 4, and 
8%.  Table 1 provides the flow rates used for film growth (FR = flow ratio, QS = SiH4 
mixture flow rate, QN = NH3 flow rate), as well as the resulting film thickness (‘t’) and 
refractive index (‘n’).  Peak assignments were based on data by Lanford and Rand2.  The 
most prominent feature in the transmission spectra is the Si-N absorption around 860 cm-
1; the breadth of this feature suggests that the SiNx films are  
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Fig. 1.  FTIR transmission spectra of films grown under different SiH4/NH3 flow ratios  
            (indicated in %). 

amorphous.  The features at 2160 cm-1 and 3340 cm-1 were assigned to Si-H and N-H 
stretches, respectively.  Evident from Fig. 1 also is that the majority of H is bound to N 
for the 1, 2, and 4% flow ratios and there is an abrupt transition at 8%, at which point H 
becomes mostly bound to Si.  For the 1, 2, and 4% cases, it is likely that the H observed 
comes from NH2 species produced at the wire.  For the 8% case, the H of the film likely 
results from atomic H (produced by SiH4 decomposition) passivating Si dangling bonds 
present in the growing film.  Using absorption cross sections provided by Lanford and 
Rand2, an estimate of the hydrogen concentration in the various films could be obtained.  
The range of values obtained by this method was 0.9-1.5x1022cm-3, although the degree 
of uncertainty associated with these measurements prevents the emergence of a clear 
trend in hydrogen content with respect to flow ratio.  Other trends are noticeable from 
Table 1.  The growth rate is proportional to the product of the SiH4 and NH3 flow rates. 
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Also, the refractive index increases from 1.8 up to 2.5, with the 4% flow ratio film being 
the closest to stoichiometric silicon nitride (2.0).  Finally, Fig. 1 reveals that the 1% film 
has a prominent Si-O-Si feature that is diminished or absent in films grown at higher flow 
ratios. 

Rutherford Back Scattering and Hydrogen Forward Scattering Analysis 
 To complement these FTIR measurements, Rutherford Backscattering  (RBS) and 
Hydrogen Forward Scattering (HFS) measurements were made to determine the 
stoichiometry and hydrogen content of a select number of SiNx films.  The films chosen 
for analysis were the 1% and 8% flow ratio films, in addition to two films grown at a 
flow ratio of 6% (all other conditions identical), one of which was subjected to a post-
deposition H2 treatment; FTIR analysis of the 6% flow ratio films revealed that H was 
bonded predominantly to Si, as in the 8% case.  The post-deposition H2 treatment was 
carried out under conditions identical to SiNx deposition, but with the replacement of 
SiH4 and NH3 with H2 at the same 100 mTorr total pressure.  The rationale for this 
treatment was to determine whether additional H (produced by H2 decomposition on the 
wire) could be incorporated into the as-grown SiNx.   
 Table 2 provides a summary of the RBS, HFS, and FTIR film analysis.  As expected, 
the RBS data reveal an increase in the Si/N ratio in the film as the SiH4/NH3 flow ratio 
increases.  All values are greater than the value of 0.75 expected of stoichiometric silicon 
nitride, although the value of ~1 obtained with FR = 1% is attributed to the presence of 
SiO2.  There is a slight decrease in the Si/N ratio after the post-deposition H2 treatment, 
suggesting an etching effect of H on the Si of these Si-rich films.  The HFS data reveal 
that the FTIR method of determining H-content is suitable for approximate 
determinations, but can be in error by as much as a factor of 2.  Also revealed by HFS is 
an increase in the overall atomic percentage of H as the flow ratio (or Si/N) increases, 
supporting the idea that SiH4 is the primary source of this H at these flow ratios.   
 Interestingly, the post-deposition H2 treatment appeared to have little effect on the 
atomic percentage of H in the film, and may only have served to etch the Si-rich film.  
The films also exhibited a decrease in atomic density (as determined with RBS, using the 
known film thickness) as the proportion of Si/N increased.  The film subjected to the H2 
treatment showed an increase in atomic density, consistent with the idea that H etched 
excess Si from the film, followed by densification.  Finally, it is noteworthy that the 1% 
film contains a large percentage of oxygen (23%), while it is absent (within detection 
limits) in films grown at higher flow ratios.  This result is consistent with the earlier FTIR 
measurements showing a prominent Si-O-Si feature in the 1% film.  It has also been 
observed by Stannowski et al.4, using similar techniques, that nitride films deposited with 
a small flow ratio of SiH4/NH3 (<2%) undergo post-deposition oxidation, likely due to 
absorption of H2O molecules.  The authors infer that films grown under these conditions 
must be porous to allow for H2O absorption.   
 

Annealing of Hydrogenated SiNx 
 For applications where hydrogenated SiNx is to be used as a passivation coating, the 
mobility of bound hydrogen is critical as it is thought that the degree of passivation (as 
measured in minority carrier lifetime) depends the amount of hydrogen released from the 
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SiNx film8.  As a means to study hydrogen release from SiNx, two of the films described 
previously were chosen.  In order to observe the effects of H release from N versus Si, 
the 2% and 8% flow ratio films were selected.  By analogy with the study by Yelundur8, 
we chose to anneal each of these films for 5 minutes at temperatures of 400oC, 600oC and 
800oC.  Between each anneal, the sample was allowed to cool to room temperature, after 
which FTIR measurements were made to monitor to release of H from the SiNx film.   
 

Table 2.  Summary and comparison of RBS, HFS, FTIR film analysis 

Flow 
Rate 
Ratio 

Film 
thickness  
(nm) 

Index  
n 

Si/N Ratio 
(RBS) 

Bonded H 
Concentrat’n 
(cm-3) 
(FTIR) 

Total H 
Concentrat’n 
[H](cm-3)/(at. %) 
(RBS-FS) 

Atomic 
Density 
(at/cc) 
(RBS) 

Oxygen Concentr’n 
(at. %) 
      (RBS) 

1% 62 1.8 0.99 1.1x1022 0.77x1022 / 9.3% 8.2x1022 23% 

6% 209 2.2 1.3 0.94x1022 1.2x1022 / 16% 7.5x1022 0% 

6% 
+H2 

185 2.1 1.1 0.68x1022 1.3x1022 / 16% 8.4x1022 0% 

8% 129 2.5 2.2 1.5x1022 1.1x1022 / 18% 6.2x1022 0% 

 
Figure 2 shows the FTIR spectra at the various annealing temperatures for each of these 
films, along with an estimate of the H concentration, determined by the aforementioned 
method and Lanford and Rand2.  Fig. 2a shows a steady reduction in the H bonded to N 
as the anneal temperature is increased, with an overall reduction of 70% after the 800oC 
anneal.  Fig. 2b reveals only a slight reduction in the H bound to Si up to 600oC, with a 
drastic reduction of 80% after the 800oC anneal.  These results are in qualitative 
agreement with results and a H loss mechanism proposed by Boehme et al.9.   
 The dominant loss mechanism for H in N-rich films (all H bonded to N) is suggested 
to be one involving dissociation of Si-N and N-H bonds to form NH3, which may then 
diffuse through the SiNx network; this reaction is calculated to be downhill in energy by 
0.43 eV.  We also observed only a slight decay in the H bonded to Si for annealing 
temperatures up to 600oC, followed by a rapid decay in Si-H for higher temperatures.  
Such results suggest a hydrogen loss reaction having a high activation energy (as 
compared with N-H loss) that is also highly exothermic (considering the rapid decay 
upon crossing this threshold temperature).  Some of the reactions proposed that would 
satisfy the latter criteria involve: 1) dissociation of Si-H and N-H to form H2 and Si-N, 
ΔE = -1.86 eV (unlikely due to negligible amounts of N-H in the Si-rich film), 2) 
recombination of Si-H to form H2 and Si-Si, ΔE = -0.49 eV, and 3) reactions involving 
larger numbers of Si-H that are increasingly exothermic, forming SiH4 (ΔE = -0.52 eV) 
and Si2H6 (ΔE = -3.6 eV) as by-products. 
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2. Solar Cell and Si Defect Passivation with HWCVD Silicon Nitride 
 

In this section, we describe results of research performed under the subcontract 
connecting the growth and hydrogen content of HWCVD silicon nitride films to defect 
passivation in Si and in Si solar cells.  First, the stoichiometry and hydrogen content of 
hot-wire CVD-grown silicon nitride was examined as a function of SiH4/NH3 flow ratio.  
Then, the effect of post-deposition hydrogenation treatment on overall film hydrogen 
content was determined.  The hydrogen release properties in Si-rich and N-rich nitride 
layers were characterized by annealing treatments.  Hot-wire nitride layers were 
deposited onto Evergreen Solar diffused emitter String Ribbon silicon solar cells, and 
such passivation resulted in cells with comparable JSC, VOC, FF, and efficiency to those 
fabricated using plasma CVD nitride layers.  Defect hydrogenation in Si was studied 
using attenuated total reflectance FTIR spectroscopy on platinum-diffused silicon 
substrates, in collaboration with Lehigh University. 

Silicon Nitride Passivation 

Silicon nitride acts as an effective anti-reflection (AR) coating for solar cells due to its 
high refractive index, tunable in the range from 1.8-2.5.  These films may also serve as 
passivation coatings for surface and bulk defects in the underlying silicon, due to the 
large fraction of hydrogen that may be incorporated (up to 25 atomic %).2  The 
conventional means for depositing silicon nitride films uses plasma enhanced chemical 
vapor deposition (PECVD).  Another promising technique for low temperature SiNx 
growth is hot-wire CVD (HWCVD), also known as catalytic CVD (Cat-CVD).10  As 
compared with PECVD, HWCVD offers the advantages of high deposition rate,10 as the 
process can take place at pressures higher than those at which a  plasma can be sustained.  
In addition, it has been demonstrated that the process is compatible with large area 
deposition by careful design of gas delivery and filament geometry.11  The deposition of 
high hydrogen content nitride films by HWCVD for photovoltaic applications has been 
recently demonstrated.12,13   

Emitter Passivation  
Experiments 

The system used in the deposition of SiNx is a high vacuum chamber with a base 
pressure of order 10-9 Torr.  Source gases, consisting of SiH4 (diluted to 1% in He) and 
NH3 are introduced through a gas inlet and decomposed on a W wire (0.5 mm dia, 12 cm 
length, 1800oC temperature).  Flow rates of the various gases range from 4-48 sccm, with 
SiH4/NH3 ratios ranging from 1-8%, and pressures in the range of 20-100 mTorr (higher 
pressures are possible, but were not explored in this study).  Under these conditions, 
growth rates range from 16-52 Å/min, limited largely by the use of dilute SiH4; rates of 
up to 0.14 μm/min have been demonstrated with the use of pure SiH4 and NH3 
ambients.13  A substrate heater is located approximately 5 cm from the wire, and a shutter 
is used to protect substrates from the evaporation of impurities from the wire during its 
initial heating; growth temperatures were approximately 300oC for this study.  The 
substrates used were lightly-doped p-type (350 Ω-cm), double-side polished, float-zone 
Si, except where otherwise indicated. 
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Results 
A series of different SiH4/NH3 flow ratios (FR) were used to examine the effects on 

film properties.  The films to be described were grown at a substrate temperature of 
300oC for a period of 40 min, with a wire temperature of 1800oC and a total pressure of 
100 mTorr.  Fig. 1 provides the Fourier Transform Infrared (FTIR) transmission spectra 
for a series of four SiNx films grown under SiH4/NH3 flow ratios of 1, 2, 4, and 8%.  The 
most prominent feature in the transmission spectrum is the Si-N absorption around 860 
cm-1.  Also evident from Fig. 1 is that the majority of H is bound to N for the 1, 2, and 
4% flow ratios, while at 8%, H is mostly bound to Si.  The refractive index, as 
determined by single wavelength (633 nm) ellipsometry, increases from 1.8 up to 2.5, 
with the 4% flow ratio film being the closest to stoichiometric silicon nitride (n = 2.0).  
To complement these FTIR measurements, Rutherford Backscattering  (RBS) and 
Hydrogen Forward Scattering (HFS) measurements were made to determine the 
stoichiometry and hydrogen content of a select number of SiNx films.  The films chosen 
for analysis were the 1% and 8% flow ratio films, in addition to two films grown at a 
flow ratio of 6% (all other conditions identical)†, one of which was subjected to a post-
deposition H2 treatment.  The post-deposition H2 treatment was carried out under 
conditions identical to SiNx deposition, but with the replacement of SiH4 and NH3 with 
H2 at the same 100 mTorr total pressure.  As expected, an increase in the Si/N ratio in the 
film was observed as the SiH4/NH3 flow ratio increased.  All values are greater than the 
value of 0.75 expected of stoichiometric silicon nitride, although the value of ~1 obtained 
with FR = 1% is attributed to the presence of SiO2.  There is a slight decrease in the Si/N 
ratio after the post-deposition H2 treatment, suggesting an etching effect of H on the Si of 
these Si-rich nitride layers.  Also revealed by HFS is an increase in the overall atomic 
percentage of H as the flow ratio (or Si/N) increases, supporting the idea that SiH4 is the 
primary source of this H at these flow ratios.  It is noteworthy that the 1% film contained 
a large percentage of oxygen (23%), while it was absent in films grown at higher flow 
ratios.  This has been attributed to post-deposition absorption of water by the nitride 
film.4 

                                                 
†FTIR analysis of the 6% flow ratio films revealed that H was bonded predominantly to Si, as in the 8% 
case. 
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For applications where hydrogenated SiNx is to be used as a passivation coating, the 
mobility of bound hydrogen is critical as it is thought that the degree of passivation (as 
measured in minority carrier lifetime) depends the amount of hydrogen released from the 
SiNx film.

8
  As a means to study hydrogen release from SiNx, two of the films described 

previously were chosen.  In order to observe the effects of H release from N versus Si, 
the 2% and 8% flow ratio films were selected.  Each film was annealed for 5 minutes at 
temperatures of 400oC, 600oC, and 800oC.  
Between each anneal, the sample was 
allowed to cool to room temperature, after 
which FTIR measurements were made to 
monitor to release of H from the SiNx film.  
Fig. 2 shows the FTIR spectra at the various 
annealing temperatures for the 8% (Si-rich) 
film, along with an estimate of the H 
concentration, determined by the use of 
absorption cross sections.2  This figure 
reveals only a slight reduction in the H 
bound to Si up to 600oC, with a total 
reduction of 80% after the 800oC anneal.  
For the 2% (N-rich) film, a steady reduction 
in the H bonded to N is seen as the anneal 
temperature is increased, with an overall 
reduction of 70% after the 800oC anneal.  
This difference in hydrogen release kinetics can have important implications for the 
choice of annealing treatments (temperature, time). 

2300 2250 2200 2150 2100 2050 2000 1950
55.2

55.4

55.6

55.8

56.0

56.2

56.4

56.6

56.8

57.0

57.2

-SiH at 2164cm-1

film properties:
n=2.4, thickness=102nm
unchanged upon annealing

 

tra
ns

m
is

si
on

 (%
)

wavenumber (cm-1)

 as-grown, 1.2x1022cm-3

 400oC, 1.2x1022cm-3

 600oC, 1.0x1022cm-3

 800oC, 0.22x1022cm-3

Fig. 2.  FTIR spectrum at various annealing 
temperatures for a film grown with 8% SiH4 in 
NH3; annealing times of 5 min were used. 

To evaluate the quality of hot-wire-deposited silicon nitride layers relative to their 
plasma CVD counterparts, films were deposited onto String Ribbon substrates provided 
by Evergreen Solar (Marlboro, MA).  Film growth conditions were 3% SiH4/NH3 at a 
total pressure of 70 mTorr for a growth period of 1 hour.  The hydrogen content was 
estimated to be, at minimum, 10 at.% by comparison with previously grown films.  The 
samples were p-type (resistivity of 3 Ω-cm), with a thin phosphorous-diffused n-type 
layer on top.  Due to the large area of the substrates (15 cm x 8 cm), a filament array had 
to be used to improve thickness uniformity, as shown in Fig. 4.  It has been observed11 
that if the filament spacing is at most half the filament-to-substrate distance, then non-
uniformity associated with the filament array is eliminated.  With this design criterion in 
mind, the filaments were spaced 2 cm apart, with a wire-to-substrate separation of 5 cm.  
Samples grown using this wire array exhibited a thickness variation of approximately 15 
nm from the center to edge. 

 
Three nitride samples with an average center thickness of 83 nm were chosen for 
subsequent processing by Evergreen Solar.  The nitrided samples had a thick aluminum 
layer deposited on back by a screen-printing process using a commercially available 
aluminum paste.  The samples were then annealed in a belt furnace to form the back 
contact as well as release H from the nitride layer.  Upon fabricating front contacts, the 
cell’s electrical properties were measured.  Table 3 provides the short circuit current 
density (JSC), open circuit voltage (VOC), fill-factor (FF), and efficiency for a 
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representative hot-wire (HW) nitride cell versus a similarly processed plasma nitride cell 
produced by Evergreen.  The hot-wire nitride cell is comparable in electrical properties 
(with the exception of JSC) to the plasma nitride cell.  Further improvements in JSC 
might be expected with the use of more uniform nitride coatings. 
 

Table 3.  Comparison of electrical properties for hot-wire versus plasma nitride cells. 
 

Cell type 
JSC 

(mA/cm2) 

VOC 

(mV) 

FF Efficiency 

(%) 

HW nitride 29.99 579 0.712 12.4 

Plasma nitride 30.92 584 0.709 12.8 

 

Pt-H Complex Formation 
 
Although it is clear that large fractions of hydrogen can be liberated from nitride films 
upon annealing, questions remain about whether this hydrogen is simply released into the 
environment or is driven into the bulk c-Si beneath. 
To investigate this issue, the technique of 
Attenuated Total Reflectance FTIR (ATR-
FTIR) was used, which provides for a 
longer absorption path length that can 
enable trace vibrational features to be 
resolved.  The first sample analyzed 
consisted of a Pt-diffused (to 1017cm-3) p-
Si ([B] = 2x1015 cm-3) ATR prism, onto 
which a SiNx film of 80 nm (n = 2.3, Si-
rich) was deposited.  Pt was chosen given 
that it is a representative transition metal 
impurity that acts as a sink for H, and the 
resulting Pt-H complexes have been well 
studied, with their vibrational features 
assigned.14  Figure 3 shows the FTIR 
spectra at various annealing temperatures 
(10 min anneal) for Pt-H and Si-H (from 
the nitride layer).  Pt-H features are not 
observed until a temperature of 500oC, 
consistent with the H-desorption kinetics 
previously observed for the nitride film.  
Previous calibration14 of the Pt-H line 

Fig. 3.  Creation of Pt-H complexes in 
bulk Si by annealing of hydrogenated 
SiNx layer; annealing times of 10 min 
were used. 
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intensities enable an estimate of the concentration of H introduced into the bulk Si.  For 
the 700oC anneal, [Pt-H] is estimated to be 5x1012 cm-2. Through successive thinning of 
this sample to monitor H introduction, the Pt-H concentration is found to drop to 3.1x1012 
cm-2 at a depth of 390 μm.  This, in turn, leads to a bulk Pt-H concentration of 5x1013 cm-

3.  Assuming a uniform distribution of H throughout the sample, a hydrogenated layer 
thickness of 1.1 mm is calculated.  A similar Pt-diffused n-type ([P] = 3x1016 cm-3)  
 

sample revealed a comparable Pt-H concentration.  Two undiffused samples (n, p) were 
also analyzed, revealing no vacancy-H or dopant-H complexes; both diffused samples 
also did not reveal such complexes.   

 
 

Fig. 4. Photomicrograph of silicon nitride-passivated String Ribbon solar cell; white line 
depicts position of the wire array during hot wire CVD growth 

 

 

Summary of Defect and Emitter Passivation 
Varying the SiH4/NH3 ratio from 1-8% produced silicon nitride films ranging in 

refractive index from 1.8-2.5, with hydrogen content ranging from 9-18 atomic %.  
Transmission measurements using FTIR revealed a transition in the bonding of H (N-H 
to Si-H) as the flow ratio was increased beyond 6% SiH4/NH3.  Annealing studies 
revealed different kinetics for H release from Si versus N.  String Ribbon silicon cells 
produced with hot-wire-grown silicon nitride layers show comparable electrical 
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properties to those produced with plasma nitride layers.  The appearance of Pt-H 
complexes (~1014 cm-3) was observed in Pt-diffused Si samples at annealing temperatures 
consistent with H-release from the nitride top layer 
 

3. Thin Film Silicon Passivation in HWCVD Growth 

Overview of Thin Film Si by HWCVD 
HWCVD epitaxial growth on large-grained templates is one strategy for the fast, 

low-temperature growth of large-grained films with hydrogen-passivated low-angle grain 
boundaries.  In this section, we detail results under the subcontract on the role gas phase 
kinetics in HWCVD growth, film microstructural evolution and passivation of 
polycrystalline thin films in HWCVD growth. 

HWCVD Gas Phase Species Characterization 
A knowledge of the primary radicals produced on the wire in a hot-wire chemical vapor 
deposition (HWCVD) reactor is critical to optimization of film microstructure and 
quality, as well as for modeling gas-phase chemistry. In year 2, we devoted considerable 
effort to understanding the changes in the catalytic properties of tungsten hot wires with 
time during operation.  Wire catalytic properties were correlated with changes in surface 
and bulk microstructure in the wire.  The results suggest that there are significant changes 
in the radical species generated by the wire during extended operation relative to those 
generated by a new wire.  This point is of significant practical importance, since it 
implies that the radical species generated in film growth by hot wire chemical vapor 
deposition are a strong function of the frequency with which the wire is replaced (due to 
breakage or routine service operation). 
 
  The following findings resulted from our activities in this area: 
 

• With the use of a new wire, Si is found to be the predominant radical produced in 
a HWCVD reactor for wire temperatures in excess of 1500 K.  

• For temperatures below 1500 K, the SiH3 radical becomes predominant. The small 
activation energy (8 kcal/mole) observed for SiH3 formation suggests the process 
is catalyzed with the use of these wires. These results are in qualitative agreement 
with previous studies of radical chemistry at the wire. 

• Radical measurements performed on aged wires show high temperature activation 
energies for all SiHx species, suggesting a non-catalyzed process for radical 
formation. 

• Scanning electron microscopy of aged wires revealed a surface both rougher and 
more irregular than seen with new or heat-treated wires; this morphology is 
thought to be characteristic of Si deposition (either as free Si or a silicide).  

• Auger electron spectroscopy revealed surface Si concentrations as high as 15%, 
suggesting a two-phase equilibrium between W5Si3 and W (at a Si solubility of 
4%). Concentrations of Si in the interior of the wire (2-5%) are of order the 
solubility limit and reveal that Si diffusion into the wire is significant.  
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• Radical measurements added further evidence of Si diffusion, as Si was detected 
in a silane-free ambient following an aging treatment. 

• Examining rates for various surface kinetic processes reveals that bulk diffusion 
of Si through a silicide is the slowest, followed by Si evaporation and then surface 
decomposition.  

• The high rate of surface decomposition supports the idea that Si is in fact the 
predominant evaporating and diffusing species in and on the wire. In light of the 
low rate of diffusion through the silicide, the diffusion mechanism in the initial 
stages of SiH4 exposure must either consist of bulk diffusion through elemental W 
or large cracks that develop on the wire surface and propagate to the interior.  

• Finally, experimentally observed evaporation kinetics suggest that Si desorption 
from a new wire comes from direct Si-W bond breakage, as opposed to 
evaporation from Si. 

 

Rates for Surface Kinetic Processes 
A comparison of the relative rates for the various surface kinetic processes on the wire, 
namely, diffusion, evaporation, and decomposition allows further insight into the nature 
of the wire aging process. At the highest temperatures investigated in this study (~ 2400 
K), the solid solubility of Si in W is a few atomic percent, dropping to less than 1 at.% at 
the lowest temperature (1273 K). To our knowledge, there have been no studies that 
examined the diffusion of Si into elemental W. A study by Kharatyan et al., however, 
investigated the diffusion of Si into various silicides of tungsten and molybdenum. For 
the diffusion of Si into W5Si3 (the only silicide for which data were available), a diffusion 
coefficient of 

 
 

was obtained.  Using this diffusion coefficient, the rate for diffusion (using the wire 
radius as a lower limit for the characteristic length) as a function of wire temperature is 
given in Fig. 5. 

Data on the evaporation rate of Si from W were unavailable, but the study by 
Ehrlich does provide an evaporation rate for H from W, which is relevant to the SiH4 

decomposition process; this rate is plotted in Fig. 5. The evaporation rate of Si from 
liquid Si could be determined from the vapor pressure data of Margrave.  As liquid Si can 
form at some point during the aging process (T = 2000oC, W<33%/Si>66%), this rate has 
relevance to the aged wires of this study. This rate of evaporation, as a function of wire 
temperature, is also plotted in Fig. 5. Finally, rates of SiH4 decomposition on W were not 
directly available, but a study by Yang et al.24 suggests the timescale for Si-H bond 
breaking is of order a few picoseconds (in a liquid environment), establishing a lower 
bound to the decomposition rate for the significantly higher temperatures in the present 
study; this rate is included for comparison in Fig. 5. 

Examining these rates in Fig. 5, bulk diffusion of Si through the silicide is clearly 
the slowest process, followed by Si evaporation, and then decomposition. These rates, 
coupled with experimental observations, give a picture of the relative rates of surface 
kinetic processes on the wire. First, the high rate of decomposition compared with 
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evaporation and diffusion suggests that for the vast majority of wire temperatures, Si (as 
opposed to other SiHx) is the predominant evaporating/diffusing species; radical 
measurements in particular support the idea that it is the dominant evaporating species. 

At sufficiently low temperatures, however, this process becomes decomposition-
limited, and a spectrum of other species is observed. The Auger and radical 
measurements described earlier provide clear evidence that diffusion through the wire is 
occurring, and at rates faster than would be predicted by bulk diffusion (through a 
silicide) alone. This suggests that the majority of Si that diffuses into the wire does so 
before a thick silicide has formed. Whether this higher effective diffusivity is due to a 
higher intrinsic rate of Si diffusion into W (rather than W5Si3) or diffusion occurring 
primarily through cracks that develop on the surface of the wire is unclear. 

 

 
 

Fig. 5. Rates of interest for wire surface kinetic processes. 
 
Finally, it appears that the rate of evaporation of Si from Si(l) is several orders of 
magnitude below that of decomposition, even at the highest wire temperatures. It was 
previously observed, however, that for wire temperatures in excess of 2000 K, a 
saturation in the Si signal occurs with the use of a new wire that does not occur with an 
aged wire. This observation is consistent with a competition between evaporation (of Si 
and/or SiH4) and decomposition. This, in turn, may suggest that the mechanism of Si 
desorption from a new wire does not consist of Si evaporation from Si(l), but a different 
mechanism, namely, the direct desorption of Si from a W surface. The rate for this 
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process is likely to be of a similar magnitude as H evaporation from W, depicted in 
Fig. 5. It is also possible that the rate of SiH4 evaporation becomes comparable to its rate 
of decomposition at high temperatures, explaining the Si saturation. 
A picture then emerges of the hot-wire CVD decomposition process. First, SiH4 is 
adsorbed and then rapidly decomposed to Si and H on the surface of a new wire. This 
surface Si will then either evaporate or, if the surface concentration is high enough, 
diffuse to the interior of the wire up to its solubility limit. Once the thermodynamic 
solubility has been reached, excess Si can contribute to the formation of the W5Si3 phase, 
or at higher concentrations, WSi2. At the highest Si concentrations (> 67%), liquid Si can 
form at the surface and then Si evaporation from Si(l) becomes the dominant mechanism 
of Si production. The observation that a new wire readily absorbs Si, but retains it for 
a long period of time can be explained as a silicide diffusion-limited process. The silicide 
that forms at the surface acts as a diffusion barrier to Si in the interior of the wire (as well 
as to further diffusion of surface Si into the wire), and Fig. 5 shows that the characteristic 
diffusion time at the wire temperature used (~ 1750 C) is, at minimum, several hours. 
 
A Phase Diagram for Morphology and Properties of Low Temperature 
Deposited Polycrystalline Silicon Grown by Hot-wire Chemical Vapor 
Deposition  
 

The fabrication of low temperature polycrystalline silicon with internal surface 
passivation and with lifetimes close to single crystalline silicon is a promising direction 
for thin film polycrystalline silicon photovoltaics.  To achieve high lifetimes, large grains 
with passivated low-angle grain boundaries and intragranular defects are required.  We 
investigate the low-temperature (300-475ºC) growth of thin silicon films by hot-wire 
chemical vapor deposition (HWCVD) on Si (100) substrates and on large-grained 
polycrystalline silicon template layers formed by selective nucleation and solid phase 
epitaxy (SNSPE).  Phase diagrams for dilute silane deposition varying substrate 
temperature and for pure silane varying hydrogen dilution are shown. We will discuss the 
relationship between the microstructure and photoconductive decay lifetimes of these 
undoped layers on Si (100) and SNSPE templates as well as their suitability for use in 
thin-film photovoltaic applications. 

HWCVD epitaxial growth on large-grained templates is one strategy for the fast low-
temperature growth of large-grained films with hydrogen-passivated low-angle grain 
boundaries.  We propose a structure by which a template with grains on the order of 10–
100 µm is fabricated on ITO-coated glass or another low cost conductive substrate by a 
solid-phase crystallization process called SNSPE15.  This layer serves as the n+ back 
surface field, and the n and p+ layers are grown epitaxially on this template by HWCVD, 
using phosphine and tri-methyl boron as dopants.  In order to achieve this goal, 
investigation of the phase diagrams that lead to epitaxial growth in HWCVD are 
necessary. Preliminary work towards the fabrication of this cell and the necessary 
intermediate goals are discussed.  
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Dilute Silane Growth 
In order to promote crystalline growth under dilute silane conditions, we used a high 

hydrogen partial pressure dilution ratio of 50:1, using a mixture of 4% SiH4 in He at a 
partial pressure of 25 mTorr and H2 at a partial pressure of 50 mTorr.  The 0.5mm  
diameter tungsten wire was positioned 2.5 cm from the substrate for a growth rate of 
1Å/s.  The wire temperature was set to 1800ºC as measured by optical pyrometry, and 
substrate temperatures ranged from 300ºC to 475ºC.   

Silicon (100) substrates and large-grained polycrystalline layers formed by SNSPE 
were used as templates for epitaxial growth.  The formation of the large-grained 
templates is described in the Chen PhD thesis 15.  The resulting polycrystalline templates 
have grain sizes on the order of 10 to 100 μm with low-angle grain boundaries.  Before 
growth, both surfaces were cleaned with UV ozone for 10 minutes followed by an HF 
dip.  Once in the chamber, they are heated at 200ºC at a pressure of less than 10–6 Torr to 
desorb any residual hydrocarbons. 
 
Pure Silane Growth 

Using pure silane, the influence of dilution ratio was studied.  The substrate 
temperature was held constant at 380 ºC while graphite filaments set to 2100 ºC by optical 
pyrometry  were placed 3.5 cm from the substrate.  The H2 to SiH4 ratio ranged from 10 
to 50, total pressure also had to be adjusted for the higher H2 flow rates and ranged from 
20 to 50 mTorr.  Substrates were cleaned as described above. 
 
Dilute Silane Growth - Substrate Temperature Effects   

We used TEM and RHEED to characterize the crystallinity of films grown at 50:1 
hydrogen dilution and temperatures between 300-4750C in the 50 nm to 2 μm thickness 
regime and observed four phases of growth.  A completely defect-free epitaxial phase 
was observable by TEM at thicknesses below 50nm; the twinned epitaxial, mixed and 
polycrystalline phases were observable by TEM and RHEED16.  Twinned epitaxial 
silicon denotes silicon material containing twin boundaries, but no other dislocation or 
grain boundary defects.  From this data, we derived the phase diagram in Fig. 6.  At 
3000C, the predominant phases are epitaxial and twinned, with a transition to mixed 
phase or polycrystalline growth occurring somewhere between 1-2 μm of growth.  As 
temperature increases, the epitaxial and twinned phases no longer persist and the 
transition to mixed phase or polycrystalline growth occurs at smaller film thicknesses.  
This is in direct contrast to work done by Thiesen17 and Watahiki18 where epitaxial 
thickness increased with substrate temperature.  We believe that the decrease in epitaxial 
thickness with the increase in substrate temperature is due to an interplay between surface 
hydrogenation at low temperatures and surface oxidation at high temperatures that 
reduces the epitaxial thickness.  This is possibly related to the higher hydrogen content in 
HWCVD as compared to PECVD or MBE along with oxygen contamination in the 
deposition chamber19.   
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Fig. 6: Phase diagram of HWCVD films grown at 50:1 hydrogen dilution with 4% SiH4 
in He. 
 

 
 
Silicon films 300 nm thick grown on SNSPE templates under the same conditions 

showed epitaxial growth results consistent with local low temperature epitaxy on each of 
the 100 μm grains in the SNSPE templates, as shown in Fig. 7.  Epitaxial breakdown is 
observed in the diffraction pattern of the HWCVD film, but some of the underlying low-
order diffraction spots are visible.  The underlying film therefore likely has morphology 
similar to that of the HWCVD films on Si(100). The effect of the orientation of the 
underlying grain structure of the SNSPE template on the morphology of the HWCVD 
film is shown in Figure 7.   

Cross-sectional analysis of these films reveals some areas of epitaxial growth as well 
as some areas of columnar growth.  Before HWCVD growth, the SNSPE templates were 
cleaned in a solution of 3:7 HNO3: H2O, which has been shown by Auger spectroscopy to 
remove elemental Ni from the template surface20.  The lack of epitaxy in some areas is 
thus more likely to have been caused by the presence of ubiquitous surface contaminants, 
such as carbon and oxygen, than by nickel nanoparticles, since a similar microstructure 
can be seen in deposition on Si(100) substrates as well. 
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Pure Silane Growth – Hydrogen Dilution Effects   
We used TEM and Raman Spectroscopy to determine the structure of Si thin films 

grown at 380ºC with graphite wires at 2100ºC.  We found that the crystallinity did not 
increase with hydrogen dilution as expected21.  Instead, an amorphous/protocrystalline 
structure is observed at dilution ratios of 20 to 30, while at both the 40 and 10 H2/SiH4 
dilution ratios we observe epitaxial growth with polycrystalline breakdown.  This 
suggests a complex interaction between pressure and dilution, which will be discussed 
later. 
 

                

 

 
 
Fig. 7.  Plan-view TEM of HWCVD epitaxial film (T=3000C) on SNSPE template. (a) 
Selected area diffraction pattern from underlying SNSPE template. (b) Selected area 
diffraction pattern from HWCVD film on SNSPE template. (c) Bright-field image 
indicating selected area diffraction regions. Inset: diffraction from entire area. (d) Bright-
field image of HWCVD film (T=3000C) on SNSPE template showing selected area 
diffraction region. Inset: selected area diffraction pattern showing areas of large-grained 
polycrystalline growth.  
 
 
Table 4.  Results of HWCVD growth with pure silane at 380 ºC substrate temperature and 
at 2100 ºC graphite filament temperature with 3.5cm spacing. 
 

Hydrogen 
Dilution Ratio 

Pressure 
(mTorr) 

Deposition 
Rate (nm/min)

Raman Crystallinity 
% Phase 

50:1 50 4 83 Poly 
40:1 27 5 84 Epi/poly 
30:1 20 3 9 a-Si/Proto 
20:1 20 6 10 a-Si/Proto 
10:1 20 9 96 Epi/poly 
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Minority Carrier Lifetimes of HWCVD Films  
The minority carrier lifetimes of 1.5–15 μm thick films grown at 300 °C on Si(100) 

and SNSPE templates were determined through resonant-coupled photoconductive decay 
(RCPCD) measurements22.  These films began with epitaxial growth which broke down 
to microcrystalline growth at thicknesses between 1 – 2 μm.  Although the microstructure 
of these films is mostly microcrystalline, the lifetimes are microseconds long.  The 
lifetimes for films on Si(100) range from 5.7 to 14.8 μs while those for films on SNSPE 
templates range from 5.9 to 19.3 μs under low level injection conditions, as summarized 
in Figures 8 and 9.  Residual nickel present in the SNSPE templates does not significantly 
affect the lifetime of films grown on SNSPE templates, making the growth of epitaxial 
layers by HWCVD on SNSPE templates a viable strategy for the fabrication of thin film 
photovoltaics.   

C 

 

d 

Fig. 8.  LLI and HLI minority carrier lifetimes of HWCVD films on Si(100) as measured 
by RCPCD. The dashed and dotted lines represent the LLI and HLI lifetimes, 
respectively, of the bulk Si(100) substrate.  

 
Fig. 9.  LLI and HLI minority carrier lifetimes on SNSPE templates. 
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Hot Wire CVD – A Simple Model 

The epitaxial growth and growth breakdown trends for HWCVD growth are 
consistent with a simple model correlating epitaxial growth breakdown with surface 
oxidation.  Starting with an initial hydrogen surface coverage dependent only on the 
substrate temperature determined from temperature-programmed desorption data23, the 
model determines the steady-state surface hydrogen coverage by balancing thermal 
desorption of surface hydrogen with adsorption and abstraction of surface hydrogen by 
atomic hydrogen produced by the hot wire.   Oxygen atom can be incorporated into the 
film at any empty sites.  We used the model to determine the amount of oxygen deposited 
during the growth of the first monolayer of silicon for a given growth temperature as a 
function of dilution ratio R (R=H2/SiH4) at constant pressure, assuming that all silicon 
atoms incident on the substrate contribute to growth.19

 
Figure 10 shows that the maximum silicon to oxygen ratio decreases with temperature 

for between 311°C and 520°C at a hydrogen dilution ratio of 50:1. This may explain the 
decrease in epitaxial thickness with temperature in Fig. 6.  
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Fig. 10.  Silicon to oxygen ratio in the first monolayer of growth as a function of 
substrate temperature for dilute silane growth at 50:1 hydrogen dilution and epitaxial 
thickness. 

 

The dependence of the epitaxial thickness on the silicon to oxygen ratio is difficult to 
quantify. However, it is known that, during MBE crystal growth, impurities at the 
growing interface can lead to surface roughening and subsequent epitaxial breakdown 
through the formation of voids which may lead to twinning and surface facets24. For our 
dilute silane experiments, a decrease in the maximum silicon to oxygen deposition ratio 
with temperature, as predicted by the model, may explain the observed decrease in 
epitaxial thickness with temperature.   
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Figure 10 may also give some qualitative insight into the amorphous/protocrystalline 

peak at intermediate dilution for growth with pure silane.  In this simulation the 
deposition pressure is changed along with the dilution ratio in order to match the 
deposition conditions in Table 4. The Si/O ratio is highest at the two extremes of the 
deposition conditions: low dilution ratio, low pressure; and high dilution ratio, high 
pressure.  The high Si/O ratio correlates with a higher degree of crystallinity.  A low Si/O 
ratio leads to the amorphous and ultimately protocrystalline film. Through these 
experiments and simulations we are working toward determining the optimal deposition 
parameters for epitaxial growth with polycrystalline breakdown. 
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Fig. 11.  Silicon to oxygen ratio in the first monolayer of growth as a function of R for 
pure silane growth using the deposition conditions in Table 4 along with the Raman 
crystalline %. 

 
We have explored the phase space of HWCVD growth with dilute and pure silane at 

various substrate temperatures and dilution ratios.  The complex interaction between 
deposition parameters can be qualitatively explained by an oxidation model. Twinned 
epitaxial growth of Si to thicknesses over 1 µm is observed with polycrystalline 
breakdown under dilute conditions. 

The minority carrier lifetimes of nearly-intrinsic epitaxial/microcrystalline films 
grown on Si (100) by HWCVD range from 5.7 to 7.5 µs. The lifetimes of films grown 
under the same conditions on SNSPE templates range from 5.9 to 19.3 µs, making them 
suitable for incorporation into photovoltaic devices. In particular, residual nickel from the 
SNSPE templates does not appear to be significantly detrimental to the lifetime of films 
grown on these templates. If the mobilities in these films are also high, it is possible that 
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HWCVD epitaxy on large-grained SNSPE templates could be a viable strategy for the 
fabrication of thin-film photovoltaics. 
 

HWCVD Si Film Passivation 
Under this subcontract, we investigated thin film cell structures fabricated on 

polycrystalline silicon templates with grain sizes on the order of ten microns on glass 
coated with a transparent, conductive oxide (TCO).  Templates were formed by a solid-
phase crystallization process called selective nucleation solid phase epitaxy (SNSPE)15.  
The template layer is designed to serve as the n+ layer of the device, and as the epitaxial 
template for n and p+ layers grown by HWCVD, using phosphine and trimethyl boron as 
dopants (Fig. 12).   As a simple test structure for the passivation studies, we fabricated, n-
type HWCVD Si films on p-type Si(100) substrates, in order to study both the 
microstructure and electrical properties of the film using a single crystal template, 
without the complications created by the large-grained polycrystalline template seed 
layer. 

Grain Boundaries 
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Fig. 12.   Schematic of proposed photovoltaic device incorporating epitaxial Si growth on 
a large-grained polycrystalline template fabricated by SNSPE. 
 

Microstructure and Passivation Effects on Open Circuit Voltage  
Hydrogen-passivated silicon films grown via hot wire chemical vapor deposition 

(HWCVD) are promising candidates for polycrystalline Si solar cell absorber layers.  We 
studied the correlation of film microstructure and passivation with open-circuit voltage, a 
key cell electrical characteristic, for varying growth conditions and post-deposition 
treatments.  We examined the role of hydrogen-dilution on growth morphology and Voc. 
Importantly, the results indicate effective hydrogen passivation in the ‘bulk’ of HWCVD-
deposited Si films to the extent that the Voc is highly sensitive to surface passivation.  
Surface passivation, rather than bulk passivation, is thus identified as the limiting factor 
in achieving higher Voc; hence we have investigated the effect of several post-deposition 
passivation treatments on surface passivation.  Our goal in this work was to elucidate the 
role of hydrogen in HWCVD Si film bulk passivation, crystalline fraction, growth 
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morphology, and its relation to film electrical properties. Varying growth conditions and 
observing the subsequent effect on microstructure and open-circuit voltage enables us to 
optimize these characteristics for polycrystalline Si thin film solar cell absorber 
applications.   
 In these experiments, silicon films were grown on CZ-grown Si(100) via HWCVD, 
with either undoped or n-type with phosphine (5% in SiH4) as the dopant gas, at substrate 
temperatures varying from 230 C to 350 C.  Silane gas (1% in Ar) is diluted with 
hydrogen in various ratios of R = H2/SiH4.  We used tungsten filaments operated at 
T~1700 ° C to catalyze SiH4 decomposition.  Open circuit voltage measurements were 
performed for n-type films with phosphorus doping of 1 x 1015 cm-3 grown on CZ-grown 
p-type Si (100) with boron doping of 1 x 1016 cm-3.  Steady-state Voc

25 measurements 
were performed on unmetallized HWCVD n-Si films/p-Si (100), and growth morphology 
was observed by cross-sectional transmission electron microscopy.   

HWCVD Growth and Morphology  
 The structure of as a function of hydrogen dilution was investigated by electron 
microscopy, which reveals an increase in porosity for growth in the range 230 °C < T < 
350 °C as dilution is decreased from R = 480 to R = 30, for a total pressure of P = 120 
mTorr.  The resulting images reveal a more rapid breakdown to a porous microstructure 
as R decreases, as shown in Fig. 13.  The pore-permeated microstructure originates 
during film growth and pores are oriented perpendicular to the surface.  Although films 
exhibiting this porous microstructure would be suspected to be prone to oxidation, 
Raman measurements taken after ambient exposure for ~10 weeks did not indicate oxide 
formation.  
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Fig. 13.  Cross-sectional TEM of growth morphology at various hydrogen dilutions 26. 

 

Open-Circuit Voltage 
 An increase in open-circuit voltage with hydrogen dilution is observed for 1000 nm 
thick films grown with a hydrogen dilution in the range 0 < R < 244, as shown in Fig. 14.    
For R = 244, an initial Voc of 400 mV was observed, but Voc decreased to 290 mV after 
one week of ambient exposure.  Another set of films 885nm thick were grown with a 
hydrogen dilution ranging from 45 < R < 180, with a similar increase in Voc observed 
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with H-dilution.  The highest stabilized Voc of 350 mV was observed for 885 nm thick 
films deposited at R=90. We attribute the higher Voc to lower film porosity compared to 
films grown at lower dilution, which leads to less surface recombination due to the 
smaller surface area.  As the thickness of the film increases, dense epitaxial growth is 
observed to transition into a porous microstructure.  For this reason, we do not observe a 
maximum stabilized Voc for the thickest film.   

The open-circuit voltage of both the 125 nm and 885 nm films was measured initially 
and after 1 week in ambient air, and significant changes are observed27. The rise in Voc 
over time in ambient air indicates sufficient passivation of the bulk of the film due to high 
hydrogen content during growth.  We attribute this change in Voc to a change in surface 
passivation during ambient oxidation, suggesting that hydrogen passivation of defects in 
the ‘bulk’ of the film is sufficient to prevent bulk recombination from limiting Voc. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.  Voc with hydrogen dilution immediately after deposition and after one week in 
ambient air.  
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Surface Passivation 
 The results of various surface treatments are shown in Fig 15.  Annealing at 900 C 
causes a dramatic decrease in Voc that we attribute to hydrogen evolution from the film.  
Chemical oxidation by liquid immersion in H2O: H2O2: NH4OH during an RCA II clean 
results Voc comparable to those for films that undergo ambient air oxidation. 

We investigated the correlation between microstructure and surface passivation on 
Voc in low temperature HWCVD polycrystalline silicon thin films.  Film porosity 
increases with decreasing hydrogen dilution for films grown under high hydrogen 
dilution.  In general, epitaxial growth and low porosity correlate with higher Voc.  Results 
from post-deposition treatments show promising improvements in Voc with RCA 
oxidation. A decrease in Voc is seen after high temperature anneals, suggesting loss of 
bulk hydrogen passivation during high temperature annealing.  These results clearly 
demonstrate the ability to achieve high Voc for well-passivated films, and future work 
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will address achieving stable passivation for HWCVD Si polycrystalline films with high 
initial Voc. 
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Fig. 15.  Open-circuit voltage with hydrogen dilution after various post-deposition 
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