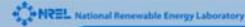
A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Innovation for Our Energy Future

CLOUDY SKY VERSION OF BIRD'S BROADBAND HOURLY CLEAR SKY MODEL

Daryl R. Myers National Renewable Energy Laboratory 1617 Cole Blvd Golden CO 80401 daryl_myers@nrel.gov

SOLAR 2006 July 8-13, 2006 Denver, Colorado Renewable Energy Key to Climate Recovery


NREL/PR-581-40115

NREL is operated by Midwest Research Institute - Battelle

Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.

Acknowledgments

The pioneering work of Dr. Richard Bird has stood the test of time, and still reverberates in the solar modeling community.

Dr. Richard E. Bird ★ 1 February 1942

† 18 April 2002

This work is but an editing of his contribution.

Objective:

Produce "all sky" modeled hourly solar radiation

Based on observed cloud cover data Using a SIMPLE model

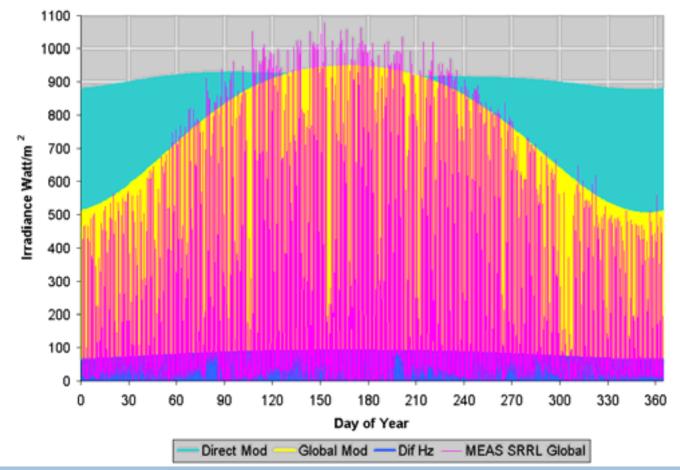
Bird's Clear Sky Model

SER

Address of the Address of the Polynomy 1981 sic Equations A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces $X_{O} = U_{O}M$ $X_{\omega} = U_{\omega}M$ Energy Research Institute

Table 2-6. EOUATIONS FOR TOTAL DOWNWARD IRRADIANCE FOR THE BIRD MODEL

- $I_{A} = I_{0} (\cos Z) (0.9662) T_{R}T_{0}T_{UM}T_{w}T_{A}$
- $I_{as} = I_0 (\cos Z) (0.79) T_0 T_w T_{UM} T_{AA}$ $[0.5 (1 - T_R) + B_a (1 - T_{AS})]/[1 - M + (M)^{1.02}]$
- $I_{T} = (I_{d} + I_{as})/(1 r_{g}r_{s})$


Transmission Equations

- $T_p = \exp \left[-0.0903 (M')^{0.84} [1 + M' (M')^{1.01}]\right]$ $T_0 = 1 - 0.1611 X_0 (1 + 139.48 X_0)^{-0.3035}$ $-0.002715 \text{ x}_{0} (1 + 0.044 \text{ x}_{0} + 0.0003 \text{ x}_{0}^{2})^{-1}$ $T_{UM} = \exp \left[-0.0127 (M')^{0.26}\right]$ $T_w = 1 - 2.4959 X_w [(1 + 79.034 X_w)^{0.6828} + 6.385 X_{..}]^{-1}$ $T_A = \exp \left[-\tau_A^{0.873} (1 + \tau_A - \tau_A^{0.7088}) M^{0.9108}\right]$ $\tau_A = 0.2758 \tau_{A,0.38} + 0.35 \tau_{A,0.5}$
- $T_{AA} = 1 K_1(1 M + M^{1.06})(1 T_A)$
- $T_{\Delta S} = T_{\Delta}/T_{\Delta \Delta}$
- $r_s = 0.0685 + (1 B_g)(1.0 T_{as})$
- $M = [\cos Z + 0.15(93.885 Z)^{-1.25}]^{-1}$
- M' = MP/1013

20 and

8760 Hour Clear Sky Profile (Climatological Aerosol, Water, Ozone) and Real Data

The (Long Standing) Problem--Clouds

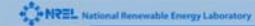
Cloud Type?

Layers?

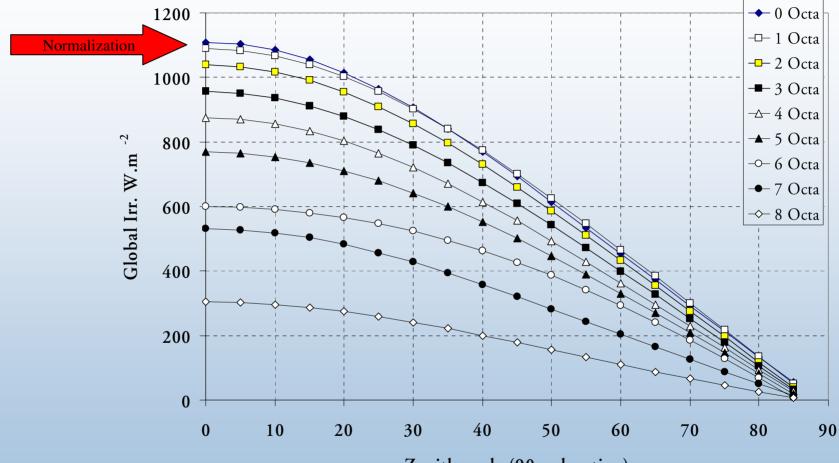
Height?

Thickness?

Density? Distribution?

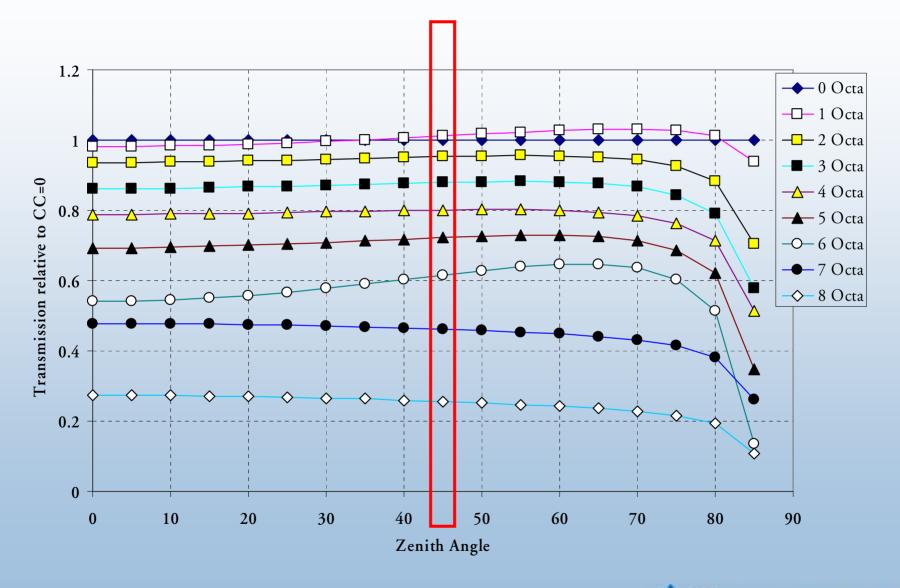

Empirical: Measured solar data and cloud information

<u>Stochastic</u>: Need statistics!



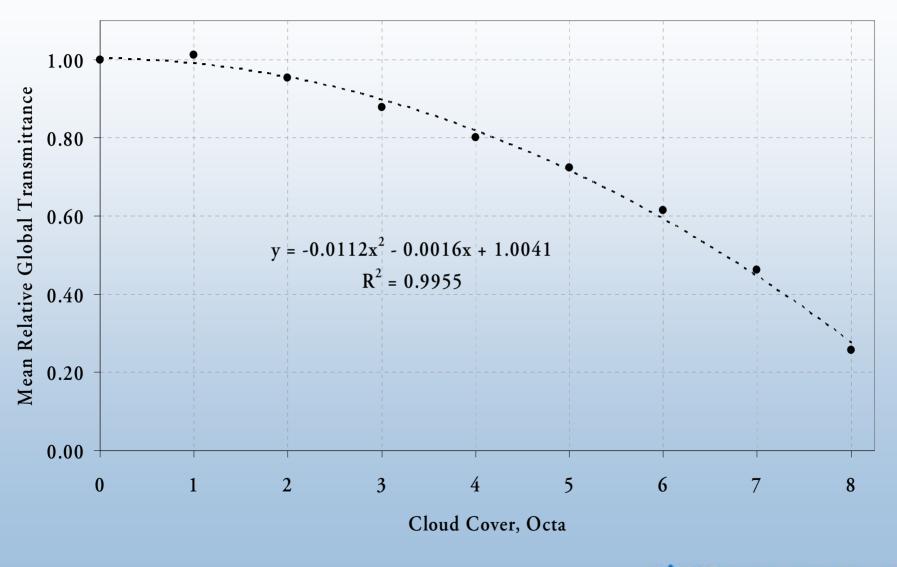
<u>"Fuzzy" and AI Models</u>: Require "training" with real data

Nielsen's Irradiance Vs CC Reported by Ehnberg



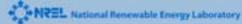
Zenith angle (90 - elevation)

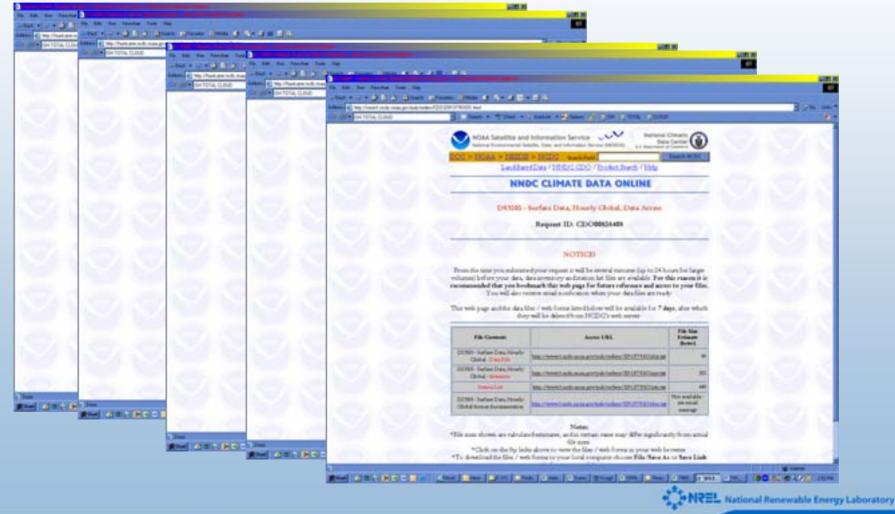
Nielsen, L., et al. Net Incoming Radiation Estimated from Hourly Global Radiation and/or Cloud Observations. *Journal of Climatology*, I, p. 225-272, 1981


Ehnberg, J.S.G., and M.H.J. Bollen, Simulation of Global Solar Radiation Based on Cloud Observations, Solar Energy Vol 78, p. 157-162, 2005

Normalized Cloud Transmittance Vs Z and CC

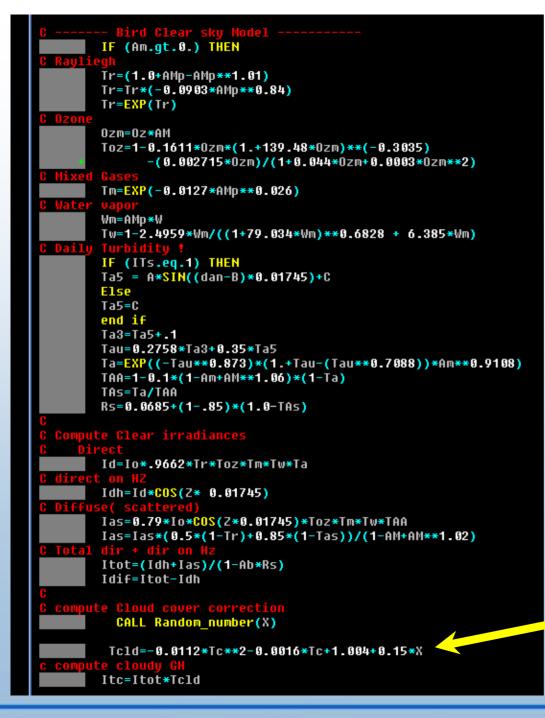
NREL National Renewable Energy Laboratory


45° Z Normalized CC Transmittance


Let's Try It with Real Data: 30 Sites, 2 Years Measured CC & Solar Data

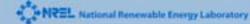
National Climatic Data Center Integrated Surface Hourly (ISH) Online Data

- http://lwf.ncdc.noaa.gov/oa/mppsearch.html
- http://www5.ncdc.noaa.gov/cgi-bin/script/webcat.pl
- http://hurricane.ncdc.noaa.gov/pls/plclimprod/poemain.accessrouter?datasetabbv=DS3505



Excel Model Implementation

AA	AG	AH			AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX
		2 Square		Rand Scale >	-0.05	NOTE:												
		6 Linear																
_		Cons ar																
	0.4		/8 Transmitt	ance														
	Measured	inte p	olated				MEASURE) DATA										
	ISH Total Cloud	тот		Tg(N)	G" เ GN	DfromG!	Global Gro	Direct Gro	und	Dec Date	G-Mod-err							
	-9900		0	0.986	0		4	0		1.042	1	Mod Avg	158.0407					
	0)	0	0.995	0		0	0		1.083		Meas Avg	153.2398					
	8	3	8	0.269	0		0	0		1.125					May be edite	to remove		
	7	7	7	0.435	0		0	0		1.167		Dif Avg	-14%		months large	missing data		
	2	2	2	0.918	0		0	0		1.208								
	7	7	7	0.418	0		0	0		1.250					Model(AK)	Meas(AM)	Delta % of N	MEAS
	()	0	0.986	0		0	0		1.292				Jan	45.2	40.4	-12.0	
	()	0	0.966	0		8.3	0		1.333	1			Feb	98.7	91.1	-8.4	
	0)	0	0.977	108.2922		-9900	0		1.375	1.010939			Mar	132.9	157.0	15.4	
	4	4	4	0.817	201.9983		319.4	0		1.417	0.36757			Apr	204.5	187.5	-9.1	
	7	7	7	0.421	145.699		322.2	0		1.458	0.547799			May	230.2	242.0	4.9	
	2	2	2	0.908	360.0676		361.1	0		1.500	0.002859			Jun	270.7	266.9	-1.4	
	0)	0	0.964	380.7627		447.2	0		1.542	0.148563			Jul	269.9	260.0	-3.8	
	()	0	1.001	341.4476		380.6	0		1.583	0.10287			Aug	214.4	210.3	-1.9	
	7	7	7	0.409	98.1732		233.3	0		1.625	0.579198			Sep	173.3	164.5	-5.3	
	()	0	0.961	98.10479		102.8	0		1.667	0.045673			Oct	99.4	91.6	-8.5	
	()	0	0.997	0		5.6	0		1.708	1			Nov	75.7	77.9	2.8	
	()	0	0.993	0		0	0		1.750				Dec	55.8	31.6	-76.6	
	()	0	0.993	0		0	0		1.792								
	0)	0	0.968	0		0	0		1.833				TOTAL	1870.8	1820.9	-2.7	
	0)	0	0.957	0		0	0		1.875								
	()	0	0.978	0		0	0		1.917								
	0.2		n	0.965	0		Ω	Π		1 958							Laboratory	

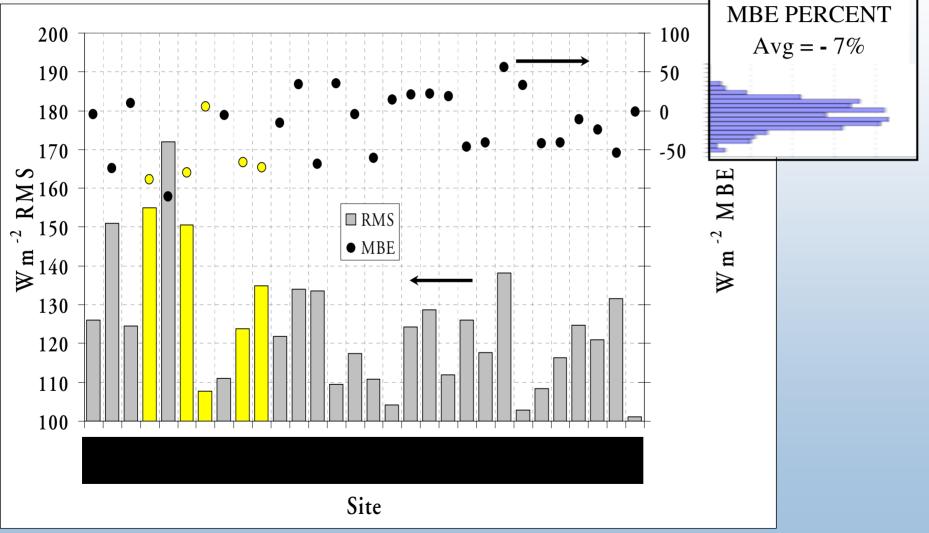

e Energy Laborator

1000

FORTRAN Program Process 30 Sites

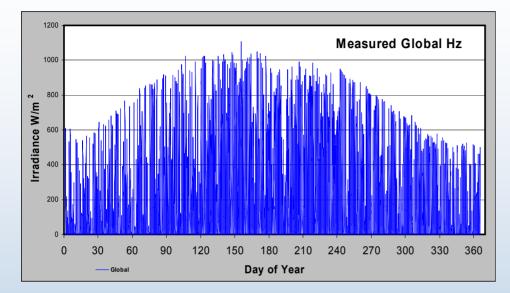
INPUTS Latitude Longitude Year Month Day Hour Pressure Aerosol OD @ 550 nm AOD @ 380 nm **Total Water Vapor Total Ozone** Albedo **Total Cloud Cover (8ths)**

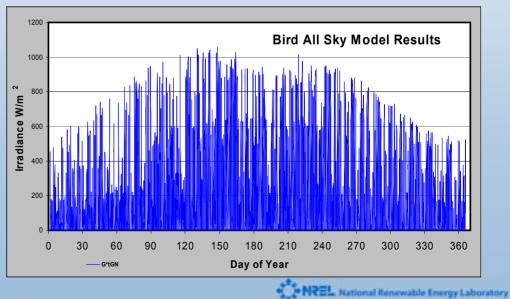
	Hourly mean Global Wm²	MBE Wm²	RMS Wm²	MBE %	RMS %	# Hours
FSE	357.5	-2.9	129.4	-0.8	36.2	8458
TAL	341.7	-74.8	161.6	-21.9	47.3	7977
CLE	341.7	13.3	132.6	3.9	38.8	9245
OVE	323.3	-91.2	163.5	-28.2	50.6	9590
EDI	353.0	-112.7	177.9	-31.9	50.4	9553
COR	345.5	-82.7	158.8	-23.9	46.0	9581
LAR	401.5	6.6	112.0	1.6	27.9	9161
AUS	343.7	-5.5	115.4	-1.6	33.6	9336
DEL	378.6	-69.8	132.6	-18.4	35.0	9299
ABI	385.9	-75.3	142.1	-19.5	36.8	9577
ELP	391.9	-24.4	161.0	-6.2	41.1	5890
SGP	355.6	35.5	140.3	10.0	39.4	9545
CAN	380.6	-70.6	140.1	-18.5	36.8	9485
ALB	427.2	36.1	116.4	8.4	27.3	8435
DES	426.9	-5.3	122.0	-1.2	28.6	9618
HAN	393.3	-62.7	114.1	-15.9	29.0	8529
STE	305.9	15.2	113.5	5.0	37.1	8472
BLU	305.2	23.6	131.0	7.7	42.9	9481
SRR	345.8	21.9	135.8	6.3	39.3	9587
PEN	283.9	21.0	121.6	7.4	42.8	9575
ANY	282.2	-53.7	143.0	-19.0	50.7	8140
BON	308.9	-42.9	127.5	-13.9	41.3	9488
SAL	357.3	60.1	149.9	16.8	41.9	8531
KLA	315.1	28.8	102.6	9.1	32.6	5666
MAD	287.2	-45.6	121.0	-15.9	42.1	8960
BUR	347.4	-43.6	121.4	-12.5	35.0	9597
EUG	283.5	-8.9	132.3	-3.2	46.7	9435
BIS	294.4	-27.5	132.7	-9.4	45.1	8494
FTP	291.0	-60.7	146.1	-20.9	50.2	9620
SEA	240.1	0.2	113.2	0.1	47.1	8574
MEAN	339.9	-23.3	133.7	-6.9	40.0	

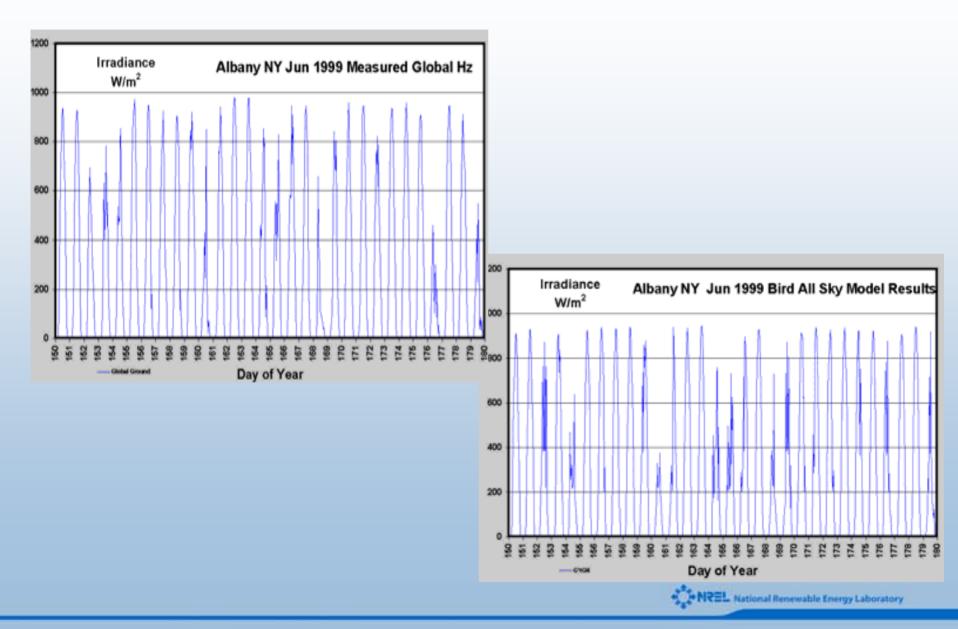

Hourly Mean Errors (ANNUAL)

MBE 23 Wm⁻² -80 Wm⁻² <MBE<+60 Wm⁻² RMS ~ 133 Wm⁻²

MBE ~ - 7%, -32%<MBE<+17% RMS ~ 40%

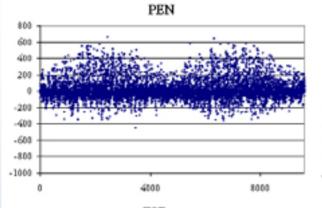


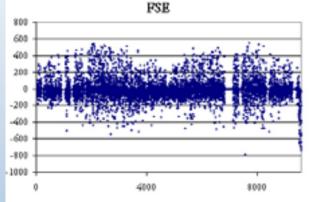

Mean Bias and RMS Monthly Hourly Averages 30 Sites

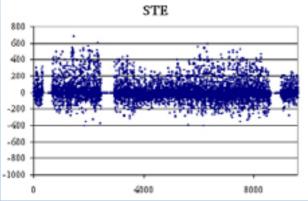


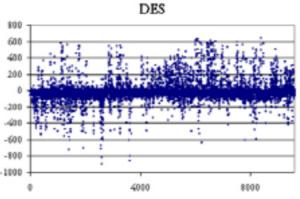
1999 Albany NY

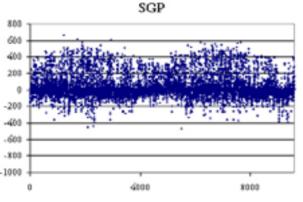
June 1999 Albany NY

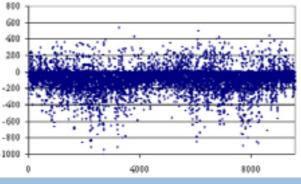



Albany 1999 Monthly Mean Hourly Bias Errors

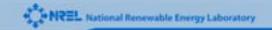

	Measured Monthly Hr Mean	Modeled Monthly Hr mean	MBE % of MEAS
Jan	45.4	40.4	-12.3
Feb	99.0	91.1	-8.6
Mar	133.0	157.0	15.3
Apr	204.5	187.5	-9.1
Мау	230.5	242.0	4.7
Jun	271.2	266.9	-1.6
Jul	269.2	260.0	-3.5
Aug	214.7	210.3	-2.1
Sep	173.8	164.5	-5.7
Oct	99.6	91.6	-8.7
Nov	75.7	77.9	2.7
Dec	55.7	31.6	-76.3
TOTAL	1872.3	1820.9	-2.8



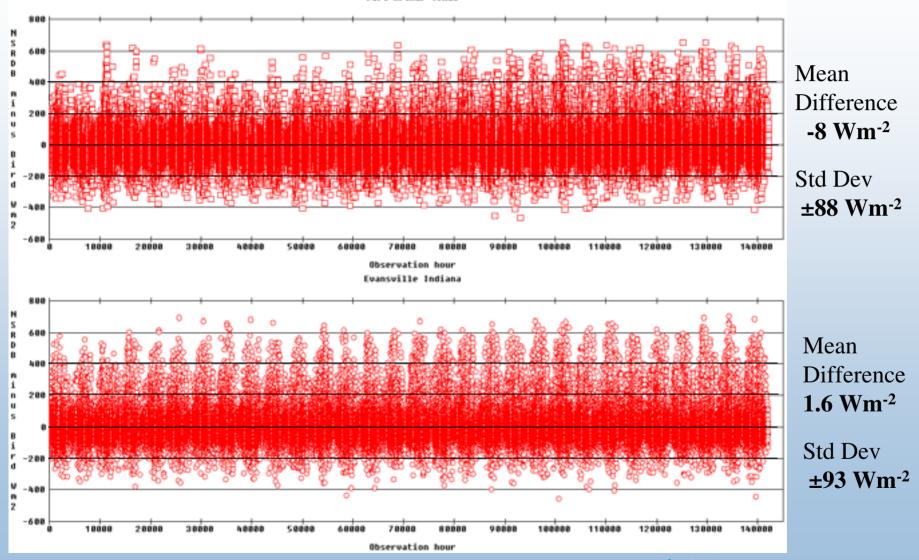

Seasonal Bias Errors (1999-2000)



COR

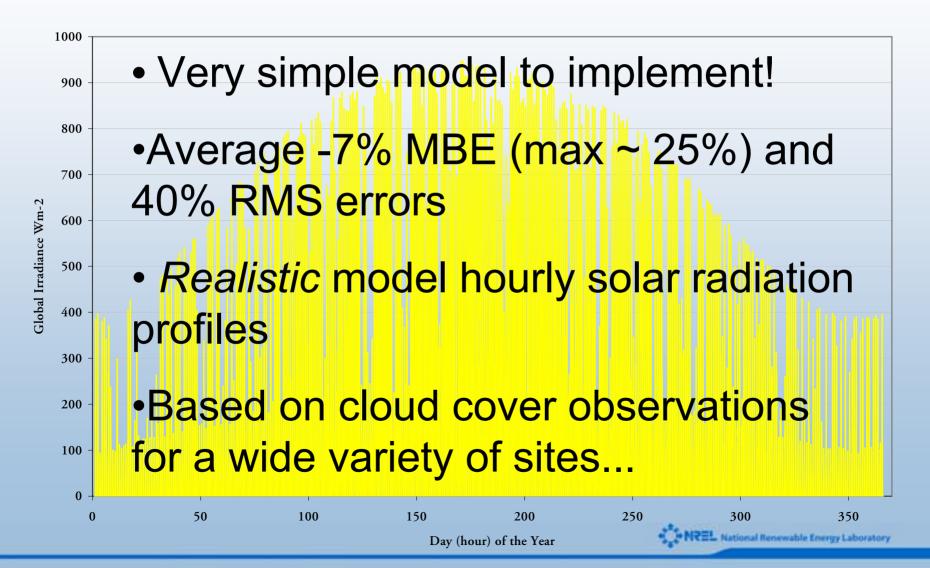

? From ? NSRDB Daily Aerosol Optical Depth "Annual Sine Curve"

Climatological (Long Term) Water Vapor & Imprecision in Model




Compare NSRDB/METSTAT Data and Cloudy Sky Model Results

- Selected 30 Years of Hourly Global Hz Irradiance, Total CC (10ths)
- Convert CC 10ths to Octas
- Compute Bird Clear Sky Irradiance – USE NSRDB (daily) aerosol, (hourly) water vapor
- Modify with Cloud Transmittance
- Compare with NSRDB Results
 - Remember: NSRDB hourly data are STATISTICAL for 95% of NSRDB—hour by hour matching is unlikely; but MONTHLY MEANS agree well with measured data


Port Arthur Texas & Evansville Indiana Hourly Simulation 30 Years

Modeled Global Horizontal G*tGN

