Innovation for Our Energy Future

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment

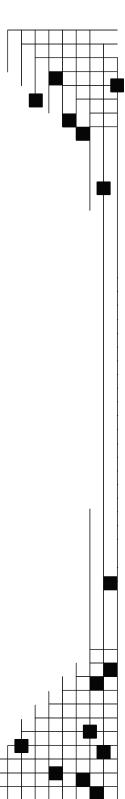
Task 2: Gas Cleanup Design and Cost Estimates – Wood Feedstock

Nexant Inc. San Francisco, California Subcontract Report NREL/SR-510-39945 May 2006

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment

Task 2: Gas Cleanup Design and Cost Estimates – Wood Feedstock

Nexant Inc. San Francisco, California


NREL Technical Monitor: Kelly Ibsen Prepared under Subcontract No. ACO-5-44027

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

Subcontract Report NREL/SR-510-39945 May 2006

This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062

phone: 865.576.8401 fax: 865.576.5728

email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from: U.S. Department of Commerce

National Technical Information Service 5285 Port Royal Road

Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900

email: orders@ntis.fedworld.gov

online ordering: http://www.ntis.gov/ordering.htm

Contents

Section	s	Page
Execut	ive Summary	ES-1
Introdu	action and Methodology	1
Section	1 Process Selection Rationale	1-1
1.1	Introduction	1-1
1.2	Process Description and Rationale	1-2
1.2	2.1 Low-Pressure Syngas Process Description	1-3
1.2	2.2 High-Pressure Syngas Process Description	1-5
1.3	Discussion	1-6
1.3	3.1 Technologies Not Chosen	1-6
Section	2 Equipment Design and Cost Estimates	2-1
2.1	Introduction and Methodology	2-1
2.2	Key Design Assumptions	2-2
2.2	2.1 Sulfur and CO ₂ Removal	2-2
2.2	2.2 Tar Reforming	2-2
2.2	2.3 Cyclones	2-3
2.2	2.4 Heat Integration	2-3
2.2	2.5 Methanol Compressor	2-3
2.3	Operating Costs and Utility Requirements	2-3
2.4	Differences with NREL Biomass to Hydrogen Design	2-6
2.4	1.1 Added Equipment to Chemicals Design	2-6
2.4	1.2 Increase in Steel Price	2-7
2.4	Engineering Assumptions	2-7
2.5	Changing Flows, Conditions, and Compositions	2-9
2.5	5.1 Flowrate Impacts	2-9
2.5	5.2 Composition Impacts	2-12
2.6	Follow-Up and Areas for Further Study	2-12
Section	3 Labor Requirements	3-1
3.1	Summary	3-1
3.2	Labor Requirements	3-1
3.3	Differences with Emery Energy 70 MWe Case	3-4
3.4	Differences with NREL Biomass to Hydrogen Case	3-4

Sections	8		Page
Append	lix A	High-Pressure Syngas Design Case PFDs	A-1
Append	lix B	Low-Pressure Syngas Design Case PFDs	B-1
Append	lix C	Equipment Lists and Data Sheets	C-1
Append	lix D	Gas Cleanup Technologies Evaluated	D-1
D.1	Intro	duction	D-1
D.2	Parti	culate Removal Technologies	D-1
D.3	Tar F	Removal Technologies	D-5
D.4	Acid	Gas Removal Technologies	D-7
D.5	Amn	nonia, Alkali, and Other Contaminants	D-13

Tables and Figures

Table A Syngas Clean-Up Case Summary	ES-2
Table 1-1 Syngas Compositions and Operating Parameters	1-1
Table 1-2 Gas Cleanup Requirements	1-2
Figure 1-1 General Syngas Clean-Up Process Flow	1-2
Table 1-3 Tar Reformer Performance	1-3
Table 2-1 Catalyst and Chemical Requirements	2-4
Table 2-2 High-Pressure Case Utility Requirements	2-5
Table 2-3 Low-Pressure Case Utility Requirements	2-5
Table 2-4 Examples of Typical Exponents for Equipment Cost Versus Capacity	2-11
Table 3-1 Labor Costs	3-3
Figure D-1 Principle of Barrier Filters	D-2
Table D-1 Comparison of Syngas Reforming Process Technology	D-7
Figure D-2 Typical Amine System Flow Diagram	D-8
Figure D-3 Typical Physical Solvent System Flow Diagram	D-10
Figure D-4 Typical LO-CAT TM System Flow Diagram	D-11
Figure D-5 Traditional ZnO Purification System	D-12

Executive Summary

As part of Task 2, Gas Cleanup and Cost Estimates, the team investigated the appropriate process scheme for treatment of wood derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the BCL gasifier, and a high-pressure, direct system using GTI gasification technology, were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by NREL. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

The first task explored the different process options available for the removal of the main process impurities, including particulates, sulfur, carbon dioxide, tar, ammonia, and metals. From this list, selection of commercial technologies appropriate for syngas clean-up was made based on the criteria of cost and the ability to meet the final specifications. Preliminary flow schemes were established and presented to NREL; after discussion and modification, final designs, including unit sizes, energy use, capital and operating costs, and labor requirements, were developed. Finally, Nexant performed an analysis to determine how changes in syngas flowrates and compositions would impact the designs, for future reference as the plant size changes.

The technologies chosen for both cases did not differ considerably. Each case possesses the following pieces of equipment:

- Cyclones for particulate removal
- Tar cracking for the removal of heavy and light hydrocarbons. Steam is injected in varying amounts into the tar cracker to set the appropriate hydrogen to carbon monoxide ratio.
- Syngas cooling, necessary for downstream sulfur treatment, and a water quench/venturi scrubber for ammonia and trace contaminant removal
- Amine treatment for sulfur and carbon dioxide removal
- Zinc oxide beds for additional sulfur removal down to the low levels required for fuels synthesis
- Liquid phase oxidation of acid gas for sulfur recovery

The low-pressure gasifier case required the use of a process gas compressor to raise the gas pressure to the level appropriate for downstream treatment and product synthesis. Information was also provided for the level of clean syngas compression necessary to prepare both cases for methanol synthesis.

The results of the analysis for both cases can be seen in Table A below, with information on the capital and operating costs:

TABLE A SYNGAS CLEAN-UP CASE SUMMARY

	Low-Pressure BCL Gasifier	High-Pressure GTI Gasifier
Wood Feedrate (MTPD)	2,000	2,000
Syngas Rate (lb/hr)	316,369	418,416
Total Installed Cost (\$MM)	109.4	76.5
Power Required (MW)	18.5	(5.2)
Net Steam Required (lb/hr)	44,000	114,000
Water Required (GPM)	37,806	25,454
Natural Gas (MMSCFD)	7	8
Catalysts and Chemicals (\$/day)	1,931	1,457

The bulk of the cost difference between the two cases is due to the process gas compressor required in the low-pressure case. The two cases use similar equipment for all other steps of the process; although the cases had different gas flowrates and compositions, the equipment impact is small relative to that of the process gas compressor. While these results imply that direct gasification is preferred, this study did not take into account other differences in the two process schemes, such as the potential need for an oxygen plant in the high-pressure to chemicals case.

The team also compared the clean-up system design and costs versus the design developed by NREL for a recent biomass to hydrogen study. The cost for the clean-up section of the biomass to chemicals designs is more expensive due to three main reasons: more equipment necessary in the chemical production designs, the increase in steel prices from 2002 to 2005, and different engineering assumptions made in the chemicals production case. The main engineering difference is the cost assumed for the process gas compressor in the low pressure case; a larger compressor and selection of a different design type increases the installed cost by \$25MM versus the NREL design. In addition, gas clean-up cost assumptions made by NREL from previous studies likely underestimated the cost of the tar cracker and heat exchange equipment.

This study updates previous NREL investigations by providing the most up-to-date information for appropriate technologies and their respective costs. Future studies should focus on the following areas to further define suitable technologies and confirm costs:

- Alternatives for Tar Removal: Further study and analysis should be performed to validate the methods used by the team. In addition, alternative tar removal technology should be considered, including cracking within the gasifier.
- Process Integration, Gasification Systems and Biorefinery: Integration of the cleanup section with the other parts of the gasification plant will provide a better picture of the overall plant costs.
- Alternate CO₂/Sulfur Removal Steps: A cost comparison of amine versus physical solvents would provide additional data to confirm the appropriate use of amine in this design Advanced technologies for acid gas removal, such as warm gas clean-up, should also be considered.

• Other Impurities in the Syngas: If it is deemed that the level of items such as metals and halides entering the scrubber will not adversely impact the FT or methanol catalysts, this step could be removed.

Introduction and Methodology

This study provides designs and costs for cleaning wood derived syngas in preparation for feed to liquid fuel synthesis units. Two different starting conditions, one with syngas derived from a low-pressure, indirect gasifier, and one from a high-pressure, direct gasifier, were evaluated. The goal was to provide NREL with a complete design package, including process flow diagrams, equipment specification sheets, mass and energy balances, capital and operating costs, and labor requirements, that can be used to evaluate the feasibility of biomass to chemicals technologies. The study also addressed how the designs would be impacted by changing flowrates and syngas compositions, so that the designs could be adapted to other process conditions.

The work was divided into three main task areas. The first Subtask (2.1) presented a list of possible gas clean-up technologies, with recommendations provided for the most suitable ones for additional analysis. The results of this study can be seen in Appendix D. Next, preliminary process flow diagrams were developed, along with an initial material balance (Subtasks 2.2.1 and 2.2.2). This was reviewed with NREL, and modifications made before the final design work began. The final phase consisted of performing equipment sizing, development of costs, and scaling analysis (Subtasks 2.2.3 through 2.2.7).

A variety of resources were used throughout the project to produce the final designs. In gathering the initial technology data, previous team studies, literature reviews, vendor information, and NREL input were all used to establish the items for consideration. Vendors and R&D facilities were especially helpful in providing data for novel technologies, such as tar cracking and liquid phase sulfur oxidation. Team members involved in biomass gasification, GTI and Emery Energy, provided valuable insight on reliability and feasibility issues.

HYSYS was used for modeling the overall process, with vendor input for specialty equipment. Design and performance of the amine system, LO-CATTM unit, tar cracker, and process gas compressor were provided by vendors and estimated through other modeling work. All other process equipment was sized by the HYSYS program. Since the basis for the tar cracker, the NREL TCPDU, is not commercial, data from NREL was used, along with assumptions for bed fluidization needs and heat transfer requirements to produce a size estimate. Greater detail for the assumptions made can be found in Section 2.

Costing was performed in a similar fashion as design, with commercially available software, ICARUS, used for much of the equipment sized using HYSYS. All cost estimates use a second quarter 2005 basis. Quotes were obtained from vendors for unique and capitally intensive items, such as the process gas compressor, cyclones, ZnO beds, and LO-CATTM unit. Industry derived cost curves were used for the amine system and as a check on other process items. Operating costs were developed from vendor supplied information and the energy balance. Finally, labor requirements are derived from a scale-up of a detailed study by Emery Energy specific to biomass gasification. For all results, comparisons were made throughout the study to results from previously developed NREL reports.

1.1 INTRODUCTION

The initial task for the Nexant team was to identify and evaluate all commercially available technology for clean-up of wood derived syngas. The technology list, with information on operating size ranges and conditions, materials of construction, and cleanup parameters, can be seen in Appendix D. After a review of technology options with NREL, flow schemes were developed for both the high and low pressure cases. The result of this analysis and justification for the technologies chosen is detailed in this section.

The compositions of the syngas from the gasifiers and the cleanup requirements are listed in Tables 1-1 and 1-2 below¹. Each case being evaluated assumed a wood feedrate of 2,000 metric tonnes per day (MTPD).

TABLE 1-1 SYNGAS COMPOSITIONS AND OPERATING PARAMETERS

	Syngas from BCL Gasifier	Syngas from GTI Gasifier
Temperature, °F	1,598°F (870°C)	1,598°F (870°C)
Pressure	33 psia (1.6 bar)	460 psia (32 bar)
Steam/bone dry feed	0.4 lb/lb	0.76 kg/kg
Compositions	Mol% (wet)	Mol% (wet)
H ₂	12.91	13.10
CO ₂	6.93	19.40
CO	22.84	8.10
H ₂ O	45.87	50.70
CH ₄	8.32	7.80
C ₂ H ₂	0.22	
C ₂ H ₄	2.35	0.10
C ₂ H ₆	0.16	0.20
C ₆ H ₆	0.07	0.30
Tar (C ₁₀ H ₈)	0.13	0.10
NH ₃	0.18	0.10
H ₂ S	0.04	0.04
Gas Yield	0.04 lbmol of dry gas/lb bone dry feed	0.05 lbmol of dry gas/lb bone dry feed
Char Yield	0.22 lb/lb bone dry feed	0.0514 lb/lb bone dry feed
H ₂ :CO molar ratio	0.57	1.62

_

¹ Information provided by Pamela Spath, NREL.

The gas pressure assumed from the BCL gasifier, 33 psia, is higher than initially evaluated during this project. Preliminary investigations were performed using a syngas pressure of 23 psia. Raising the pressure by 10 psia allows for a simpler and more reliable design, by allowing a water wash upstream of the compression stage.

Process	Contaminants	Level	Source/Comment
	Sulfur	0.2 ppm	Dry, 1981
		1 ppmv	Boerrigter, et al, 2002
		60 ppb	Turk, et al, 2001
Fischer-Tropsch Synthesis	Halides	10 ppb	Boerrigter, et al, 2002
	Nitrogen	10 ppmv NH3	Turk, et al, 2001
		0.2 ppmv NOx	
		10 ppb HCN	
	Sulfur (not COS)	<0.5 ppmv	Kung, 1992
Mothanal Cynthasia		(<0.1 ppmv preferred)	
Methanol Synthesis	Halides	0.001 ppmv	Twigg and Spencer 2001
	Fe and Ni	0.005 ppmv	Kung, 1992

TABLE 1-2 GAS CLEANUP REQUIREMENTS

The main impurities in the syngas exiting the gasifier that must be removed are char, tars, hydrocarbons, sulfur, and CO₂. In addition, trace contaminants such as ammonia, metals, halides, and alkali species were of sufficient concern that equipment was added to remove them as well. Finally, the syngas must also be adjusted to obtain the appropriate H₂/CO ratio.

1.2 PROCESS DESCRIPTION AND RATIONALE

A schematic for the process design developed for both cases can be seen in Figure 1-1. Both the low and high pressure cases used very similar processes for syngas clean-up: particulate removal with cyclones, tar reforming, cooling and water scrubbing, acid gas removal with amine, and sulfur polishing. The main difference between the cases is the inclusion of a compression step in the low-pressure case. A detailed description of each design is addressed in this section.

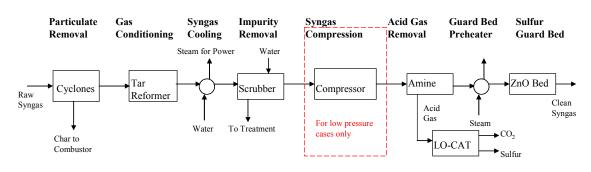


FIGURE 1-1 GENERAL SYNGAS CLEAN-UP PROCESS FLOW

1.2.1 Low-Pressure Syngas Process Description

Particulate Removal

The syngas exiting the gasifier contains impurities that must be removed in order to meet the specifications required for methanol or FT synthesis. Cyclones are used as the initial step in the gas cleanup process to remove the bulk of the char entrained in the syngas stream. This technology is standard in industry due to its low cost and high level of performance for removing particulates. Syngas from the low-pressure gasifier is sent through four parallel cyclones operating at 1598°F and 33 psia.

Tar Reforming

Syngas is fed to a tar reformer to remove tars, light hydrocarbons, and ammonia before any additional gas treating or cooling. Reforming must occur prior to cooling the syngas to prevent tar condensation and deposition on downstream equipment. The tar reformer was modeled using NREL's "goal design" reactor conversion for the Thermochemical Pilot Development Unit (TCPDU). Table 1-3 shows the assumed reactor conversion rate as provided by NREL. In the tar reformer, tars (mono and polyaromatic compounds) and light hydrocarbons such as methane, ethylene, and ethane are converted to H₂ and CO. Ammonia is converted to N₂ and H₂. Since the reactor effluent contains about 1.3 mol% CH₄, and 0.2 mol% of other hydrocarbons, additional downstream steam reforming was deemed not necessary. This conclusion was confirmed by NREL².

Compound	% Conversion
Methane (CH ₄)	80
Ethane (C ₂ H ₆)	99
Ethylene (C ₂ H ₄)	90
Tars (C10+)	99.9
Benzene (C ₆ H ₆)	99
Ammonia (NH ₃)	90

TABLE 1-3 TAR REFORMER PERFORMANCE

Syngas exiting the tar reformer enters another cyclone to separate both entrained reforming catalyst and any residual char. The solids are then sent to a catalyst regenerator. The catalyst is sent to a regenerator vessel, where char and residual carbon is combusted. The hot, regenerated catalyst is then recycled back to the reactor vessel, acting as the heat source for the reforming reactions.

Syngas Cooling

The remaining gas treatment steps require the syngas to be at a much lower temperature. Therefore, the gas is cooled in three stages from 1598°F to 225°F prior to scrubbing. The heat

Nexant team discussion with Pamela Spath, April 2005.

recovered from the process is used for steam generation throughout the system. The process design has been optimized as much as possible to use this steam, reducing the plant utility load. Integration was limited to the needs of the clean-up section; broader heat integration with the overall thermochemical platform or biomass refinery may lead to additional efficiency gains.

Scrubbing and Quench

The syngas is sent to the Syngas Venturi Scrubber, C-200, to remove any remaining ammonia, particulates, metals, halides, or alkali remaining in the system. The water circulation rate to the scrubber is adjusted such that the exiting syngas is quenched to the appropriate temperature for feed to the first stage of the compressor.

Compression

Any residual condensate in the syngas exiting the scrubber is removed in the Syngas Compressor KO Drum, V-300. The cooled syngas stream is compressed to 445 psia using a 4-stage centrifugal compressor with interstage cooling. The compressor is modeled assuming a horizontally split centrifugal design, with a polytropic efficiency of 78% and 110°F intercoolers. After discussion with compressor vendors³ and internal analysis by Nexant, it was determined that this type of compressor is appropriate for this gas flowrate, pressure ratio, and reliability requirements. While an integrally geared compressor was considered due to its lower cost, this type of compressor was not recommended due to the high flowrate and reliability required. The discharge pressure is designed such that the compressed gas is at the operating pressure range for FT synthesis.

Sulfur Removal

Originally, the scheme developed was use of LO-CATTM and ZnO polishing for H_2S removal, followed by amine for CO_2 removal. After discussions with NREL, this was modified so that amine was used for both H_2S and CO_2 removal. The ZnO beds remained in the design as a guard/polishing step after the amine unit, while the LO-CATTM unit is now used to remove H_2S from the acid gas stream. The benefit of this design is reduced load on both the LO-CATTM and ZnO units; the flow going to the LO-CATTM unit in this case is now only the acid gas stream instead of the entire syngas stream, and the inlet H_2S concentration at the ZnO bed is expected to be lower. This should increase the lifespan of the ZnO catalyst.

The syngas exiting the gasifier contains \sim 400 ppmv of H₂S. An amine unit with a high circulation rate can reduce the syngas sulfur concentration to below 10 ppmv, with a target of 2-3 ppmv. Due to the high amount of CO₂ removal required, it is this component that drives the circulation rate and unit size, not H₂S. The ZnO beds are used as a polishing step to reduce the sulfur concentration to the < 0.1 ppmv level required for methanol and FT synthesis. The gas exiting the amine absorber is heated to the operating temperature of the ZnO beds, 750°F.

For the low-pressure case, DEA was selected, while MDEA is used for the high-pressure case. This selection is based on design simulation runs by matching the desired CO₂ and H₂S removal

-

Consultation made with both Elliott Compressor and GE.

requirements to the selectivity of the amine solvents. Attempts were also made to choose solvents that minimized net energy requirements.

Water-Gas Shift and CO₂ Removal

FT synthesis requires a H_2/CO ratio of 2:1, and methanol synthesis requires the following stoichiometric ratio of H_2 , CO, and CO_2 :

$$(H_2 - CO_2) / (CO + CO_2) = 2$$

The syngas stream exiting the ZnO beds has a H_2/CO ratio of 1.7 and a stoichiometric ratio of 0.89, which are inadequate for FT or methanol synthesis. A combination of water injection into the tar cracker, followed by CO_2 removal in the amine unit, has been selected to adjust these ratios. In methanol synthesis, H_2 will react preferentially with CO_2 over CO to form methanol. This results in a significantly lowered methanol yield, greatly impacting the process efficiency. In FT synthesis, CO_2 acts as a diluent; however, for a design in which the off-gas from the FT reactor is recycled back to the reactor to improve conversion, removal of CO_2 is necessary to prevent CO_2 buildup in the reactor.

The initial designs for the low pressure system incorporated a shift reactor instead of water injection to assist in obtaining the necessary composition ratios. Further analysis and review with NREL led to the determination that a shift reactor was unnecessary, and that steam injection into the tar cracker is sufficient to perform the required shift. Elimination of this unit operation helps to reduce the overall system cost.

CO₂ removal can be achieved through different processes such as chemical (amine) or physical (Selexol or Rectisol) absorption, as outlined in Appendix D. The syngas stream entering the CO₂ removal unit is at about 420 psia and 110°F. Since physical absorption process is best suited for high pressure (>700 psia) and low temperature systems, an amine system was selected to remove CO₂ from the syngas. In addition to the syngas already possessing the appropriate operating conditions for chemical absorption, an amine system is also likely to be less expensive than the Selexol or Rectisol system. A side-by-side cost analysis from vendors would be necessary to confirm the optimal design. Approximately 98% of the CO₂ in the syngas stream must be removed in order to meet the stoichiometric ratio requirement for methanol synthesis.

The treated syngas exits the amine absorber at approximately 110°F and 440 psia. The treated syngas is sent to either the methanol or FT reactor. For methanol synthesis, the treated gas is compressed and heated to the operating conditions of the methanol reactor, about 1160 psia and 460°F. For FT synthesis, the treated gas is heated to 350°F.

1.2.2 High-Pressure Syngas Process Description

The cleanup process scheme for the syngas from the high-pressure gasifier is similar to that of the syngas from the low-pressure gasifier with the exception of the syngas compression step, differences in the heat balances, and process unit size variations due to different syngas compositions and conditions. Information about these differences is presented below.

Similar to the low-pressure case, high-pressure syngas is sent through a series of cyclones to remove the bulk of the char entrained in the syngas stream. The syngas is then sent to the tar reformer for removal of tars, methane, other light hydrocarbons, and ammonia. Steam is added to the syngas entering the tar reformer so that the shift reaction that occurs in the reformer can yield the required H₂/CO ratio for methanol or FT synthesis. Due to a more appropriate synthesis ratio in the raw syngas stream, less steam is required relative to the low-pressure case. The reformer effluent is then sent to the water scrubbing unit for removal of residual char, alkali, metals, halides, and ammonia.

Following the water scrubbing unit, the syngas is sent to an amine unit where MDEA is used for the removal of both H₂S and CO₂. As in the low-pressure case, a LO-CATTM unit is used for sulfur recovery, while ZnO beds are used for reducing the syngas sulfur content to below < 0.1 ppmv H₂S. Rationale for process selection of the sulfur and CO₂ removal units is similar to that of the low-pressure syngas case, although MDEA was used instead of DEA in the amine system. The treated syngas is sent to either the methanol or FT reactor. For methanol synthesis, the treated gas requires compression and pre-heating to 1160 psia and 460°F prior to entering the methanol reactor. For FT synthesis, the treated gas requires pre-heating to 350°F.

1.3 DISCUSSION

1.3.1 Technologies Not Chosen

As presented in Appendix D, a list of technologies was provided for performing the various gas cleanup tasks required. From this list, specific technologies have been selected for each of the designs presented here. Below is a list of the technologies that were not chosen, and the rationale behind those decisions.

Particulate Removal

Ceramic and Metal Candle Filters: Candle filters could be used in place of cyclones for char and catalyst separation from the syngas stream. Little commercial experience exists in operating these types of filters at the temperatures (1500°F+) that the cyclones operate under. At this temperature, only ceramic filters could be considered. A recent study performed by Nexant for the DOE's National Energy Technology Laboratory⁴ examined replacing a third stage cyclone with a ceramic candle filter. The cost of this high temperature filter, even assuming an "nth plant design", did not justify the change. Because of the limited commercial experience and high cost, these options were eliminated.

Baghouse Filters: As with candle filters, baghouse filters are not appropriate for high temperature applications. Therefore, they cannot replace the cyclones as an effective solids removal option.

Electrostatic Precipitators: Since dry ESPs can only operate up to \sim 750°F and wet ESPs up to \sim 200°F, this option cannot replace cyclones for solids removal. In addition, the high cost and waste streams produced make them unattractive relative to other filtration options.

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock Final Report

^{4 &}quot;Gasification Alternatives for Industrial Applications: Subtask 3.3—Alternate Design for the Eastern Coal Case, DOE Contract DE-AC26-99FT40342, April 2005.

Tar and Hydrocarbon Removal

Wet Scrubbing: Due to the relatively low content of tar in the syngas stream and the non-power application being considered, wet scrubbing could be considered a viable option for tar removal. However, inclusion of a wet scrubber may make a steam reformer necessary to remove hydrocarbons from the system. In addition, wet scrubbing for tar removal creates considerable waste removal and treatment issues and lowers process efficiencies. A detailed analysis comparing the current configuration with a wet scrubber/steam reformer would be of interest to confirm these assumptions.

Hydrocarbon Reforming (SMR/POx/ATR): Due to the low content of hydrocarbons exiting the tar cracker, it was determined that this step was unnecessary. Both FT and methanol synthesis reactors should be able to handle the quantity of hydrocarbons without severely impacting performance.

Other Technologies: During the course of the design work for the current configuration, other alternatives, such as injection of cracking catalyst directly into the gasifier and changes in gasifier operation, were identified. Limited empirical data for these technology options make them impractical for design use at this time.

Sulfur Removal

LO-CAT TM: The initial designs for sulfur removal from the syngas stream used the LO-CAT technology due to the low net syngas sulfur content. Redesigns of the combined sulfur and CO₂ removal system demonstrated that using LO-CAT for sulfur recovery and amine for sulfur and CO₂ removal was more economic.

Physical Solvents: As can be seen in Appendix D, physical solvents (Rectisol/Selexol processes, for example) typically operate at low temperatures and high pressures. Changes in the stream pressure leaving the scrubber/quench may be required prior to entering a physical solvent unit for optimum performance, whereas the current process conditions are more appropriate for feed to an amine system. In addition, previous Nexant studies have determined little to no cost benefit in implementing a physical solvent system over other treatment methods for systems of this nature. A more in-depth analysis would be required to confirm the cost difference between physical absorbents and an amine/ZnO treatment system.

COS Hydrolysis: Due to the limited COS expected to be produced from a biomass gasification system, this removal step was omitted.

2.1 INTRODUCTION AND METHODOLOGY

Design and cost estimates were obtained using three major sources:

- HYSYS and ICARUS were used to obtain design and cost estimates for generic
 equipment such as vessels, pumps, compressors, and heat exchangers. The design
 basis was agreed upon after the submission of the design information outlined in
 Section 1.
- Vendor quotes were obtained for unique and specialized equipment such as cyclones, ZnO catalyst/reactors, LO-CATTM sulfur absorption, and compressors. Some items, such as compressors and blowers, were estimated both by HYSYS/ICARUS and through vendor quotes in order to validate the results.
- The amine unit performance and energy requirements were estimated using commercially available software that is specific for amine unit modeling. Once performance requirements were obtained, an industry developed cost curve was used for estimating installed cost.

An updated set of PFDs can be seen in Appendices A and B. The design and cost estimates for the high-pressure and low-pressure cases are presented in the Equipment List and Data Sheets, which can be seen in Appendix C. The Equipment List groups process equipment by the following categories: reactors, cyclones, vessels, heat exchangers, compressors, pumps, turbines, and packaged units (the amine and LO-CATTM units). Shown in the Equipment List are the following items:

- Unit size and weight
- Design duty (exchangers)
- Design temperature and pressure
- Power usage
- Materials of construction
- Price (uninstalled) on both a Q2 2004 and Q2 2005 basis
- Source for cost estimate
- Comments and notes

An installation factor of 2.57 was applied to all base equipment costs, with the exception of the process gas compressor, to arrive at the total installed cost. The installation factor was derived based upon previous experience and vendor estimates. An installation factor of 2.47 was used for the compressor based on previous detailed compressor cost analysis. The total installed cost for the low-pressure case is \$109MM, while the installed cost for the high-pressure case is \$76MM. The difference is largely due to the process gas compressor used in the low-pressure case.

2.2 KEY DESIGN ASSUMPTIONS

A complete description of the process and rationale for choosing the technologies in this deliverable can be seen in Section 1. Each case assumed a feedrate of 2,000 MTPD. Issues encountered when performing the unit designs are outlined below.

2.2.1 Sulfur and CO₂ Removal

As mentioned in Section 1, DEA was selected for the low-pressure case, while MDEA is used for the high-pressure case. This selection is based on design simulation runs by matching the desired CO₂ and H₂S removal requirements to the selectivity of the amine solvents. The level of CO₂ removal is the major driving force in determining the amine system size and cost; without the need for CO₂ removal, the unit cost decreases significantly.

2.2.2 Tar Reforming

Design and cost estimation of the tar reformer/regenerator presented a challenge to the team. Because no commercial data exists on design or cost for the performance outlined by the "goal" TCPDU case, a number of assumptions have been made:

- Reaction temperatures equal to the inlet gas temperature (1598 and 1576°F). These temperatures are derived from conversations with NREL. Recent experimental studies at Iowa State University on catalytic tar destruction have demonstrated successful operation at ~1350 to 1550°F⁵. Sensitivity cases were run at 1472 and 1200°F; the results show that heat duty is strongly impacted by the reaction temperature. Since the catalyst is the heat carrier in the reaction, the reaction temperature will greatly impact natural gas use and catalyst circulation rates. Minimizing these factors will trade-off with catalyst activity as the reaction temperature is lowered. This may be an area for future optimization and testing at the TCPDU.
- Low pressure operation for the regenerator to cut down on combustion air blower costs. This design is assuming the use of a pressurized rotary lock to increase recycle catalyst pressure. There is the risk that a rotary lock may be inadequate for this service due to the high catalyst circulation rates leading to premature erosion. If this is the case, either a lockhopper system or pressurized regenerator vessel would need to be included, significantly adding to the cost.
- Catalyst recycle rate based entirely off of thermodynamic requirements. Because of the endothermic reforming reactions, the regenerated catalyst must carry the heat necessary to maintain reactor temperature.
- Catalyst heat capacity of 0.25 Btu/lb/°F
- Plug flow within the reactor, with a Gas Hour Space Velocity (GHSV) of 2000/hr, to establish the basis for the bed volume and catalyst inventory. The calculated cracker

⁵ Zhang, R., Brown, R., Suby, A., Cummer, K., "Catalytic Destruction of Tar in Biomass Derived Producer Gas", Energy Conversion and Management, Vol. 45, pp. 995-1014, 2004.

bed length was multiplied by a factor of four to account for deviations from ideal plug flow.

Bed diameter calculated by first estimating the minimum and maximum bed fluidization velocities, then an average of these estimates taken. Fluidization velocities calculated from catalyst and syngas properties.

Both ASPEN and HYSYS were used to model these systems, with all necessary thermodynamic and kinetic assumptions included. The results from both simulations came out very close to one another with a very high heat duty (~150 to 170 MMBTU/hr) and catalyst circulation rate (~24,000 to 29,000 MTPD) in each case. While the cost of the actual vessels are not very high (\$1.3MM to \$1.5MM), the catalyst load is substantial, and costs could be high based on what assumptions are made for catalyst losses and system maintenance requirements. Since the catalyst is regenerated in the process, minimizing losses is key to reducing operating costs.

2.2.3 Cyclones

A number of assumptions were made for the particle size distribution, efficiency, and outlet particle loading. Since no explicit direction was given by NREL, assumptions using experimental data from small-scale gasifiers was assumed and given to vendors for sizing (99%+ particulate removal and an average particle size of 50 µm).

2.2.4 **Heat Integration**

The process heating and cooling needs were evaluated and heat integration performed to maximize heat recovery. The process design includes a steam cycle that recovers the majority of the process heat by generating steam. For hot process streams that could not be integrated in the steam cycle, cooling water was used to provide cooling duty. A steam turbine is included in the design to generate power from the excess process steam.

2.2.5 **Methanol Compressor**

It was assumed that a clean syngas pressure of 1160 psia was required for methanol synthesis. Therefore, a compression system with interstage cooling has been included in the design.

2.3 OPERATING COSTS AND UTILITY REQUIREMENTS

Catalyst and chemical needs, along with utility requirements, can be seen in Tables 2-1 through 2-3. The units with the highest operating cost are the amine system and the tar cracker. Steam cost contributes the largest cost component for the amine unit. A portion of the steam required for the amine unit is extracted from the steam turbine, and the remainder is assumed to be imported. About 44,000 lb/hr of steam is imported for the low-pressure case, and 113,500 lb/hr for the high-pressure case. Imports may be unnecessary if excess steam from elsewhere in the gasification unit is available.

The other major source of operating cost is the catalyst requirement for the tar cracker. The tar cracker specifics were determined by estimating the minimum fluidization velocity, required space velocity, and the required heat duty demanded of the regenerated catalyst. The total

amount of catalyst is equal to the settled bed volume of the two fluidized beds, plus an additional 10% for transfer line inventory. Due to the very high heat load and quantity of gas to be handled, the initial catalyst loading is substantial: ~300 tonnes in the HP case, and ~830 tonnes in the LP case

The remaining catalyst and chemicals cost are in-line with the assumptions made by NREL; in fact, some of the costs used by NREL in the biomass to hydrogen report are used here either for consistency, or because little other information exists. For example, it is unknown what the cost will be of tar cracker catalyst that can perform as expected in the NREL "goal" design.

Nexant has not made assumptions for the total yearly operating cost at this time; this cost could vary considerably based on the assumptions made for plant performance and the assumptions for catalyst, chemicals, and power costs. An estimate for operating cost should be performed for an entire integrated gasification unit or biorefinery, instead of the clean-up unit as a stand-alone facility. Suggestions for proper estimation and reducing operating costs include:

- An availability of 85 to 90% would be appropriate for this design
- Both low and high pressure designs would likely require steam imports. This could come from purchases or excess steam production elsewhere in the gasification plant
- A 0.01% per day catalyst loss in the tar cracker, as assumed by NREL in the "goal" hydrogen design, is appropriate for initial cyclone operation, but will likely degrade over time. Typical catalyst assumptions and make-up rates for similar technologies range from 0.01% to 0.1%.

If a loss rate of 0.01% is assumed, and costs for the ZnO beds are amortized over the year, the daily catalyst and chemical cost is \$1931/day for the low-pressure case, and \$1457/day for the high pressure case. This takes into account tar cracker losses, ZnO bed replacement, and LO-CATTM requirements. This is shown in Table 2-1 below.

TABLE 2-1 CATALYST AND CHEMICAL REQUIREMENTS

Variable	Amount Required	Cost	Notes
Tar Reformer Catalyst	Low- Pressure Case: 1,820,000 lbs High-Pressure Case: 662,000 lbs	Price: \$4.67/lb (NREL H ₂ Report)	No commercial catalyst is currently available for this operation. Assuming a GHSV of 2000/hr, and a catalyst volume equal to the settled bed volume of the two fluidized beds plus 10% for transfer lines.
ZnO Catalyst	Low-Pressure Case: 777 cubic feet High-Pressure Case: 707 cubic feet	Price: \$355/cubic foot (Johnson Matthey).	Initial fill then replaced every year. Catalyst inventory based on H ₂ S removal capacity from 2 ppmv to 0.1 ppmv.
Sulfur Recovery Chemicals	Low-Pressure Case: 1.7 Tonnes/Day of Sulfur Removal High-Pressure Case: 2.4 Tonnes/Day of Sulfur Removal	Price: \$191/tonne sulfur removed (GTP Quote)	Assumes price for all LO-CAT TM chemicals required. Does not include utility requirements.

Steam, water, natural gas, and combustion air requirements are similar between both the high and low pressure cases. The main difference is in the power and cooling requirements. This is mostly due to the syngas compressor; the large energy and interstage cooling duty required adds considerably more to the utility requirements. Some of the cooling duty is recaptured in the steam system.

High-pressure case utility requirements can be seen in Table 2-2 below.

TABLE 2-2 HIGH-PRESSURE CASE UTILITY REQUIREMENTS

			Load BHP		Elect. Power M Pou				Steam nds per Hour			Cooling MMBTU/HR	Nat. Gas	Combustion Air
Item No	Item Name	Norm.	Max (3).	KW	445 psig	85 psig	5 psig	psig	Cond.	Proc.	C.W. circ. (2).	Water	MMSCFD	MMSCFD
H-200	Quench Water Recirculation Cooler										2,232	22.3		
H-302	Lean Solvent Cooler										13,487	135.0		
H-303	Amine Stripper Reboiler					243.9			244					
H-305	Acid Gas Condenser										8,520	85.3		
H-400A	K-400 Interstage Cooler										1,046	10.5		
H-401	MeOH Reactor Preheater					17.61			17.6					
H-501	Blowdown Cooler										84	0.8		
K-100	Combustion Air Blower	1,022		762										
K-320	Flue Gas Blower	207		154							2	0.02		
K-400	MeOH Compressor - 2 Stages	8,388		6,257							84	0.8		
P-201	Quench Water Recirculation Pump	3		2										
P-300	Lean Solvent Pump	1,474		1,100										
P-500	Condensate Make-up Water Pump	1		1										
P-501	Deaerator Feed Pump	8		6										
P-502	Boiler Feed Water Pump	710		530										
R-xxx	Gasifier				139.6									
R-100	Tar Reformer				26									
R-101	Catalyst Regenerator												7.8	84.4
	LO-CAT unit	1,004		749			0.9			2,500				
M-501	Extraction Steam Turbine/Generator	(19,721)		(14,712)	(165.6)	(148.0)								
	TOTAL	(6,903)		(5,150)	0	114	1		262	2,500	25,454	255	8	84

NOTES: 1. All Figures shown above represent normal utility usage requirements except.
() indicates normal utility make

Low-pressure case utility requirements can be seen in Table 2-3.

TABLE 2-3 LOW-PRESSURE CASE UTILITY REQUIREMENTS

^{*} indicates intermittent usage or make, not included in totals

^{2.} CWS temperature is 80 F and CWR temperature is 100 F. Makeup water to cooling tower is not shown

Utility consumption for max. load conditions is not shown.

			HP	P Elect. Steam Power M Pounds per Hour					Water, GPM		Cooling MMBTU/HR	Nat. Gas	Combustion Air	
Item No	ltem Name	Norm.	Мах (3).	KW	85 psig	35 psig	5 psig	psig	Cond.	Proc.	C.W. circ. (2).	Water	MMSCFD	MMSCFD
H-200	Quench Water Recirculation Cooler										2,213	22.2		
H-300A	1st Stage intercooler										12,188	122.0		
H-300B	2nd Stage intercooler										3,276	32.8		
H-300C	3rd Stage intercooler										2,766	27.7		
H-300D	Post compressor cooler										1,819	18.2		
H-402	Lean Solvent Cooler										11,388	114.0		
H-403	Amine Stripper Reboiler					150.6			151					
H-405	Acid Gas Condenser										2,900	29.0		
H-500A	K-500 Interstage Cooler										1,105	11.1		
H-501	MeOH Reactor Preheater				18.8				18.8					
H-601	Blowdown Cooler										61	0.6		
K-100	Combustion Air Blower	910		679										
K-300	Syngas Compressor - 4 Stages	38,786		28,934										
K-420	Flue Gas Blower	347		259							3	0.03		
K-500	MeOH Compressor - 2 Stages	8,717		6,503							87	0.9		
P-201	Quench Water Recirculation Pump	20		15										
P-400	Lean Solvent Pump	802		599										
P-600	Condensate Make-up Water Pump	1		1										
P-601	Deaerator Feed Pump	7		5										
P-602	Boiler Feed Water Pump	570		425										
R-xxx	Gasifier					73.47								
R-100	Tar Reformer					53								
R-101	Catalyst Regenerator												7.0	74.8
	LO-CAT unit	639.9		477			0.56			1,800				
M-601	Extraction Steam Turbine/Generator	(26,019)		(19,410)										
	TOTAL	24,781		18,486	0	44	1		169	1,800	37,806	378	7	75

NOTES: 1. All Figures shown above represent normal utility usage requirements except:

O indicates normal utility make

- * indicates intermittent usage or make, not included in totals
- 2. CWS temperature is 80 F and CWR temperature is 100 F. Makeup water to cooling tower is not shown
- 3. Utility consumption for max. load conditions is not shown.

2.4 DIFFERENCES WITH NREL BIOMASS TO HYDROGEN DESIGN

In general, the cost of the clean-up section of the biomass to chemicals designs is more expensive than for the NREL Biomass to Hydrogen design⁶. There are three main reasons for this: more equipment necessary in the chemicals designs, the increase in steel prices from 2002 to 2005, and different engineering assumptions made in the chemicals case. Information on each reason will be elaborated upon below.

2.4.1 Added Equipment to Chemicals Design

The two major unit operations that are new to this design versus the hydrogen cases are the amine unit and the syngas compressor for methanol synthesis. In the hydrogen cases, a LO-CAT unit and ZnO bed was used for H₂S removal, while the PSA removed carbon dioxide. The chemicals cases also use the LO-CAT and ZnO units, but instead of a PSA, an amine unit is used for the bulk H₂S and CO₂ removal. The cost for the amine units is driven largely by the need for CO₂ removal; due to the low H₂S content in the syngas, the cost of the amine unit would be roughly half as much if CO₂ removal was not required. The LO-CAT unit is used in this case for clean-up of the acid gas stream from the amine unit instead of bulk H₂S removal. Because of the CO₂ content and different operating requirements versus the hydrogen case, the quote provided by GTP is roughly double the price used in the hydrogen case.

Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J. (2005). Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier. 161 pp.; NREL Report No. TP-510-37408.

In order to compress the clean syngas up to methanol synthesis pressure, a ~8,000 HP compressor is required. This unit was not necessary in the hydrogen case, adding to the overall cost. Taking into account a \$12MM credit by not using the PSA, the LP cost increases by ~\$8.5MM, while the HP cost increases by ~\$18.5MM due specifically to the extra equipment needed.

2.4.2 Increase in Steel Price

NREL used 2002 as the cost basis for the biomass to hydrogen designs, while Nexant is using Q2 2005. The increase in steel price between 2002 and 2005 has been significant, impacting the prices quoted in the Nexant design. The Q2 2005 basis for hot-rolled steel is ~\$400 to \$450/ton, up from ~\$250 to \$300/ton in 2002⁷. Steel prices have been very volatile in the last 3 years due to strong worldwide demand, a sharp rise in energy prices, consolidation in the US steel market, and a weak US dollar.

Because of this basis difference, the 2002 NREL basis would need to be escalated not only for inflation but also for steel price in order to put it on the same basis as this study. It is difficult to place a blanket escalation factor on the design due to the impacts that steel price has on different pieces of equipment; for example, this may make up much of the difference in price in equipment like vessels and exchangers, but have less of an impact on compressor prices. Each unit should be evaluated independently to determine the impact that steel price has on overall unit cost.

2.4.3 Engineering Assumptions

A side-by-side comparison of all the major process units was performed for the HP and LP cases versus the NREL hydrogen design. A few differences were noticed that are outlined below. A direct comparison cannot be performed on units that were lumped into the "Gas Cleanup" section of the NREL design and not explicitly sized. While the major differences are outlined here, only a brief attempt at determining the cost difference has been made.

Reactors and Columns

ZnO Beds: While the size of the ZnO beds in this design is smaller than the hydrogen case, the installed cost is roughly double. This is likely due to the difference in steel price.

Tar Reformer/Regenerator: In the hydrogen design, this is included in the "Cleanup" costs, so no explicit design information is available. The NREL assumption for "Cleanup" took the average of a number of different studies; however, only one of these studies, Weyerhaeuser (2000), had a tar cracker. The "Cleanup" section for the Weyerhaeuser study was ~\$9MM greater than the other designs, implying that the majority of the cost may be due to the tar cracker cost. The NREL "Cleanup" assumption may be low since the hydrogen design has a tar cracker, yet only one of the studies used to obtain the "Cleanup" cost also has a tar cracker.

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock
Final Report

For more information, see the Bureau of Labor Statistics "Producer Price Series", along with Lazaroff, Leon, "Steel Regains Some Luster", Detroit Free Press, 25 July 2005

Cyclones

Since these were part of the "Cleanup" average, no explicit design numbers were provided as part of the hydrogen study. Design quotes from vendors are used for this part of the plant in the chemicals design.

Vessels

The Nexant estimate is higher than the hydrogen design due to 1) the venturi and quench being included as part of the "Cleanup" estimate, 2) larger vessel sizes for the steam system than what was assumed in the hydrogen design, and 3) steel prices. Depending on the price assumed for the venturi /quench in the hydrogen design, the Nexant estimate appears to be ~\$3MM greater than the hydrogen case.

Heat Exchangers

A number of differences exist between the hydrogen and chemicals designs, making the installed cost for exchangers in the chemical production case ~\$4MM to \$6MM higher than in the hydrogen case:

- There is a large cost discrepancy between the exchangers downstream of the tar reformer. The Nexant designs are larger and considerably more expensive; Nexant assumed refractory lining, while it is unclear if this assumption is made in the hydrogen design.
- The Nexant design has a number of exchangers not included in the hydrogen design: amine precoolers (HP case), methanol compressor coolers (both cases), and ZnO coolers (both cases).
- A few of the exchangers in the hydrogen design are included in the "Cleanup" section, so it is difficult to make a direction comparison.

Compressors and Blowers

As mentioned earlier, the syngas compressor for methanol synthesis adds ~\$7MM to the installed cost relative to the hydrogen case. This compressor was not necessary in the NREL hydrogen design.

There is a major difference between the NREL and Nexant assumptions for the syngas compressor in the LP case. While NREL shows an installed cost of ~\$12MM for a 30,000 HP compressor, Nexant estimates that a ~38,000 HP compressor is required at an installed cost of ~\$37MM (\$15MM for the equipment alone). The equipment cost comes directly from Elliott Compressor; checks on the validity of the estimate using cost curves, ICARUS, and other vendors show that this is within the +/- 30% estimate desired by the study. The NREL study assumed that an integrally geared compressor type would be appropriate, while this report uses a horizontally split centrifugal compressor recommended by vendors. Analysis using cost estimating software shows that this assumption is the main reason for the cost difference.

Pumps

Both Nexant and NREL designs are in agreement in regards to the pumps.

Steam Turbine

The Nexant estimate is slightly higher than the NREL estimate, ~\$12MM installed versus \$10MM. This difference is likely due to steel prices.

The other difference that should be pointed out between the hydrogen and chemicals cases is the assumption made for the installation factor. NREL used a 2.47 installation factor, which is derived from literature sources. Nexant used 2.57 in both the HP and LP cases, except on the process gas compressor, where 2.47 is used. These numbers are derived independently from previous experience and vendor engineering estimates. While the factors are very similar to one another, this difference can make a 4% difference (\$2MM) on an equipment cost of \$20MM.

2.5 CHANGING FLOWS, CONDITIONS, AND COMPOSITIONS

Per the scope of work outlined by NREL as part of this project, Nexant has been asked to provide input on how the design estimates will be adjusted if the syngas flowrates or compositions vary. Information for both the high and low-pressure cases, along with the scaling factors appropriate for each major piece of process equipment, are outlined below.

2.5.1 Flowrate Impacts

In general the limits on process equipment sizes are usually the result of manufacturing restraints, transportation limits, and maintenance restrictions. For this evaluation, it was assumed that the throughput would be increased by 50% and the equipment size or capacity would increase accordingly. The affects of this change are discussed below with respect to both the low- and high-pressure cases.

Low-Pressure Syngas Design Cases

For the Low-Pressure Syngas Design Cases some of the equipment has already reached size limitations that required multiple trains or parallel equipment. Thus, increasing the capacity by 50% will require more parallel equipment and a more complex and expensive piping manifold. Examples include:

- Gasifier Cyclones (4 required for the base capacity)
- Tar Reformer SG Cooler/Steam Generator (2 required)
- Tar Reformer SG Cooler/BFW Preheater (2 required)
- Compressor Interstage Cooling 1st stage (2 required)
- Syngas Venturi Scrubber/Quench Tower (2 required)

Thus, for a 50% increase in capacity, the design would require 6 gasifier cyclones, 3 of each major heat exchanger, and 3 venturi scrubbers.

Other items, such as the 1st Stage KO Drum, may require either a parallel unit or field construction due to equipment size and weight limitations during transportation. While the limits for ground transportation vary from state to state, typically, codes limit standard transport sizes to ~14 feet in width and height, 53 feet long and 80,000 pounds. Locating this facility in Iowa will mean that most equipment will be transported to the site either by rail or truck. Access to the Mississippi or Missouri Rivers may allow larger vessels to be used. For the 1st Stage KO Drum, the inside diameter would increase to about 16 feet (from a 13 foot diameter) at a capacity 50% greater than the base case. However, when considering transportation by road, auxiliary equipment such as nozzles and flanges must be taken into consideration. This item would be well beyond most road transportation limits in the U.S. To manage this limitation, options are either transportation by rail or barge, parallel pieces of equipment, or field fabrication.

Other equipment may exceed the maximum recommended size for a single train, and would require a second, parallel unit. This includes items such as the Syngas Compressor and the shell and tube heat exchanger for the Flue Gas Cooler/Steam Superheater service. In the latter case, the size of the heat exchanger is actually a maintenance issue. The diameter of the tube bundle of these units is larger than a normal bundle puller could handle (maximum limit is about 6-7 feet diameter). It then becomes an economic question of bringing in special maintenance equipment during turnarounds or using smaller, parallel process equipment.

High-Pressure Syngas Design Cases

For the High-Pressure Syngas Design Cases, most of the equipment is smaller than the corresponding equipment for the Low-Pressure Syngas Design Cases as a result of the high pressure operation. Only a few items, when scaled by +50%, would require a parallel unit. Two major exchangers, the Tar Reformer SG Cooler/Steam Generator and Flue Gas Cooler/Steam Superheater, were discussed above. Another area is equipment within the LO-CATTM unit. These include the Inlet Gas KO Drum and the LO-CATTM Oxidizer Vessel. The former would require a vessel with an inside diameter of over 17 feet and the latter would required an inside diameter of about 16 feet. As noted previously, the outside diameter (including nozzles and flanges) would be well beyond most road transportation limits in the U.S. Vendors for process items of this nature can provide input for the appropriate process configuration for this service.

Appropriate vessel sizing for the amine system is also of concern in this design. The amine system contains two relatively large columns – the scrubber and the regenerator. Considering a 50% increase in capacity, the column diameters will increase by about 20 to 25%. In particular, the regeneration column may exceed the transportation size limitations and thus, require parallel trains or field fabrication.

General Information

A plant that is 50% larger will require more plot area not only due to the larger equipment and storage, but due to offsite considerations. For example, the flare will have to be designed for a load that is 50% larger. This will require either a taller flare or moving the flare further away from the main process units. A higher flare may meet with height restrictions. Thus, the area that is restricted around the flare may increase.

Estimating the Capital Investment Cost

In most cases the capital cost for a capacity increase or decrease of 50% can be estimated using exponential methods. That is, the new capital cost can be estimated by using capacity ratio exponents based on published correlations and the following formula:

$$C_2 = C_1 (q_2/q_1)^n$$

where C stands for cost, q for flowrate, and where the value of the exponent n depends on the type of equipment. In reviewing the literature for the various exponents, some discrepancies in published factors are apparent due to variation in definition, scope and size. Technology has also advanced over time, making it less expensive to produce larger machinery now than in years past. In addition, new regulations dictate expenditures for environmental control and safety not included in earlier equipment. In the table that follows, the most recent literature information is listed. Traditionally, when a specific value is not known, an exponent value of 0.6 is often used for equipment and a value of 0.7 for chemical process plants (usually expressed in terms of annual production capacity). Table 2-4 gives typical values of n for most of the equipment included in these designs. 8,9,10,11,12

TABLE 2-4 EXAMPLES OF TYPICAL EXPONENTS FOR EQUIPMENT COST VERSUS CAPACITY

Equipment	Size Range	Units	Exponent**
Reactor – fixed beds	N/A		0.65-0.70
Column (including internals)	300-30,000	Feed rate, million lb/yr	0.62
Cyclone	20-8,000	Cubic feet/m	0.64
Vessel – vertical	100-20,000	US gallons	0.30
Vessel – horizontal	100-80,000	US gallons	0.62
Heat exchanger (S&T)	20-20,000	Square feet	0.59
Venturi scrubber	N/A		0.60
Compressor – centrifugal*	200-30,000	hp	0.62
Blower*	0.5 - 150	Thousand standard cubic feet per minute	0.60
Pump*	0.5-40	hp	0.30
	40-400		0.67
Turbine		hp	0.81
Pressure discharge	20-5,000		
Vacuum discharge	200-8,000		
Motor	10-25	hp	0.56

Perry, Robert H., and Green Don W., Perry's Chemical Engineers' Handbook, 7th edition, page 9-69.

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock Final Report

⁹ Walas, Stanley M., "Chemical Process Equipment – Selection and Design," Butterworths, page 665

Blank, L. T. and A. J. Tarquin, "Engineering Economy," McGraw-Hill

¹¹ Peters, Max S. and Timmerhaus, Klaus D., "Plant Design and Economics for Chemical Engineers," McGraw-Hill, page 170

Remer, Donald S. and Chai, Lawrence H., "Design Cost Factors for Scaling-up Engineering Equipment," Chemical Engineering Progress, August 1990, pp 77-82

Equipment	Size Range	Units	Exponent**
	25-200		0.77
Package unit	N/A		0.75
Other	N/A		0.6 – 0.7

^{*} excluding driver

2.5.2 Composition Impacts

The major units that will be impacted by a large change in syngas composition are the tar reformer and the venturi scrubber. Due to the relatively low concentration of sulfur in the syngas stream, $\pm -50\%$ fluctuations in the H₂S content should not impact how the sulfur removal system is designed. Significant changes in the inlet H₂/CO ratio may also require modifications of the design in order to establish the appropriate downstream composition.

The obvious change that will influence the design of the tar reformer is the amount of hydrocarbons in the syngas from the gasifier. Currently, the design is assuming that a separate reformer is not necessary, with the tar reformer converting most hydrocarbons exiting the gasifier. If either the hydrocarbon yield increases or the tar reformer conversion is lower than planned, a separate reformer for light hydrocarbons should be considered. The amount and type of hydrocarbons will affect the operating conditions which will in turn affect the water gas shift reaction. A change in the H_2/CO ratio may require divorcing the shift reaction from the tar reformer (i.e., a separate shift reactor instead of just adding steam to the tar reformer).

A 50% increase in particulates may require different/larger cyclones or a redesign of the venturi scrubber in order to handle the larger load. This is largely controlled by the gasifier operation; reliable performance data should be established prior to deciding upon a particulate removal scheme. Higher particulate loading than planned can significantly hurt overall plant performance.

A 50% increase in H₂S will not affect the sulfur recovery processes. LO-CATTM can handle between 150 lbs to 20 tonnes of sulfur per day, and concentrations between 100 ppm and about 10% H₂S. Even at 50 percent more H₂S, the concentration still remains within the operating limits for LO-CATTM. In addition, the solvent circulation rate in the amine unit can be increased to remove additional H₂S if the sulfur concentration is higher than expected.

2.6 FOLLOW-UP AND AREAS FOR FURTHER STUDY

The analysis performed sets the base case for the clean-up section of two different biomass-to-chemicals designs. After in-depth analysis of these cases, the team has identified a number of areas for further study:

• Alternatives for Tar Removal: A number of assumptions have been made for sizing and costing of this unit. Greater study and analysis, both in the laboratory and through simulations, should be performed to determine if the methods used are valid. In addition, alternative tar removal technology should be considered, including:

^{*} this estimating method gives only the purchase price of the equipment; additional installation cost for labor, foundations and construction expenses will make the final cost higher.

- Introduction of tar cracking catalyst into the gasifier. Typically, this has not been done due to concerns with deactivation and erosion.
- Gasifier operation to reduce hydrocarbon yields.
- Using a water wash for tars, followed by a standard reformer for hydrocarbons.
 While this increases the cost of quenching and wastewater handling, the cost tradeoff may be economic.
- Process Integration, Gasification Systems and Biorefinery: Integration of the cleanup section with the other parts of the gasification plant will provide a better picture of the overall plant costs. In addition, use of this thermochemical platform has been considered for future application into an integrated "biorefinery". This base case could be used for a determination of the process requirements and offerings that a thermochemical platform could provide.
- Alternate CO₂/Sulfur Removal Steps: Based on the design information provided and past studies that have been examined, the steps incorporated for CO₂ and sulfur removal has been determined to be appropriate at this stage. A cost comparison of amine versus physical solvents and new technologies for acid gas removal would provide additional data to confirm the appropriate use of amine in this design.
 - New technology is currently being explored to remove sulfur without having to cool to 110°F or below. Since none of this technology is currently commercial, it has not been evaluated for use in this design. If available however, warm sulfur clean-up may increase efficiency in this design, by reducing the amount of reheat necessary prior to entering the shift reactor.
- Other Impurities in the Syngas: For the low pressure case, a scrubber has been included to remove residual ammonia, and any metals, halides, or alkali remaining in the system. If it is deemed that the level of these impurities entering the scrubber will not adversely impact the FT or methanol catalysts, this step could be removed.

3.1 SUMMARY

The labor projections for the 2000 MTPD biomass gasification plant are based on a combination of 1) models developed from Emery Energy's 70MWe Gasification Plant design completed under prior DOE contracts, 2) additional "adders" for the scale and complexity (chemical plant nature / hydrogen production) of the 2000 MTPD plant being considered, and 3) previous experience of Nexant and other team members. The high pressure, oxygen-blown, 2000 MTPD plant requires labor skills with slightly greater operating experience than power-only facilities, and thus commands a premium for these skills.

The labor rates derived from Emery's 70 MWe Biomass IGCC (1200 MTPD plant) case were ~\$1,650,000 per year (not including subcontracted services) versus the \$2,274,720 projected for the labor costs for the 2000 MTPD biomass to chemicals design. This difference of roughly \$625,000 represents the higher level of experience needed for the larger plant, greater materials handling rates, and increased labor for plant maintenance. A discussion of the reasons for this difference, along with differences between the recent NREL Biomass to Hydrogen report, is contained below. Some of the main differences with the NREL Hydrogen report include different job descriptions, the use of a back-up shift crew, utilization of contract labor, and lower assumptions for overhead costs.

3.2 LABOR REQUIREMENTS

The following labor categories and positions will be required for the 2000 MTPD biomass plant.

- *General Plant Manager:* Responsible for all personnel and plant decisions, including new employee hiring, operator training, fuel contracts, maintenance contracts, general equipment purchases, external communications, and operating schedules. Engineering degree required, with 10+ years of chemical plant operating experience. Salary of \$100,000/yr.
- Administrative Assistant/Company Controller: Support the general plant manager, manages personnel records, completes company payroll, manages time accounting records, manages company benefits, employee investment accounts, and insurance enrollments. Accountant degree required with 5+ years of experience. Salary of \$45,000/yr.
- **Secretary/Receptionist:** Supports the General Plant Manager and Company Controller. Receives visitors, answers phone, and attends to office administrative duties. Salary/Wages of \$25,000/yr.
- *Laboratory Manager:* Oversees all laboratory equipment and laboratory technicians. Responsible for product quality; testing performed both on finished product and intermediate streams (via on-line equipment and sample draws). Works straight days, with some overtime possible. Salary/Wages of \$50,000/yr.
- *Laboratory Technician:* Responsible for sample gathering, analytical equipment maintenance, and laboratory testing. Works straight days, with some overtime

Section 3 Labor Requirements

possible. Shift operating crew can assist with some sample gathering as necessary; contract equipment technicians can assist with analytical equipment repair as necessary. Salary/Wages of \$35,000/yr.

- **Shift Operating Crew:** The plant will be operated by a four-member crew shift each week, with responsibilities defined below:
- Shift Superintendent. The shift superintendent is the chief operator who mans the control station and simultaneously directs the activities of the shift crew. The shift superintendent is a degreed engineer who understands the plant, understands the technical and physical operations, and makes key operating decisions. The shift superintendent ensures compliance with plant quality, safety, industrial hygiene, and environmental requirements. 5-10 years of chemical plant operating experience is preferred for this position. Salary of \$75,000/yr.
- Support Operator. The support operator aids the shift superintendent with plant operation. The support operator is also tasked with bulk material handling such as feedstock receipts/inspection/weigh-in and ash weigh-out/disposal shipments. The support operator attends to feed and ash sampling/characterization, waste water disposal sampling, and provides general plant support in relief of the shift superintendent. The support operator is also tasked with monitoring plant emissions rates, including daily/weekly calibration of effluent gas monitors. The support operator verifies that plant operating records and daily logs are correct. This position coordinates fuel characterizations and waste water analyses. A novice degreed engineer or experienced technician is sufficient for this position. Salary of \$45,000/yr
- *Millwright.* The shift millwright conducts hourly and daily equipment inspections, safety rounds, completes scheduled equipment process maintenance, supports equipment maintenance and equipment replacements, contracts and supervises crafts such as pipe fitters, electricians, welders, and special instrument technicians when such functions exceed the millwright's capabilities. The millwright preferably has an associate degree in mechanical, industrial, or design engineering technology with 5-10 years experience. Salary of \$60,000.
- *Millwright Assistant/Yard Labor*. Supports millwright and accompanies millwright and contracted crafts, particularly during dangerous work activities, such as confined space entries and working from heights. The millwright assistant supports tool setup, job errands, and plant cleanup. Salary of \$35,000.

Shifts run for 12 hours with two crews per day. Crews report to work 30 minutes prior to the shift turnover to perform receive shift operating instructions and to pass information on critical operations and maintenance. Each crew member is allotted 30 minutes for a meal break. Thus, each shift extends 12.5 hours, with 0.5 hours meal break, or 12 hours of labor. Crews operate on a 4 days on / 4 days off rotation. This requires 84 hours on average per crew member for any two-week pay period.

Five complete shift teams are engaged. The fifth crew provides coverage for individual vacations, sick leave, and holidays. The fifth crew also fills in for continuing training and for

Section 3 Labor Requirements

new hire training. The fifth crew also supports ongoing maintenance and periodic outage/turnaround planning. In addition, the fifth crew supports updates to control system programming, data collection, and instruments. The millwright assistant on the fifth crew supports plant cleanup and janitorial activities. The fifth crew works 40-hour straight days when not substituting for members of the four-crew rotation.

Table 3-1 summarizes the plant operating labor by category, salary, and total cost.

TABLE 3-1 LABOR COSTS

Desition.	Number	Base Salary or	Annual Overtime and Holiday	Occupánios Bata	Total Annual
Position Concret Plant Manager	Number	Hourly Rate	Hours N/A	Overtime Rate N/A	Cost
General Plant Manager	1	\$100,000		N/A N/A	\$100,000
Company Controller	1	\$45,000	N/A		\$45,000
Secretary/ Receptionist	1	\$25,000	None	N/A	\$25,000
Laboratory Manager	1	\$50,000	240	\$30	\$57,200
Laboratory Technician	2	\$35,000	240	\$22.50	\$80,800
Shift Superintendent	5	\$75,000	680	\$45	\$405,600
Support Operator	5	\$45,000	680	\$25	\$242,000
Millwright	5	\$60,000	680	\$32.50	\$322,100
Millwright Assistant	5	\$15.00/hr	560	\$22.50	\$144,000
Total Base Salaries and Wages					\$1,421,700
General Overhead and Benefits (60% of total salaries)					\$853,020
Total Base Wages and Benefits					\$2,274,720
Subcontracted Crafts					
Welder	\$80/hr	1200			\$96,000
Electrician	\$75/hr	640			\$48,000
Pipe Fitter	\$65/hr	600			\$39,000
Insulator/Painter	\$60/hr	400			\$24,000
Carpenter	\$55/hr	400			\$22,000
Instrument Technician	\$90/hr	400			\$36,000
Total Subcontracted Labor					\$265,000
Total Labor and Benefits (Operating Labor Cost)					\$2,539,720

Section 3 Labor Requirements

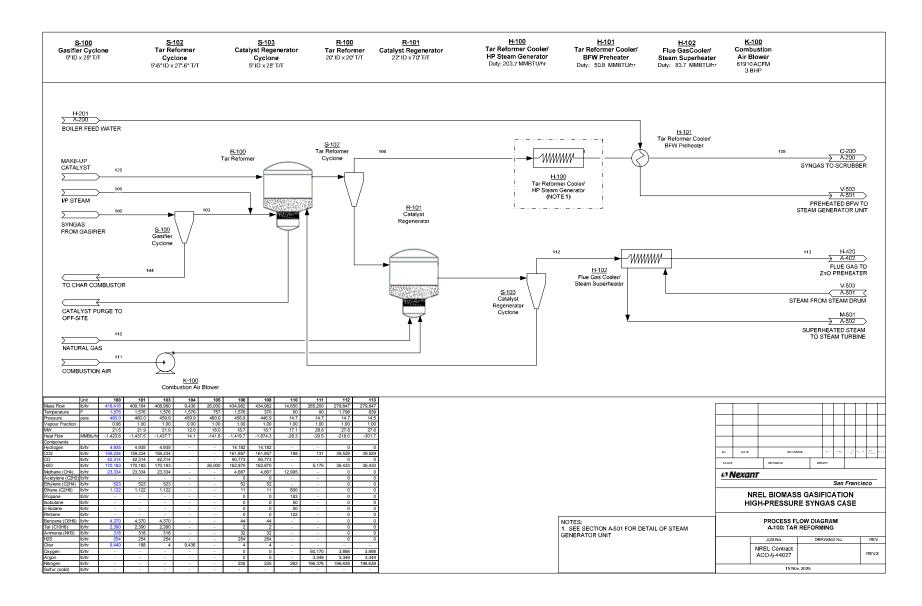
3.3 DIFFERENCES WITH EMERY ENERGY 70 MWE CASE

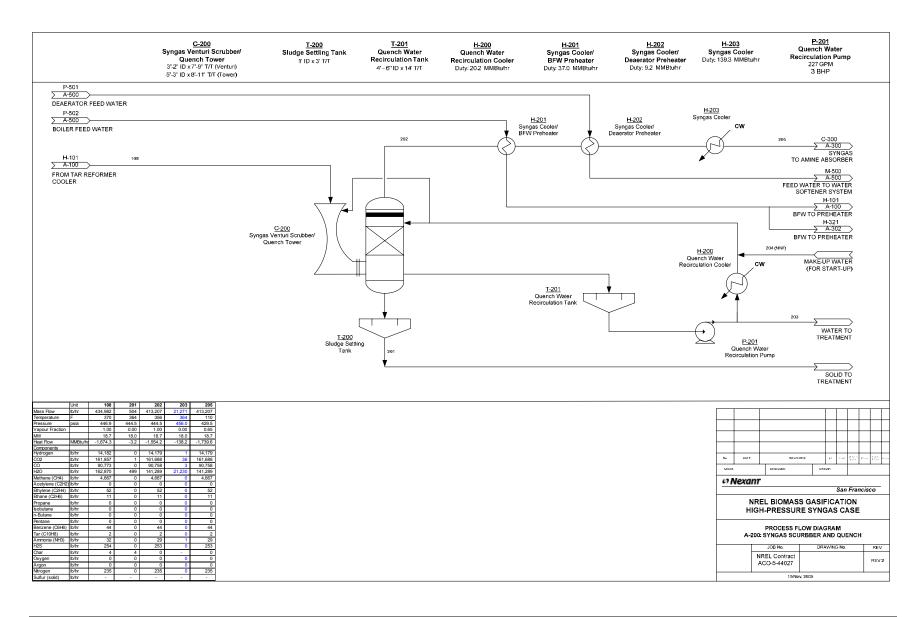
Both the complexity and size of this facility increases the labor costs over what Emery Energy has assumed for their 70 MWe biomass gasification facility. The size of the unit (1200 MTPD vs. 2000 MTPD) slightly increases the number of shift workers and contract hours required, but does not increase the plant management or engineering requirements. This represents an economy-of-scale advantage enjoyed by larger gasification facilities; while the total labor requirement is greater than the 1200 MTPD facility, the marginal amount of labor required decreases as plant size increases.

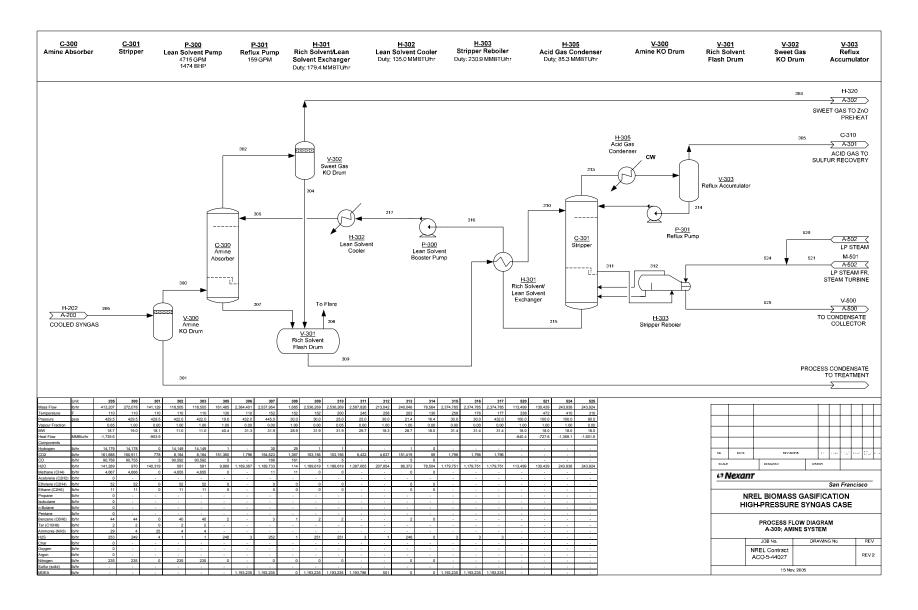
This design contains additional equipment than what is assumed in Emery Energy's 70 MWe facility design. While this design does not contain a gas turbine, steam turbine, or HRSG, additional equipment includes enhanced sulfur removal (an amine system and ZnO beds), chemicals synthesis equipment, and tar cracking. It is this increase in complexity, rather than the increase in size, that adds the majority of the increase in labor costs.

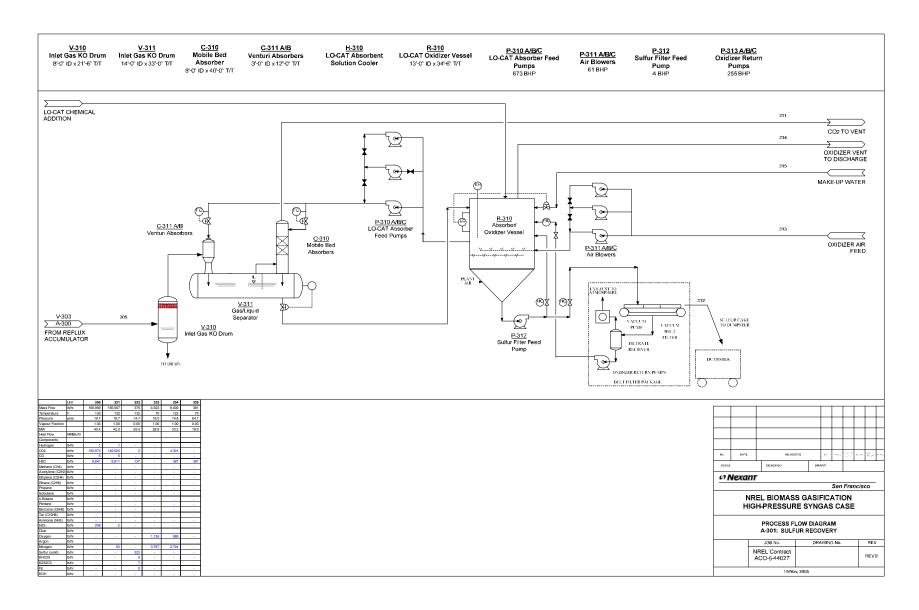
3.4 DIFFERENCES WITH NREL BIOMASS TO HYDROGEN CASE

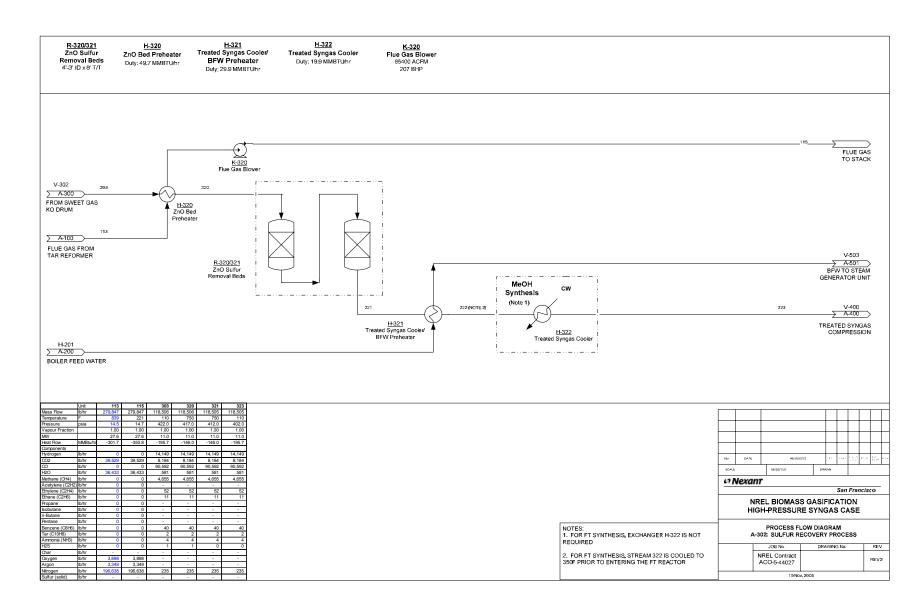
In the 2005 study, NREL made assumptions for the labor requirements necessary for a 2000 TPD wood gasification to hydrogen plant. The size being considered in this design is exactly the same, and the complexity is roughly the same as the NREL case. The only main difference is the inclusion of chemicals synthesis equipment, which takes the place of the PSA and related equipment required for hydrogen production.

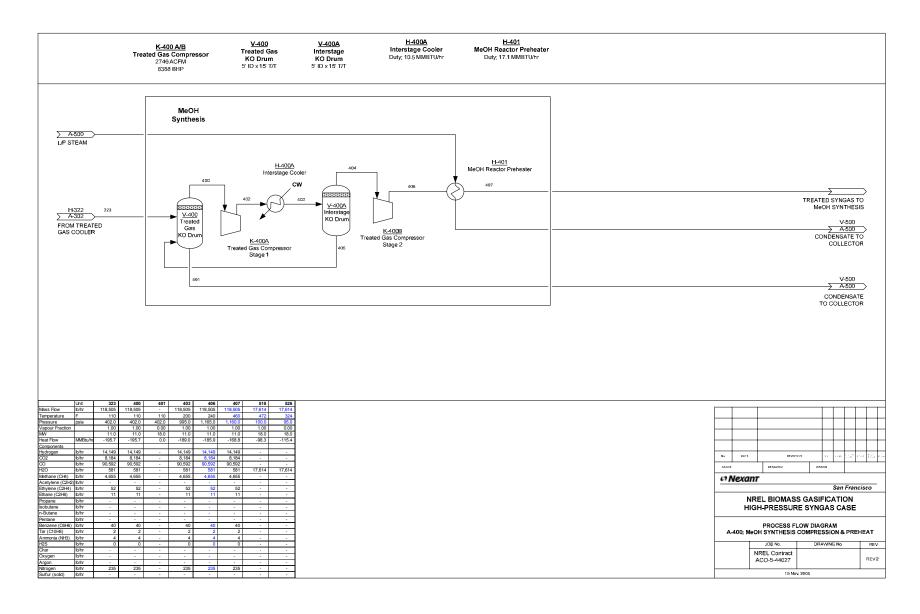

The labor requirements developed for the chemicals synthesis cases are lower by almost \$1.5MM due to the assumptions made by the Nexant team. The main differences are highlighted below:

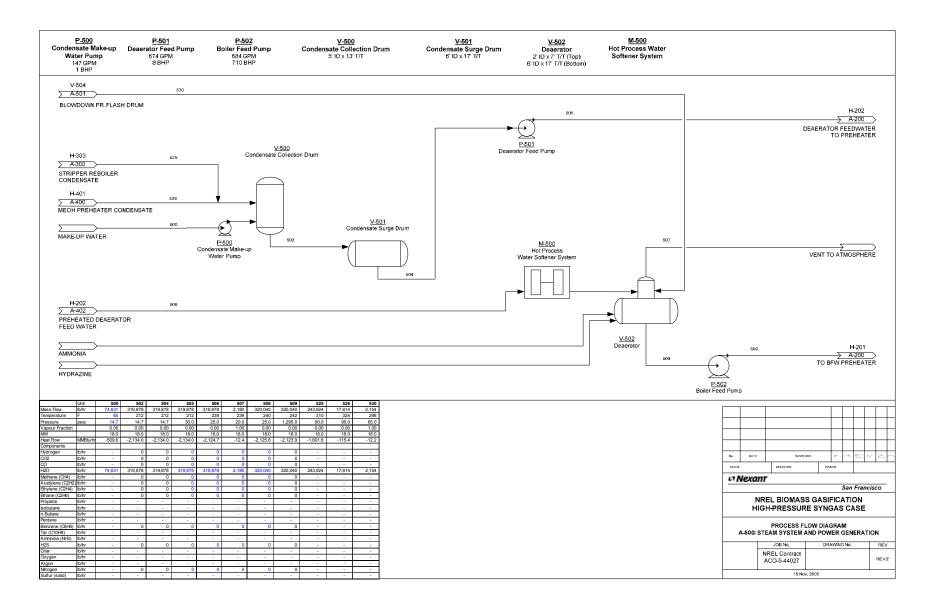

- Salary Assumptions: In general, slightly higher salaries are assumed in the chemicals synthesis design for employees such as the plant manager, engineers, and operators. Higher salaries may be necessary to attract workers to facilities employing complicated and novel technologies.
- Administrative Assistants: Instead of the three assistants assumed by NREL, this design assumes only two: the company controller/administrative assistant and the main receptionist. The main difference is that the truck handling work performed by the assistant in the NREL design will now be split amongst the millwrights and assistants.
- Work Assignments for Shift Workers: As mentioned in the job descriptions, it is assumed that support operators will assist with yard issues, feedstock delivery, and field work, while the superintendent will largely be responsible for control issues. This reduces the need for yard employees and operators whose sole job is to man control boards. The five crews effectively allow for additional personnel capable of supporting offloading and weighing of the biomass feedstock.
- **Subcontract Labor:** In order to reduce the need for full-time staff for part-time work, a number of specific skills, such as welders, electricians, and carpenters, will be

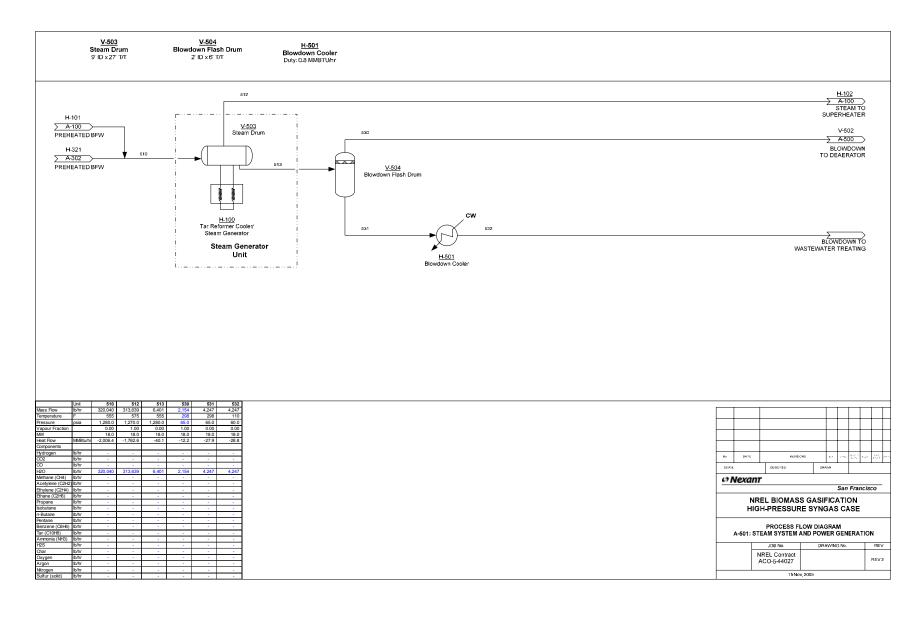

Section 3 Labor Requirements

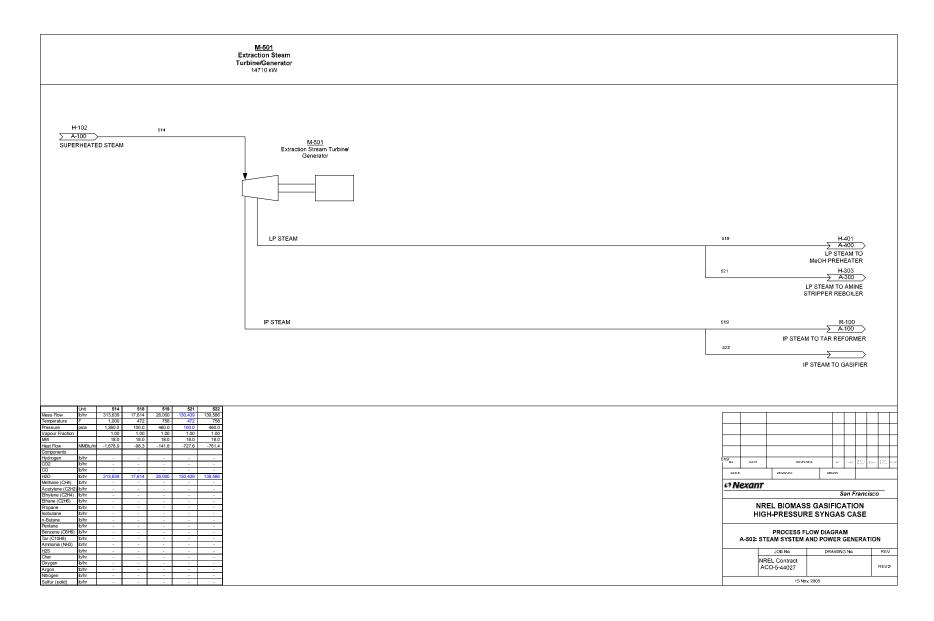

contracted out. This reduces the overall labor costs and overhead. No subcontract labor was assumed in the NREL hydrogen case.

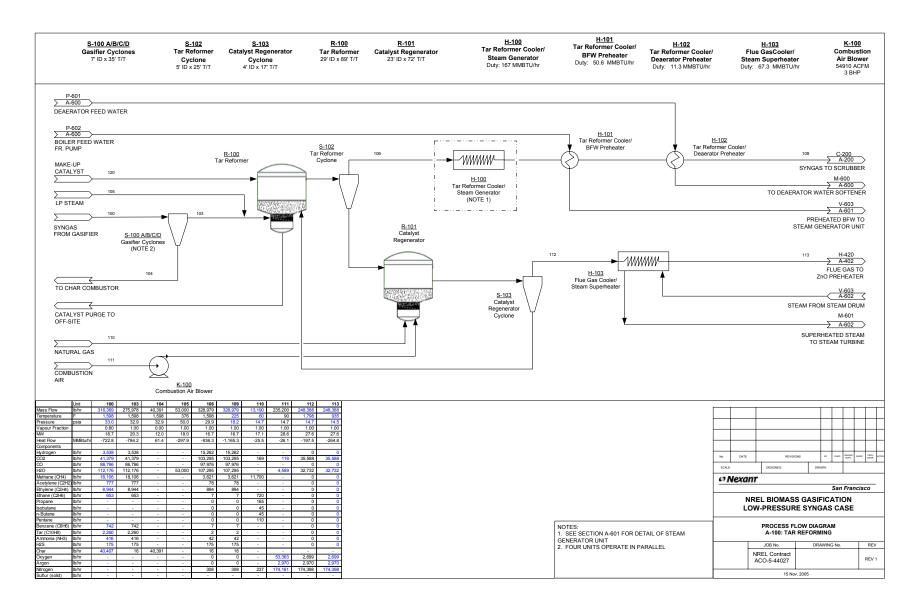

- **Overhead:** The labor estimate made in this case has roughly half as much full-time staff by utilizing more contract labor and changing the job description of day and shift employees. This is one reason that the estimate for overhead expenses (60%) is less than the biomass to hydrogen case (95%). In addition, the assumption has been made that a small firm will own and operate this facility. In general, overhead has been found to be less in smaller firms than in large multinationals; this assumption could be revised based on the ownership basis. This assumption for the overhead rate has been confirmed by Emery Energy, and is consistent with other small gasification companies that have limited facilities and indirect labor costs.
- Overtime Assumptions: The NREL hydrogen case assumed straight salaries for all employees, with no overtime. The chemicals case assumes ~2500 hours of overtime per year, roughly split over the 4 main shift worker categories. Allowing overtime reduces the number of full-time employees required, and decreases overall labor costs versus the NREL hydrogen case.
- **Back-Up Shift Crew:** Unlike the NREL hydrogen design, the back-up fifth shift team would be available to cover a number of different duties during the day shift, decreasing the need for specialty workers in each area.

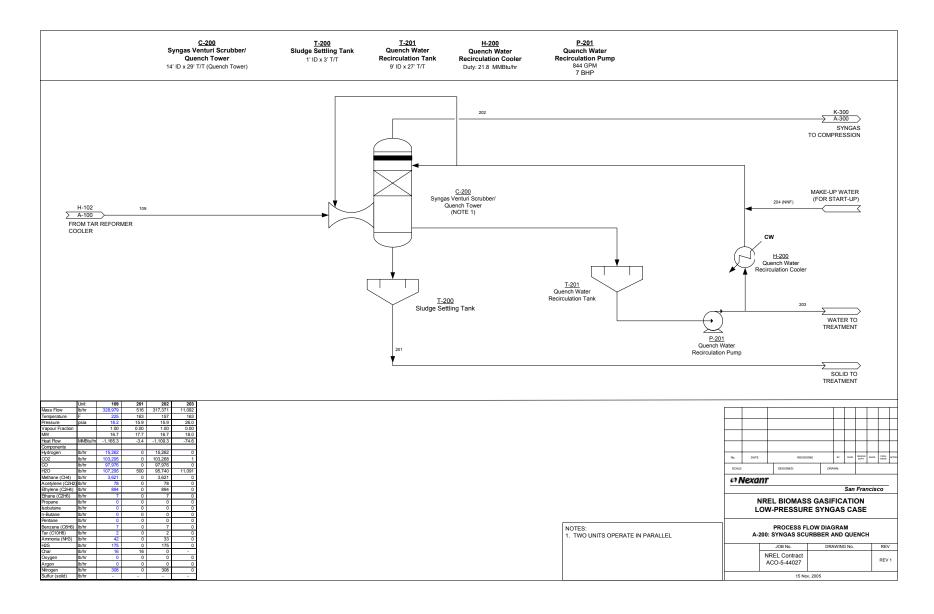


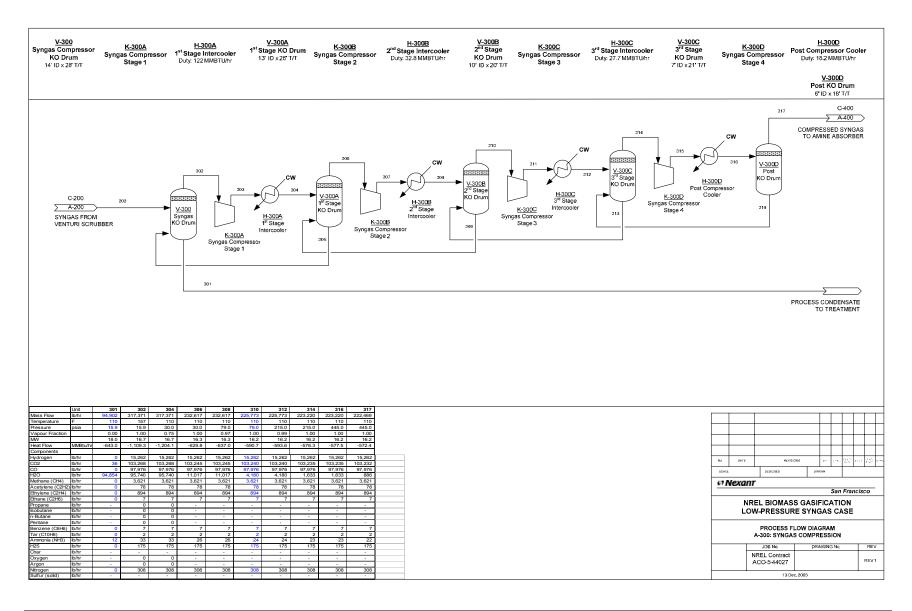


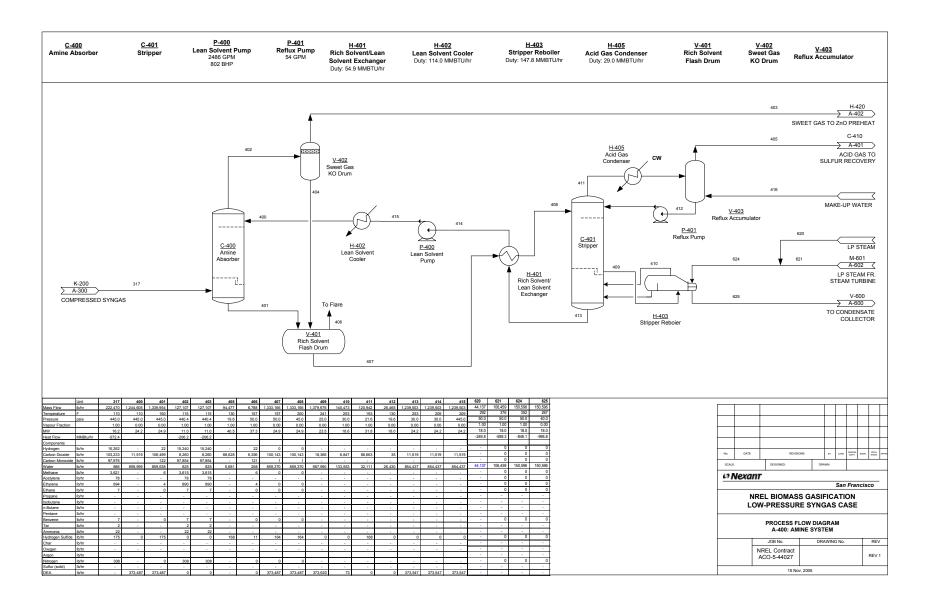


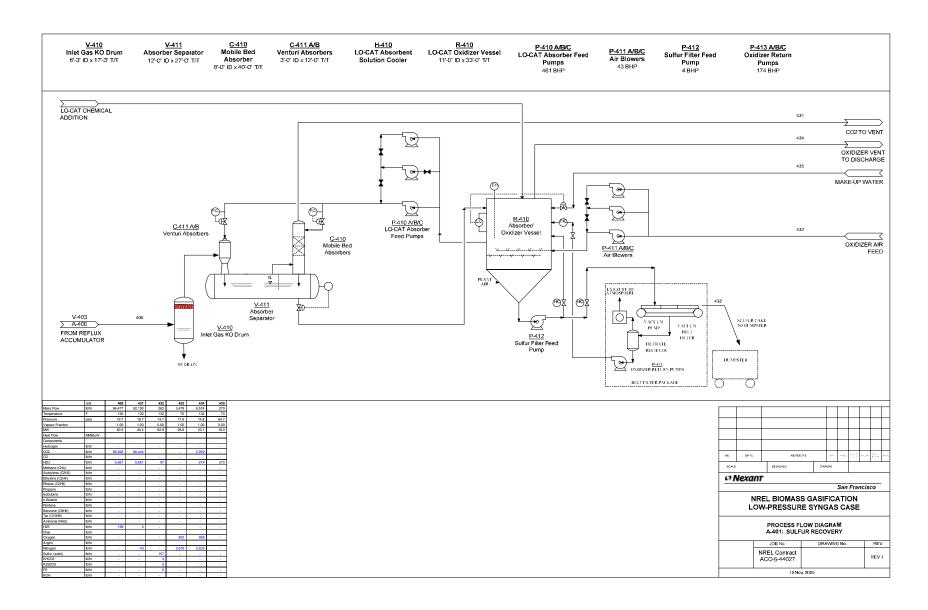


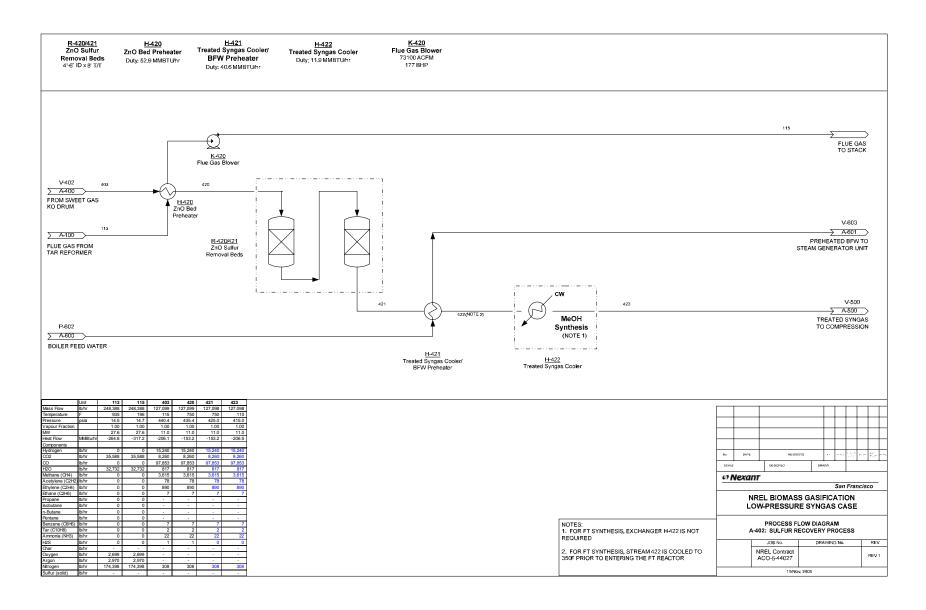


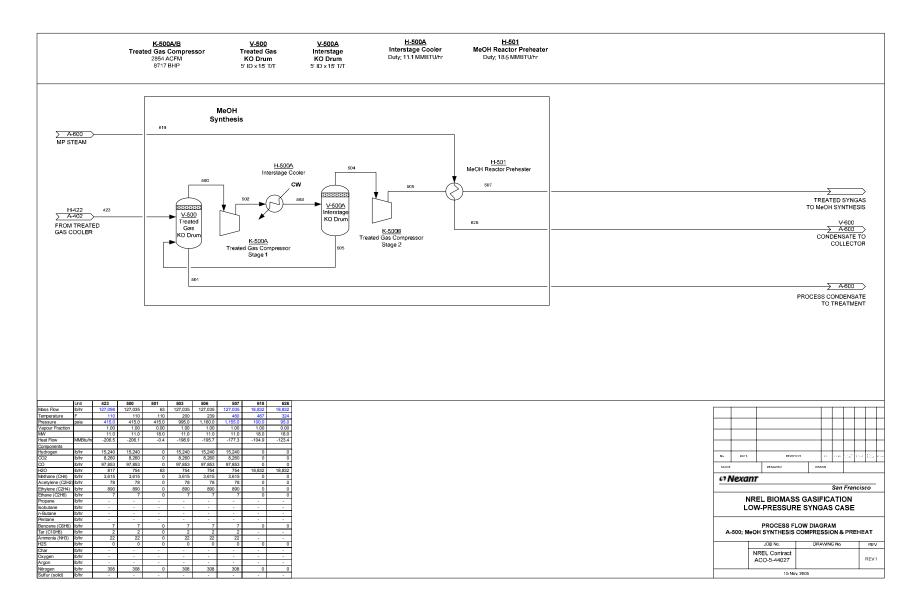


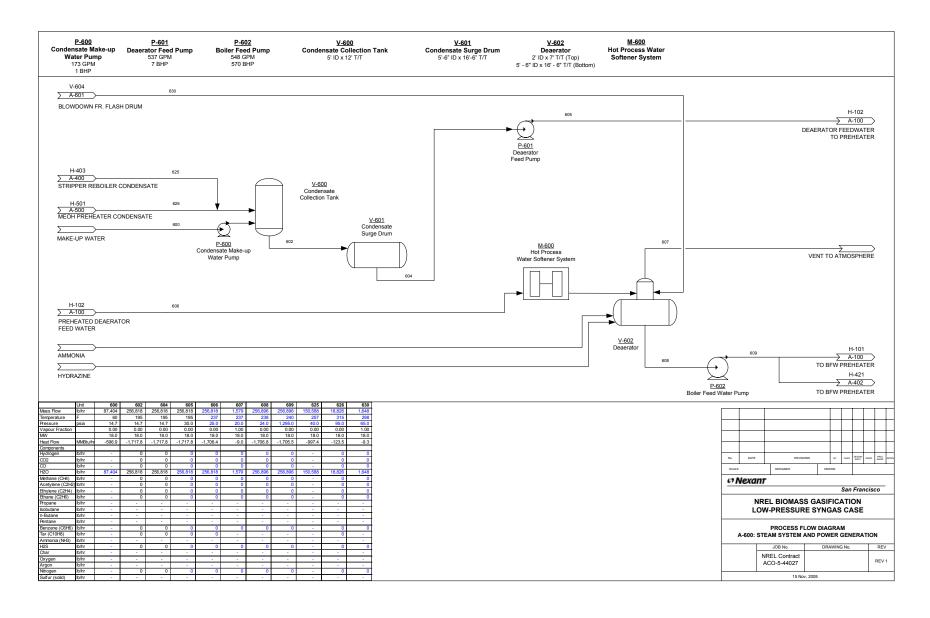


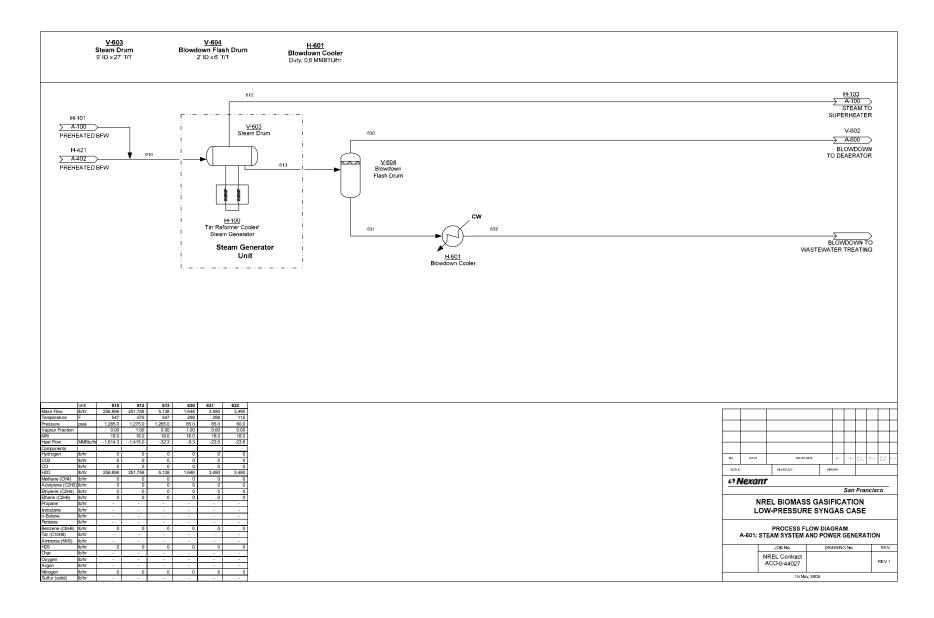


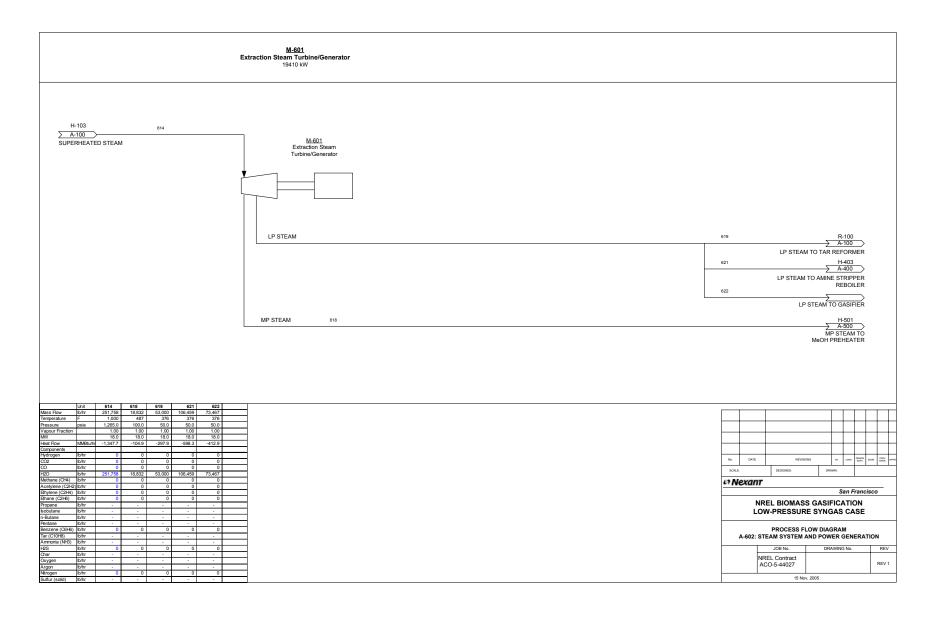



Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock
Final Report
United States Department of Energy/National Renewable Energy Laboratory


Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock
Final Report
United States Department of Energy/National Renewable Energy Laboratory







Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock
Final Report
United States Department of Energy/National Renewable Energy Laboratory

The following two appendices show the equipment lists for the high-pressure and low-pressure syngas design cases, along with detailed data sheets for some of the major pieces of equipment. No specific detail was developed for the tar cracking equipment due to the preliminary nature of its design. In addition, no additional information beyond what is presented in the equipment list was produced for vessels and pumps. Detailed equipment sheets are only shown for exchangers, cyclones, and compressors, where additional design data was developed.

Appendix C Equipment Lists and Data Sheets

HIGH PRESSURE SYNGAS DESIGN CASE

										_								
Item No	Description	Туре	Quantity Per Train	Size	Weight	Head	Design Duty	Desi P	gn T	Oper P	ating T	Power Useage	Materials	Price, total (unistalled)	Price Escalated, total (uninstalled)	Total Installed Cost	Quote Source	Comments
					lbs	PSI		PSIG	٥F	PSIG	۰F	(No.) HP		Q2 2004 Cost Index (US \$)	Q2 2005 Cost Index (US \$)	(US \$)		
teactors		E1 1 1 1 1 1 1 1											Refractory lined					
R-100	Tar Reformer	Fluidized Bed		20' ID x 20' T/T				490	1675	445	1576		CS		\$950,942		GTI	662,000 lbs catalyst req'd
R-101	Catalyst Regenerator			22' ID x 70' T/T				20	1950	5	1850		Refractory lined CS		\$329,616		GTI	
	ZnO Beds	Vertical Vertical	1		43,856 43,856		2 ppmv H2S inlet	445 445	850	402 402	750		CS CS		\$219,280		Johnson Matthey	707 ft ³ total catalyst volume req
R-321 Fotal	ZnO Beds	vertical	1	4' - 3" ID x 8' T/T	43,856		2 ppmv H2S inlet	445	850	402	750		CS		\$219,280 \$1,719,118		Johnson Matthey	
Cyclones																		
S-100	Gasifier Cyclone	Cyclone		5' ID x 25' T/T			3304 lb/hr dust	490	650	445	1576		CS w/ 4" refractory		\$355,000		Fisher Kesterner	Refractory lining will bring the
		Cyclone	1				loading 1128 lb/hr dust						lining CS w/ 4" refractory				Fisher Kosterman	shell temperature to 590F. Refractory lining will bring the
3-102	Tar Reformer Cyclone	Cyclone	1	5' - 6" ID x 27' - 6" T/T			loading 1128 lb/hr dust	490	650	442	1576		lining CS w/ 4" refractory		\$410,000		Fisher Kosterman	shell temperature to 590F. Refractory lining will bring the
3-103	Catalyst Regenerator Cyclone	Cyclone	1	5' ID x 25' T/T			loading	490	650	442	1576		lining		\$265,000		Fisher Kosterman	shell temperature to 590F.
Total															\$1,030,000			
Columns, V	essels & Tanks			3' - 2" ID x 7' - 9" T-T (Venturi);														
				5' - 3" ID x 8' - 11" T-T (Quench														
C-200 /-400	Syngas Venturi Scrubber & Quench Tower Treated Gas KO Drum	Vertical Vertical	1	Tower) 5' ID x 15' T-T	31700			485 422	420 160	432 382	370 110		CS CS	\$31 700	\$316,000 \$37,580		EPA Cost Curve ICARUS	
	Interstage KO Drum	Vertical	1	5' ID x 15' T-T	29300		 	1030	250	980	200	l	CS	\$31,700 \$57,800	\$37,580 \$68,522		ICARUS	1
/-500	Condensate Collection Drum	Vertical	1	5' ID x 13' T-T	4170			15	265	0	212		CS	\$14,745	\$17,480		ICARUS	
/-501	Condensate Surge Drum	Horizontal	1	6' ID x 17' T-T	6300			15	145	0	94		CS	\$22,195	\$26,312		ICARUS	
	Deaerator Steam Drum	Horizontal Horizontal	1	6' ID x 17' T-T; 2' ID x 7' T-T 9' ID x 27' T-T	7900 139300			25 1335	290 625	10 1265	240 575		CS SA 302B	\$31,350 \$764,205	\$37,165 \$1.018.227		ICARUS ICARUS	
	Blowdown Flash Drum	Vertical	1	2' ID x 6' T-T	1300			65	350	50	298		CS CS	\$8,200	\$9,721		ICARUS	
Γ-200	Sludge Settling Tank	Horizontal	1	1' ID x 3' T/T	300			475	415	430	364		CS	\$4,800	\$5,690		ICARUS	
Γ-201	Quench Water Recirculation Tank	Horizontal	1	4' - 6" ID x 14' T/T	3600			475	360	430	311		CS	\$14,460	\$17,142		ICARUS	
Total				+					+	_			-		\$1,553,840			+
leat Excha	ngers			5' - 7" ID x 12' T-T				TI 1335	625	1070	575							
H-100	Tar Reformer SG Cooler/Steam Generator	Shell & Tube	2	5' - 7" ID x 12' T-T Surface area: 5206 SQFT			203.7 MMBTU/hr	T 1335 S 485	1675	1270 442	575 1576	ł	CS - refractory	\$1,465,600	\$1,664,628		ICARUS	Refractory Lined
				7' - 6" ID x 20' T-T				T 1335	600	1270	551		CS					
1-101	Tar Reformer SG Cooler/BFW Preheater	Shell & Tube	1	Surface area: 23969 SQFT 8' - 4" ID x 14' T-T			50.84 MMBTU/hr	S 485 T 1335	675 1100	437 1255	624 1000		CS 316S	\$513,500	\$583,233		ICARUS	
H-102	Flue Gas Cooler/Steam Superheater	Shell & Tube	1	Surface area: 8915 SQFT 3' - 6" ID x 10' T-T			83.65 MMBTU/hr	S 15 T 485	1900 415	0 441	1798 364		CS - refractory	\$1,598,750	\$1,815,860		ICARUS	Refractory Lined
H-200	Quench Water Recirculation	Shell & Tube	1	Surface area: 2867 SQFT			22.34 MMBTU/hr	S 20	150	5	100		CS	\$80,000	\$90,864		ICARUS	
1-201	Amine Precooler/BFW Preheat	Shell & Tube	1	4' - 8" ID x 14' T-T Surface area: 7511 SQFT			36.99 MMBTU/hr	T 1335 S 470	400 410	1280 427	349 356		CS CS	\$260,300	\$295,649		ICARUS	
1-202	Amine Precooler/Deaerator FW Preheat	Shell & Tube	1	3' - 4" ID x 6' T-T Surface area: 585 SQFT			9.24 MMBTU/hr	T 30 S 465	300 400	15 422	239 338	1	CS CS	\$16,260	\$18,468		ICARUS	
H-203	Amine Precooler	Shell & Tube	-1	8' ID x 8' T-T Surface area: 11541 SQFT			139.3 MMBTU/hr	T 65 S 460	150 350	50 432	100 305		CS CS	\$309,600	\$351,644		ICARUS	
			'	8' ID x 8' T-T				T 450	800	407	750		CS					
1-320	ZnO Preheater	Shell & Tube	1	Surface area: 19400 SQFT 5' ID x 16' T-T			49.69 MMBTU/hr	S 15 T 1335	910 615	1270	839 565		CS CS	\$288,000	\$327,110		ICARUS	
1-321	ZnO SG Cooler/BFW Preheater	Shell & Tube	1	Surface area: 5440 SQFT 3' ID x 8' T-T			29.85 MMBTU/hr	S 440 T 65	800 150	397 50	750 100		CS CS	\$192,600	\$218,755		ICARUS	
1-322	Post ZnO Syngas Cooler	Shell & Tube	1	Surface area: 1620 SQFT			19.91 MMBTU/hr	S 435	420	393	370		CS	\$56,100	\$63,718		ICARUS	
1-400A	MeOH Compressor Interstage Cooler	Shell & Tube	1	1' - 11" ID x 6' T-T Surface area: 476 SQFT			10.47 MMBTU/hr	T 1035 S 65	390 150	985 100	338 50		CS CS	\$32,200	\$36,573		ICARUS	
H-401	MeOH Syngas Preheat	Shell & Tube		6' ID x 18' T-T Surface area: 16212 SQFT			17.14 MMBTU/hr	T 1210 S 100	515 525	1150 85	460 472		CS CS	\$355,140	\$403,368		ICARUS	
	• •		-	1' - 3" ID x 4' T-T				T 65	150	50	100		CS					
1-501 Fotal	Blowdown Cooler	Shell & Tube	1	Surface area: 130 SQFT			0.84 MMBTU/hr	S 65	350	50	298		CS	\$19,100	\$21,694 \$5,891,565		ICARUS	
Compress -	rs & Blowers																	
			1						1				 				Chicago Blower Corp./	Used ICARUS to cost motor. 2
K-100	Combustion Air Blower	Blower	2	61910 ACFM		5			1	0	90	1800	CS		\$274,305		ICARUS	100% blowers
K-320 K-400	Flue Gas Blower	Blower	2	85400 ACFM	21.500	0.4 758				0 387	214 110	207	CS CS	\$2,133,200	\$233,875 \$2,522,936		Scaled fr. Chicago Blower	2 - 100% blowers
rotal	MeOH Compressor - 2 Stages	Centrifugal		2746 ACFM	74,500	/50				301	110	8388	L'S	\$2,133,200	\$3,031,115		ICARUS	
umps		-	1				—		+	 			-					
P-201	Quench Water Recirculation	Centrifugal	2	282 GPM	420	14		475	360	430	311	3	CS	\$10,600	\$11,021		ICARUS	2 - 100% pumps
P-500 P-501	Condensate Make-up Water Pump Deaerator Feed Pump	Centrifugal	2	147 GPM 674 GPM	440 680	5 15		20 30	110 150	0	60 98	1.3	CS CS	\$5,400 \$17,200	\$5,614 \$17,883		ICARUS ICARUS	2 - 100% pumps
P-501	Boiler Feed Water Pump	Centrifugal Centrifugal	2	684 GPM	9,000	1 270		1345	290	11	240	710	CS	\$325,000	\$17,003		ICARUS	2 - 100% pumps 2 - 100% pumps
Total					-,,	.,,				<u> </u>				**********	\$372,421		1011100	parriga
Steam Turb	lne																	
W-501	Steam Turbine	Steam Turbine	1		172,900	-1,160				1245	1000	(14710 kW)	CS	\$4,534,500	\$5,362,953		ICARUS	
Total		 							1	-					\$5,362,953			-
Package Un	nits																	
A-300	Amine Unit															\$22,413,600	GRI Cost Curve	
A-301	LO-CAT Unit		_	H					1			l			\$3,998,550	\$5,348,550	Gas Technology Products	
TOTAL EQU	JIPMENT COST, (excld. Package units)		†				 	-	+	1					\$18,961,012	\$48,729,802		Installation factor of 2.57 used
		İ					İ		1						,,	\$76,491,952		
	TALLED COST	I	1	1						1		l				\$/6,491,952		

Appendix C Equipment Lists and Data Sheets

LOW PRESSURE SYNGAS DESIGN CASE

	T.							Des	ign	Ope	rating			Price total	Price Escalated.	Total Installed	1	
Item No	Description	Type	Quantity	Size, each	Weight	Head	Design Duty, total	P	т	P	т	Power Useage	Materials	(unistalled)	total (uninstalled)	Cost	Quote Source	Comments
					lbs	PSI		PSIG	°E	PSIG	°E	(No.) HP		Q2 2004 Cost Index	Q2 2005 Cost Index	(US \$)		
Reactors					IDS	PSI		PSIG	-7-	PSIG	7	(NO.) FIP		(05\$)	(053)	(053)		
		Fluidized Red	1										Refractory lined					
R-100	Tar Reformer	i ididized bed	-	29' ID x 89' T/T				30	1700	15	1598		CS Refractory lined		\$921,786		GTI	1,820,000 lbs catalyst req'd
R-101	Catalyst Regenerator		1	23' ID x 72' T/T				30	1700	15	1598		CS CS	1	\$545,886		GTI	
R-420	ZnO Beds	Vertical	1	4' - 6" ID x 8' T/T	44,522		2 ppmv H2S inlet	455	850	415	750		CS		\$222,610		Johnson Matthey	777 ft ³ total catalyst volume reg'd
R-421 Total	ZnO Beds	Vertical	1	4' - 6" ID x 8' T/T	44,522		2 ppmv H2S inlet	455	850	415	750		CS		\$222,610 \$1,912,892		Johnson Matthey	777 It Iolai calaiyat volanic requ
Iotai															\$1,512,052			
Cyclones																		
S-100 A/B/C/D	Gasifier Cyclone	Cyclone		7" ID x 35" T/T			14,142 lb/hr dust loading	22	650 (see	18	1598		CS w/ 4* refractory lining		\$1,225,000		Fisher Kosterman	Refractory lining will bring the shell temperature to 590F.
		Cyclone	-				1,000 lb/hr dust	33	650 (see				CS w/ 4"					Refractory lining will bring the shell
S-102	Tar Reformer Cyclone	Cyclone	1	5' ID x 25' T/T			loading	33	comments)	15	1598		refractory lining		\$370,000		Fisher Kosterman	temperature to 590F.
S-103	Catalyst Regenerator Cyclone	Cyclone		4' ID x 17' T/T			1,000 lb/hr dust loading	33	650 (see comments)	15	1598		CS w/ 4" refractory lining		\$250,000		Fisher Kosterman	Refractory lining will bring the shell temperature to 590F.
Total	Catalyst Regelielatol Cyclolie	Cyclone		4 IDX 17 171			ioauling	33	comments)	10	1090		remactory ming		\$1,845,000		Fisher Rusiellian	temperature to onor.
Columns, V	/essels & Tanks			14' ID x 29' T/T				10	275	4	225		CS		\$340,000		Out Develo	
V-300	Syngas Venturi Scrubber & Quench Tower Syngas KO Drum	Vertical Vertical	2	14' ID x 29' I/I	31.500			19	275	4	157		CS	\$306.800	\$340,000		Croll Reynolds ICARUS	
	1st Stage KO Drum	Vertical	1	13' ID x 26' T/T	25.500			30	160	15	110		CS		\$87.016		ICARUS	
V-300B	2nd Stage KO Drum	Vertical	1	10' ID x 20' T/T	24,700			79	160	64	110		CS	\$73,400 \$54,300	\$64,373		ICARUS	
V-300C	3rd Stage KO Drum	Vertical	1	7" ID x 21" T/T	21,900			220	160	200	110		CS	\$41,800	\$49,554		ICARUS	
V-300D	Post KO Drum	Vertical	1	6° ID x 18° T/T	23,600			475	160	430	110		CS	\$45,400	\$53,822		ICARUS	
V-500	Treated Gas KO Drum Interstage KO Drum	Vertical	1	5' ID x 15' T/T 5' ID x 15' T/T	14,900	—	-	440	160	400 980	110	 	CS CS	\$31,800	\$37,699 \$68,522		ICARUS	
V-500A V-600	Interstage KO Drum Condensate Collection Tank	Vertical Vertical	1	5' ID x 15' I/I	29,300 3,990			1,030	250 245	980	200 195	 	CS	\$57,800 \$14,100	\$68,522 \$16,716	—	ICARUS ICARUS	
V-600 V-601	Condensate Surge Drum	Horizontal	1	5' - 6" ID x 16' - 6" T/T	5,483			15	245	0	195		CS	\$14,100	\$10,710		ICARUS	
V-602	Deaerator	Vertical	1	6" ID x 18" T/T; 2" ID x 6" T/T	7,800			25	290	10	237		CS	\$35,700	\$42,322		ICARUS	
V-603	Steam Drum	Horizontal	1	9' ID x 27' T/T	139,300			1335	625	1270	575		SA 302B	\$764,205	\$1,018,227		ICARUS	
V-604	Blowdown Flash Drum	Vertical	1	2' ID x 6' T/T	1,200			65	350	50	298		CS	\$7,500	\$8,891		ICARUS	
T-200	Sludge Settling Tank Quench Water Recirculation Tank	Horizontal	1	1' ID x 3' T/T	300			16 16	180	1	128		CS	\$4,000	\$4,742		ICARUS	
T-201 Total	Quenun water Rediculation Tank	Horizontal	1	9' ID x 27' T/T	15,300	-	-	10	180	1	128	 	CS	\$60,700	\$71,960 \$2,250,458		ICARUS	
		l		1			1						—	1	72,230,400	i		
Heat Excha	ingers																	
	L		_	6' ID x 14' T/T				T 1335	625	1270	575	ļ	CS					
H-100	Tar Reformer SG Cooler/Steam Generator	Shell & Tube	2	Surface area: 5354 SQFT 4' - 9" ID x 14" T/T			167 MMBTU/hr	S 30 T 1335	1700 600	15 1.280	1598 542		CS - refractory	\$989,400	\$1,129,202		ICARUS	Refractory Lined
H-101	Tar Reformer SG Cooler/BFW Preheater	Shell & Tube	2	Surface area: 6667 SQFT			50.61 MMBTU/hr	S 20	675	12	624	t	CS	\$682,550	\$775,240		ICARUS	
				6' - 3" ID x 14' T/T				T 30	280	15	227		CS					
H-102	Tar Reformer Cooler/Deaerator FW Preheat	Shell & Tube	1	Surface area: 5621 SQFT 7' - 6" ID x 14' T/T			11.34 MMBTU/hr	S 20	350	9 985	300		CS	\$104,600	\$118,805		ICARUS	
H-103	Flue Gas Cooler/Steam Superheater	Shell & Tube	-1	7' - 6" ID x 14' 1/1 Surface area: 5770 SQFT			67.26 MMBTU/hr	T 1335 S 15	1100 1900	985	1275 1798	ł	316S CS - refractory	\$1,016,858	\$1,154,947		ICARUS	Refractory Lined
H= 103	Fide Gas Codiel/Steam Superileater	Stiell & Tube		5' - 11" ID x 10' T/T				T 30	150	5	100		CS		\$1,104,947		IUARUS	Reliacio y Elileu
H-200	Quench Water Recirculation Cooler	Shell & Tube	1	Surface area: 9232 SQFT			22.2 MMBTU/hr	S 30	215	- 11	161	İ	CS	\$203,800	\$231,476		ICARUS	
			-	6" - 10" ID x 12" T/T				T 35	400	20	344		CS					
H-300A	Compressor Interstage Cooling	Shell & Tube	2	Surface area: 14235 SQFT 3' - 11" ID x 10' T/T			122 MMBTU/hr	S 65 T 65	150 150	50	100		CS	\$802,600	\$911,593		ICARUS	
H-300B	Compressor Interstage Cooling	Shell & Tube	1	Surface area: 3435 SQFT			32.79 MMBTU/hr	S 85	400	69	350	ł	CS	\$72,300	\$82,118		ICARUS	
				4' - 3" ID x 10' T/T				T 230	400	205	349		CS					
H-300C	Compressor Interstage Cooling	Shell & Tube	1	Surface area: 4368 SQFT			27.69 MMBTU/hr	S 65	150	50	100		CS	\$95,000	\$107,901		ICARUS	
H-300D	Compressor Interstage Cooling	Shell & Tube		3' - 6" ID x 10' T/T Surface area: 2934 SQFT			18 21 MMRTU/br	T 485 S 65	330 150	435 50	277 100	ł	CS	\$74,900	\$85,071		ICARUS	
H-300D	Compressor interstage Cooling	Shell & Tube	-	7' - 6" ID x 8' T/T			18.21 MMB1U/nr	T 465	800	420	750		CS	\$74,900	\$85,071		ICARUS	
H-420	ZnO Preheater	Shell & Tube	1	Surface area: 14480 SQFT			52.90 MMBTU/hr	S 15	990	0	945	İ	CS	\$289,300	\$328,587		ICARUS	
				5' - 4" ID x 12' T/T				T 1335	600	1,280	542		CS					
H-421	ZnO Syngas Cooler/BFW Preheat	Shell & Tube	1	Surface area: 6915 SQFT 2' - 6" ID x 8" T/T			40.57 MMBTU/hr	S 455	800	410	750		CS	\$244,300	\$277,476		ICARUS	
H-422	ZnO Syngas Cooler	Shell & Tube	-1	Surface area: 1190 SQFT			11 86 MMRTI INV	T 65 S 450	150 315	50 405	100 265	ł	CS	\$41.210	\$46.806		ICARUS	
				2' - 6" ID x 8' T/T			11.00 IIIIII 10/11	T 1,035	385	985	333		CS	041,210	4.0,010			
H-500A	MeOH Compressor Interstage Cooling	Shell & Tube	1	Surface area: 511 SQFT			11.06 MMBTU/hr	S 65	150	50	100		CS	\$33,800	\$38,390		ICARUS	
		Ob - II A T. b -		6' ID x 14' T/T			40.45 141407110	T 1,261	515 540	1,145		ļ	CS	8070 500	8040.000		IOADUO	
H-501	MeOH Syngas Preheat	Shell & Tube	1	Surface area: 12712 SQFT 1' ID x 4' T/T			18.45 MMBTU/hr	S 100 T 65	540 150	85 50	487 100		CS CS	\$278,500	\$316,320	l	ICARUS	
H-601	Blowdown Cooler	Shell & Tube	1	Surface area: 89 SQFT		Щ.	0.609 MMBTU/hr	S 65	350	50	298	<u> </u>	CS	\$18,400	\$20,899		ICARUS	
Total															\$5,624,833			
Campra		ĺ	1	l		1	1	l		1			l	1	1	l		
Compresso	i e	l		l								 	 	 	—	—	Chicago Blower Corp./	Used ICARUS to cost motor. 2 -
K-100	Combustion Air Blower	Blower	2	54910 ACFM		3	1	l		0	90	1600	cs	1	\$256,425	l	ICARUS	100% blowers
K-420	Flue Gas Blower	Blower	2	73100 ACFM		0.4				0	176	177	CS		\$202,375		Scaled fr. Chicago Blower	2 - 100% blowers
K-300	Syngas Compressor- 4 stages	Centrifugal	1	131800 ACFM	333,100	434				1	157	38,786	CS	-	\$15,000,000	\$37,050,000	Elliott	2.47 installation factor
K-500	MeOH Compressor- 2 stages	Centrifugal	- 1	2854 ACFM	31,100	745				399	115	8,717	CS	1	\$2,369,000 \$17.827.800		Ariel Corp.	
Total				l		-	-			-		 	-	1	\$17,827,800			
Pumps																		
P-201	Quench Recirculation Pump	Centrifugal	2	2423 GPM	800	10.12		26	211		160.9	20	CS	\$91,000	\$94,613		ICARUS	2 - 100% pumps
P-600 P-601	Condensate Make-up Water Pump	Centrifugal	2	172 GPM 537 GPM	440 810	5 15.3		20 30	110	0 15	60 108.8	1	CS	\$6,320 \$17,400	\$6,571		ICARUS ICARUS	2 - 100% pumps
	Deserator Feed Pump Boiler Feedwater Pump	Centrifugal Centrifugal	2	537 GPM 548 GPM	810 8,900		-	30 1350	160 278	15 20	108.8 227.9	7 570	CS CS	\$17,400 \$316,800	\$18,091	 	ICARUS ICARUS	2 - 100% pumps 2 - 100% pumps
P-602 Total	Dorce i ccawater rump	Centrilugai		D46 GPM	8,900	1275	-	1300	2/0	-20	221.9	5/0	LS	\$310,000	\$329,377 \$448,651		ILARUS	z = 100 % pumps
															,		i e	
Steam Turk			L .		L	L				L	L							
M-601 Total	Steam Turbine- 2 extraction stages	Steam Turbine	1		221,200	-1200		-		1,250	1,000	(19410 kW)	CS	\$5,459,900	\$6,457,424 \$6,457,424		ICARUS	
rotal		-		l	\vdash	\vdash	-	-		\vdash		-	—	 	\$6,457,424			
Package U	nits					L				L								
A-400	Amine Unit															\$12,452,000	GRI Cost Curve	
A-401	LO-CAT Unit				\vdash	_			\vdash	_	-				\$3,733,550	\$5,003,550	Gas Technology Products	
	l .	-	-		\vdash	-	-	-		-				1				
		ĺ	1	l		1	1	l		1		l	l	1	1	l		Installation factor of 2.57 used on all
TOTAL EQ	UIPMENT COST, (excld. Package units)													l	\$36,367,057	\$91,963,336		equipment except syngas compressor
TOTAL INS	TALLED COST	i	1	l								l	i	1		\$109,418,886	l	

DATA SHEETS, HIGH PRESSURE DESIGN

		Н	eat Exchar	nger Specif	fication shee	et .	
				.g.c. 3p.com	Job No.	-	
Customer	NREL				Ref No.	HP Syngas Ca	ase
Address					Proposal No.	,	
Plant Location					Date		Rev. 0
Service of Unit	Tar Reformer S	SG Cooler/HP	Steam Gener	ator	Item No	H-100	1.07. 0
Size 67x 144	Tai reconnere		BEM - HORZ			11 100	1 Series
	10411 ft²	71	2	Surface/Shell		5206 ft ²	1 oches
Suil/Offic (Lif)	1041111	Onella/Onit	PERFORMAI			3200 It	
Fluid Allocation			FERI ORMAI	Shellside	ONT		Tubeside
Fluid Name			Syn	gas fr Tar Ref	ormor		Preheated BFW
		lb/hr	Syli	435,000	ome	Г	
Total Fluid Entering	3	ID/III					313,900
Vapor				435,000			0
Liquid				0			313,900
Steam							
Noncondensa							
Fluid Vaporized or				0			313,900
Liquid Density (In/C	Out)	lb/ft³		0.000/0.000			46.162/45.419
Liquid Viscosity		cP		0.000			0.091
Liquid Specific Hea		Btu/lb-F		0.000			1.644
Liquid Thermal Cor		Btu/hr-ft-F		0.000			0.320
Vapor Mol. Weight	(In/Out)			18.66/18.66			0.0/18.02
Vapor Viscosity		cР		0.0285			0.0200
Vapor Specific Hea	nt	Btu/lb-F		0.492			0.774
Vapor Thermal Cor		Btu/hr-ft-F		0.067			0.025
Temperature (In/O		°F		1,576.0/624.0	0		556.0/575.0
Operating Pressure		psi(Abs)		457.000			1,285.000
Velocity		ft/sec		43.504			8.337
Pressure Drop (Allo	ow/Calc)	psi		5.000/3.245			5.000/1.133
Fouling resistance	ow/ Gaic)	hr-ft²-F/Btu		0.001000			0.005000
Heat Exchanged	202 700 000 E			mtd (corr)	307.674 °F		0.003000
Transfer Rate, Sen		63.6		Clean	128.2 Btu/hr-f	42 F	
Hallslei Rale, Selv	vice	03.0	CONCEDUC	TION OF ONE		t-r	
		Shel		Tubes			Sketch
Design/Test Dres	noi		isiue				Sketch
Design/Test Pres.		500/		1,360			
Design Temp.	°F	1675		60	-		
No. Passes per Sh		1			6		
	in	0.0625		0.062	5		
	In	1-19.0		6.0			
	Out	1-17.0)	12.0			
Rating	Intermediate	0		0			
	1912	OD 1.000 in		Thk 0.065	Length 12.00	ft	Pitch 1.25000 / 30.0°
Tube Type		LAIN		Material			
Shell		I.D 67.00 OE) in	Shell Cover		INT	
Channel or Bonnet				Channel Cove			
Tubesheet-Stationa				Tubesheet-Fl	oating		
Floating Head Cove				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 19.1 (A	Area)	Spacing-cc	29.1
Baffles-Long		-		Seal Type	•	-	
Supports-Tube			U-Bend		Туре		
Bypass Seal Arrang	gement			Tube-Tubesh			
Expansion Joint	J			Type			
Rho-V2 Inlet Nozzl	<u>e</u>	2,412	Bundle Entrar		1,266	Bundle Exit	2,915
Gasket-Shellside		<u>-,</u> ¬1 <i>-</i>	Tubeside		1,200	Floating Head	
Code Requirement		ASME Saction	n 8, Divsion 1			TEMA Class	R
Weight/Shell		MOINIT OFFIIO	Filled with Wa	ntor		Bundle	11
weignwonen			rilleu With Wa	alCI		Dulluie	

		Н	eat Exchar	iger Speci	fication shee	et	
					Job No.		
Customer	NREL				Ref No.	HP Syngas C	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Tar Reformer S				Item No	H-101	_
Size 90x 240		Туре	BEM - HORZ				1 Series
Surf/Unit (Eff)	23969 ft ²	Shells/Unit		Surface/Shell		23969 ft ²	
			PERFORMAI		UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name			Syn	gas fr Tar Ref	ormer		BFW
Total Fluid Enterin	ıg	lb/hr		435,000			208,600
Vapor				435,000			0
Liquid				0			208,600
Steam							
Noncondensa							
Fluid Vaporized or				0			0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000			55.214/46.316
Liquid Viscosity		cP		0.000			0.116
Liquid Specific He		Btu/lb-F		0.000			1.368
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.358
Vapor Mol. Weigh	t (In/Out)			18.66/18.66			0.0/0.0
Vapor Viscosity		cP		0.0199			0.0000
Vapor Specific He	at	Btu/lb-F		0.461			0.000
Vapor Thermal Co	onductivity	Btu/hr-ft-F		0.044			0.000
Temperature (In/C		°F		624.0/370.0			349.0/551.0
Operating Pressur	·e	psi(Abs)		452.000			1,285.000
Velocity		ft/sec		33.096			-
Pressure Drop (Al	low/Calc)	psi		10.000/8.600)		5.000/0.359
Fouling resistance)	hr-ft²-F/Btu		0.001000			0.005000
Heat Exchanged	50,840,000 Bt	u/hr		mtd (corr)	41.736 °F		
Transfer Rate, Sei	rvice	50.8		Clean	86.9 Btu/hr-ft	²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	lside	Tubes	side		Sketch
Design/Test Pres.	psi	500/		1,350)/		
Design Temp.	°F	675		60	0	1	
No. Passes per Sl	nell	1			1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	In	1-19.0)	6.0			
Size &	Out	1-19.0)	6.0			
Rating	Intermediate	0		0		1	
						•	
Tube No	6830	OD 0.750 in		Thk 0.065	Length 20.00	ft	Pitch 1.00000 / 30.0°
Tube Type		PLAIN		Material	<u> </u>		
Shell	-	I.D 90.00 OE) in	Shell Cover		INT	-
Channel or Bonne	t			Channel Cov	er		
Tubesheet-Station				Tubesheet-FI			
Floating Head Cov				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 13.8 (A		Spacing-cc	24.1
Baffles-Long)r- /=		Seal Type	/		-
Supports-Tube			U-Bend		Туре		
Bypass Seal Arrar	ngement			Tube-Tubesh	,,		
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	'le	5.194	Bundle Entrar		1,440	Bundle Exit	4,997
Gasket-Shellside		0,101	Tubeside		1,110	Floating Head	-
Code Requiremen	ıt	ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell	:-		Filled with Wa	nter		Bundle	
Remarks:			oa witii we			Darialo	
i Ciliairo.							

		Н	eat Exchar	nger Specif	fication shee	et .	
					Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Flue Gas Coole	er/Steam Supe	erheater		Item No	H-102	
Size 100x 168				Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	8915 ft²	, ,	1	Surface/Shell	(Effective)	8915 ft²	
				NCE OF ONE			
Fluid Allocation				Shellside			Tubeside
Fluid Name			Flue	e Gas fr. Tar R	Regen	Su	perheated Steam
Total Fluid Enterin	n	lb/hr	1100	280,200	togon		313,900
Vapor	9	10/111		280,200			313,900
Liquid				0			0
Steam				U			0
Noncondensa	ablo						
				0			
Fluid Vaporized or		IL 1512		0 000/0 000		ļ	0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000		ļ	0.000/0.000
Liquid Viscosity		cP		0.000		ļ	0.000
Liquid Specific He		Btu/lb-F		0.000			0.000
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.000
Vapor Mol. Weight	t (In/Out)			27.56/27.56			18.02/18.02
Vapor Viscosity		cP		0.0399			0.0254
Vapor Specific He		Btu/lb-F		0.314			0.676
Vapor Thermal Co		Btu/hr-ft-F		0.039			0.036
Temperature (In/C		°F		1,798.0/839.0)		575.0/1,000.0
Operating Pressur	е	psi(Abs)		14.700			1,270.000
Velocity		ft/sec		211.463			4.576
Pressure Drop (All	ow/Calc)	psi		2.000/1.798			5.000/0.484
Fouling resistance		hr-ft²-F/Btu		0.001000			0.005000
Heat Exchanged	83.650.000 Bt			mtd (corr)	482.751 °F		
Transfer Rate, Sei		19.4		Clean	22.7 Btu/hr-ft	²-F	
		-	CONSTRUCT	TION OF ONE	SHELL		
		Shel	lside	Tubes	ide		Sketch
Design/Test Pres.	nsi	30/		1,350		1	
Design Temp.	°F	1900		1100		1	
No. Passes per Sh	•	1			<u>-</u> 1	1	
Corrosion Allow.	in	0.0625		0.062	•		
Connections	In	1-61.0)	15.0	<u> </u>	1	
Size &	Out	1-55.0		15.0		1	
Rating	Intermediate	0	,	0		-	
raung	Intermediate	U		U			
Tube No	3900	OD 0.750 in		Thk 0.065	Longth 14 00	ft	Pitch 1.25000 / 45.0°
Tube No Tube Type		PLAIN		Material	Length 14.00	11.	1 IIOH 1.20000 / 40.0
Shell		I.D 100.00 O	D in			INIT	
	4	1,00,000 ט	ווו ט	Shell Cover Channel Cove	or	INT	
Channel or Bonne					- -		
Tubesheet-Station				Tubesheet-Fl		VEO	
Floating Head Cov	/er	T \/===	050	Impingement		YES	
Baffles Cross		Type VERT-:	SEG	%Cut 40.7 (A	area)	Spacing-cc	69.9
Baffles-Long				Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arrar	ngement			Tube-Tubesh	eet Joint		
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	le	880	Bundle Entrar	nce	3,144	Bundle Exit	1,037
Gasket-Shellside			Tubeside			Floating Head	
Code Requiremen	t		n 8, Divsion 1			TEMA Class	R
Weight/Shell			Filled with Wa	ater		Bundle	
Remarks:							

		—	leat Exchai	nger Specif	ication shee	<u></u>	
			out External	igo: opcom	Job No.		
Customer	NREL					HP Syngas Cs	326
Address	TWILL				Proposal No.	Till Oyligus oc	,ac
Plant Location					Date		Rev. 0
Service of Unit	Quench Water	Posiroulation			Item No	H-200	Rev. 0
Size 42x 120	Quelicii Walei			Connected in			1 Series
	0007.62	Type					1 Series
Surf/Unit (Eff)	2867 ft ²	Shells/Unit	1	Surface/Shell	(Effective)	2867 ft ²	
			PERFORMAI	NCE OF ONE	UNII		
Fluid Allocation				Shellside			Tubeside
Fluid Name				Cooling Water	r		Quench Water
Total Fluid Enterin	g	lb/hr		1,117,000			105,700
Vapor				0			0
Liquid				1,117,000			105,700
Steam							
Noncondensa	able						
Fluid Vaporized or	Condensed			0		1	0
Liquid Density (In/		lb/ft³		61.436/61.060	5	1	57.041/61.765
Liquid Viscosity		cP		0.510			0.301
Liquid Specific He	at	Btu/lb-F		1.005		 	1.017
Liquid Thermal Co		Btu/hr-ft-F		1.122		 	0.381
Vapor Mol. Weight		Dta/III It I		0.0/0.0			0.0/0.0
Vapor Viscosity	. (III/Out)	cР	 	0.0000		<u> </u>	0.0000
Vapor Viscosity Vapor Specific He	ot	Btu/lb-F		0.000			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.000			0.000
Temperature (In/C		°F		80.0/100.0			311.0/110.0
Operating Pressur	е	psi(Abs)		20.000			456.000
Velocity		ft/sec		3.475			-
Pressure Drop (All		psi		5.000/3.632			5.000/0.424
Fouling resistance		hr-ft²-F/Btu		0.002000			0.001000
Heat Exchanged	22,340,000 Bt	u/hr		mtd (corr)	92.789 °F		
Transfer Rate, Sei	vice	84.0		Clean	115.0 Btu/hr-1	ft²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	llside	Tubes	ide	Ì	Sketch
Design/Test Pres.	psi	35/		500	1	1	
Design Temp.	°F	150		415	5	1	
No. Passes per Sh	nell	1		1		1	
Corrosion Allow.	in	0.0625		0.0625	•	1	
Connections	In	1-12.0		4.0	<u>, </u>	1	
Size &	Out	1-12.0		4.0		ł	
	Intermediate	0	<u> </u>	0			
Rating	memediale	0		U			
Tuka Na	4550	OD 0.750 in		This 0.005	1 amouth 40 00	a	D:t-b 0.00750 / 20.00
Tube No		OD 0.750 in		Thk 0.065	Length 10.00	IL	Pitch 0.93750 / 30.0°
Tube Type	-	PLAIN	5:	Material		11	
Shell		I.D 42.00 OE	וו ע n	Shell Cover		INT	
Channel or Bonne				Channel Cove			
Tubesheet-Station				Tubesheet-Flo			
Floating Head Cov	/er			Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 22.8 (A	rea)	Spacing-cc	24.0
Baffles-Long				Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arrar	igement			Tube-Tubeshe	eet Joint		
Expansion Joint	<u></u>			Туре	-		
Rho-V2 Inlet Nozz	le	2,540	Bundle Entrar	71	1,308	Bundle Exit	3,750
Gasket-Shellside		_,0.0	Tubeside		.,000	Floating Head	
Code Requiremen	t	ASME Section	n 8, Divsion 1				R
		, WINE OCCIO					13
Weight/Shall			FILIDA WITH WA	ator .		Rundle	
Weight/Shell Remarks:			Filled with Wa	ater		Bundle	

		Н	leat Exchai	nger Specif	fication she	e <i>t</i>	
			Cut Exonu	iger opcon	Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	356
Address	IVINEL				Proposal No.	Til Oyligas O	350
Plant Location					Date		Rev.
	Amina Dragga	or/DEW Drob	t		Item No	H-201	Rev.
Service of Unit	Amine Precool			0			4.0
Size 56x 168	7544.62	Туре		Connected in			1 Series
Surf/Unit (Eff)	7511 ft²	Shells/Unit	1	Surface/Shell		7511 ft²	
			PERFORMAI		UNIT	_	
Fluid Allocation				Shellside			Tubeside
Fluid Name				BFW		Synga	is to Amine Absorber
Total Fluid Enterin	g	lb/hr		320,300			414,200
Vapor				0			414,200
Liquid				320,300			0
Steam							
Noncondensa	able						
Fluid Vaporized or	Condensed			0			40,260
Liquid Density (In/	Out)	lb/ft³		58.527/55.20	1		0.000/56.407
Liquid Viscosity	· · · · · · · · · · · · · · · · · · ·	cP	i	0.188			0.150
Liquid Specific Hea	at	Btu/lb-F		1.086			1.037
Liquid Thermal Co		Btu/hr-ft-F	i	0.393			0.404
Vapor Mol. Weight		2107.11.11.1		0.0/0.0			18.69/18.69
Vapor Viscosity	t (IIII Out)	cР		0.0000			0.0176
Vapor Viscosity Vapor Specific Hea	at	Btu/lb-F		0.000			0.467
Vapor Opecine rick		Btu/hr-ft-F		0.000			0.040
Temperature (In/O		°F		242.0/349.0	<u> </u>	-	356.0/338.0
Operating Pressur		psi(Abs)		1,295.000			442.000
	E			0.893			18.179
Velocity	/0-1->	ft/sec					
Pressure Drop (All		psi		5.000/0.697 0.002000			5.000/0.635 0.001000
Fouling resistance		hr-ft²-F/Btu			*		0.001000
Heat Exchanged				mtd (corr)	34.052 °F		
Transfer Rate, Ser	vice	144.6		Clean	300.2 Btu/hr-	·ft²-F	
				TION OF ONE	-		
			Iside	Tubes			Sketch
Design/Test Pres.		1,425/		1,360			
Design Temp.	°F	410		40	0		
No. Passes per Sh	nell	1			1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	In	1-8.0)	23.0			
Size &	Out	1-8.0)	23.0			
Rating	Intermediate	0		0			
Tube No	3030	OD 0.750 in		Thk 0.065	Length 14.00	ft	Pitch 0.93750 / 30.0°
Tube Type	F	PLAIN		Material			
Shell		I.D 56.00 OE) in	Shell Cover		INT	
Channel or Bonne	t			Channel Cov	er		
Tubesheet-Station	ary			Tubesheet-Fl			
Floating Head Cov				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 10.0 (A		Spacing-cc	11.1
Baffles-Long		71	-	Seal Type	- /	1 13	
Dailles-Luliu			U-Bend	71	Туре		
				T T			
Supports-Tube	gement			TUDE-TUDESN	eer John		
Supports-Tube Bypass Seal Arran	ngement			Tube-Tubesh	leet Joint		
Supports-Tube Bypass Seal Arran Expansion Joint	<u> </u>	1 110	Rundle Entra	Туре		Rundle Evit	1 585
Supports-Tube Bypass Seal Arran Expansion Joint Rho-V2 Inlet Nozz	<u> </u>	1,110	Bundle Entra	Туре	167	Bundle Exit	1,585
Supports-Tube Bypass Seal Arran Expansion Joint Rho-V2 Inlet Nozz Gasket-Shellside	le	`	Tubeside	Туре		Floating Head	
Supports-Tube Bypass Seal Arran Expansion Joint Rho-V2 Inlet Nozz	le	`		Type nce		Floating Head	

Customer NREL Address Plant Location Service of Unit Amine Precooler/Deaerator FW Preheat Size 40x 72 Type BEM - HORZ Connected in	Job No. Ref No. HP Syngas Case Proposal No. Date Rev. 0 Item No H-202
Address Plant Location Service of Unit Amine Precooler/Deaerator FW Preheat Size 40x 72 Type BEM - HORZ Connected i	Proposal No. Date Rev. 0
Plant Location Service of Unit Amine Precooler/Deaerator FW Preheat Size 40x 72 Type BEM - HORZ Connected i	Date Rev. 0
Service of Unit Amine Precooler/Deaerator FW Preheat Size 40x 72 Type BEM - HORZ Connected i	
Size 40x 72 Type BEM - HORZ Connected i	Itom No. H 202
	ILEIII INO IT-ZUZ
	in 1 Parallel 1 Series
Surf/Unit (Eff) 585 ft ² Shells/Unit 1 Surface/She	nell (Effective) 585 ft²
PERFORMANCE OF ONE	
Fluid Allocation Shellside	
Fluid Name Syngas to Amine	
Total Fluid Entering Ib/hr 414,200	
Vapor 373,940	
Liquid 40,260	
Steam	020,000
Noncondensable	
Fluid Vaporized or Condensed 9,444	0
the state of the s	
Liquid Density (In/Out) Ib/ft³ 55.290/55.4	
Liquid Viscosity CP 0.092	0.262
Liquid Specific Heat Btu/lb-F 1.111	1.020
Liquid Thermal Conductivity Btu/hr-ft-F 0.395	0.385
Vapor Mol. Weight (In/Out) 18.96/18.94	
Vapor Viscosity cP 0.0179	
Vapor Specific Heat Btu/lb-F 0.445	0.000
Vapor Thermal Conductivity Btu/hr-ft-F 0.041	0.000
Temperature (In/Out) °F 338.0/332.	1 11
Operating Pressure psi(Abs) 437.000	30.000
Velocity ft/sec 25.051	-
Pressure Drop (Allow/Calc) psi 5.000/1.07	75 5.000/0.287
Fouling resistance hr-ft ² -F/Btu 0.001000	0 0.002000
Heat Exchanged 9,238,000 Btu/hr mtd (corr)	108.950 °F
Transfer Rate, Service 145.0 Clean	322.3 Btu/hr-ft²-F
CONSTRUCTION OF ON	NE SHELL
	eside Sketch
Design/Test Pres. psi 480/ 4	45/
	300
No. Passes per Shell 1	1
Corrosion Allow. in 0.0625 0.06	625
Connections In 1-23.0 8.0	
Size & Out 1-19.0 8.0	
Rating Intermediate 0 0	
Traing intermediate 0 0	
Tube No 550 OD 0.750 in Thk 0.065	Length 6.00 ft Pitch 1.25000 / 45.0°
Tube Type PLAIN Material	20.1ga1 0.00 ft 1 ftoff 1.20000 / 40.0
Shell I.D 40.00 OD in Shell Cover	r INT
Channel or Bonnet Channel Co	
Tubesheet-Stationary Tubesheet-F	
,	0
Floating Head Cover Impingemer Baffles Cross Type VERT- SEG %Cut 49.0	
	(Area) Spacing-cc 38.9
Baffles-Long Seal Type	Type
Baffles-Long Seal Type Supports-Tube U-Bend	Туре
Baffles-Long Seal Type Supports-Tube U-Bend Bypass Seal Arrangement Tube-Tubes	**
Baffles-Long Seal Type Supports-Tube U-Bend Bypass Seal Arrangement Tube-Tubes Expansion Joint Type	sheet Joint
Baffles-Long Seal Type Supports-Tube U-Bend Bypass Seal Arrangement Tube-Tubes Expansion Joint Type Rho-V2 Inlet Nozzle 1,486 Bundle Entrance	2,490 Bundle Exit 2,529
Baffles-Long Seal Type Supports-Tube U-Bend Bypass Seal Arrangement Tube-Tubes Expansion Joint Type Rho-V2 Inlet Nozzle 1,486 Bundle Entrance Gasket-Shellside Tubeside	2,490 Bundle Exit 2,529 Floating Head
Baffles-Long Seal Type Supports-Tube U-Bend Bypass Seal Arrangement Tube-Tubes Expansion Joint Type Rho-V2 Inlet Nozzle 1,486 Bundle Entrance	2,490 Bundle Exit 2,529

		Н	eat Exchai	nger Specif	fication shee	et .	
					Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Amine Precool	er			Item No	H-203	
Size 96x 96		Туре	BEM - HORZ	Connected in			1 Series
Surf/Unit (Eff)	11541 ft²	Shells/Unit	1	Surface/Shell		11541 ft²	
			PERFORMA	NCE OF ONE			
Fluid Allocation			_	Shellside	_		Tubeside
Fluid Name			Syng	as to Amine Al	bsorber		Cooling Water
Total Fluid Enterin	α	lb/hr		414.200	330.20.	<u> </u>	6,965,000
Vapor	9	12/111		364.537			0
Liquid				49.663			6,965,000
Steam				+3,003			0,303,000
Noncondensa	hle					.	
Fluid Vaporized or				97,296		<u> </u>	0
Liquid Density (In/		lb/ft³		55.608/62.12	n	 	62.000/61.573
Liquid Viscosity	out)	cP		0.211	<u> </u>	 	0.627
Liquid Viscosity Liquid Specific Hea	at .	Btu/lb-F		1.063			1.001
Liquid Specific Hea		Btu/hr-ft-F		0.384			0.365
		Dlu/III-II-F			6		0.0/0.0
Vapor Mol. Weight	(III/Out)			18.8591/18.9	U	1	
Vapor Viscosity	-1	cP		0.0168			0.0000
Vapor Specific Hea		Btu/lb-F		0.424			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.041			0.000
Temperature (In/O		°F		332.0/110.0			80.0/100.0
Operating Pressure	e	psi(Abs)		432.000			65.000
Velocity		ft/sec		13.546			
Pressure Drop (All	,	psi		5.000/1.874			5.000/0.592
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged				mtd (corr)	98.751 °F		
Transfer Rate, Ser	vice	122.2		Clean	210.0 Btu/hr-	ft²-F	
				TION OF ONE			
			lside	Tubes			Sketch
Design/Test Pres.		475/		80			
Design Temp.	°F	350		150	0		
No. Passes per Sh	nell	1		,	1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	ln	1-23.0)	31.0			
Size &	Out	1-17.0)	31.0		Ĭ	
Rating	Intermediate	0		0		1	
Tube No	8842	OD 0.750 in		Thk 0.065	Length 8.00 f	t	Pitch 0.93750 / 30.0°
Tube Type	F	PLAIN		Material	-		
Shell		I.D 96.00 OE) in	Shell Cover		INT	
Channel or Bonnet	t			Channel Cove	er		
Tubesheet-Station				Tubesheet-Fl			
Floating Head Cov	,			Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 18.6 (A		Spacing-cc	39.8
Baffles-Long		, , , , , , , , , , , , , , , , , , ,		Seal Type	,	, , , ,	
Supports-Tube			U-Bend	71	Туре		
Bypass Seal Arran	gement			Tube-Tubesh			
Expansion Joint	J			Type			
Rho-V2 Inlet Nozz	le	1,463	Bundle Entra	71	1,418	Bundle Exit	3.610
Gasket-Shellside		., 100	Tubeside		1,110	Floating Head	- ,
Code Requirement	f	ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell		, JOINE GCGIIO	Filled with Wa			Bundle	11
Remarks:			ca with vv			Dariale	

		Н	eat Eychar	ngar Snacit	ication shee	n#	
			eat Excitat	iger opecii	Job No.		
Customer	NREL					HP Syngas Ca	200
Address	ININLL				Proposal No.	Til Syrigas Ca	150
Plant Location					Date		Rev. 0
=	ZnO Drobooto				Item No	H-320	Rev. U
Service of Unit Size 96x 96	ZnO Preheater		DEM LIONZ	O		П-320	1 Carias
0.20 0000	40400 02	Type		Connected in		40400 (12	1 Series
Surf/Unit (Eff)	19400 ft ²	Shells/Unit		Surface/Shell		19400 ft²	
			PERFORMA	NCE OF ONE	UNII		
Fluid Allocation				Shellside			Tubeside
Fluid Name			Flue	e Gas fr. Tar R	legen		Sweet Syngas
Total Fluid Enterin	g	lb/hr		280,200			118,500
Vapor				280,200			118,500
Liquid				0			0
Steam							
Noncondensa	able						
Fluid Vaporized or				0			0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000			0.000/0.000
Liquid Viscosity		cР		0.000			0.000
Liquid Specific Hea	at	Btu/lb-F		0.000			0.000
Liquid Thermal Co	nductivity	Btu/hr-ft-F		0.000			0.000
Vapor Mol. Weight				27.56/27.56			10.99/10.99
Vapor Viscosity	,	cР		0.0157			0.0182
Vapor Specific Hea	at	Btu/lb-F		0.312			0.659
Vapor Thermal Co		Btu/hr-ft-F		0.012			0.076
Temperature (In/O		°F		839.0/214.0			100.0/750.0
Operating Pressur		psi(Abs)		14.500			422.000
Velocity		ft/sec		64.628			2.701
Pressure Drop (All	ow/Calc)	psi		2.000/1.675			5.000/0.488
Fouling resistance		hr-ft²-F/Btu		0.002000			0.002000
Heat Exchanged				mtd (corr)	96.31 °F		0.002000
		26.55			Btu/hr-ft²-F		
Transfer Rate, Ser	vice	20.55	CONCEDUO	Clean TION OF ONE			
		Ohal			-		Cleatele
Davis Tark Davis			lside	Tubes			Sketch
Design/Test Pres.		30/		465			
Design Temp.	°F	910		800			
No. Passes per Sh		1			1		
Corrosion Allow.	in	0.0625	_	0.062	<u> </u>		
Connections	In	1-53.		12.0			
Size &	Out	1-47.	0	15.0			
Rating	Intermediate	0		0			
Tube No	14190	OD 0.750 in		Thk 0.065	Length 8.00 f		Pitch 1.25000 / 45.0°
Tube Type	F	PLAIN		Material			
Shell		I.D 163.00 C	D in	Shell Cover		INT	
Channel or Bonnet	t			Channel Cove			
Tubesheet-Station				Tubesheet-Flo			
Floating Head Cov	ver			Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 36.0 (A	rea)	Spacing-cc	65.0
Baffles-Long				Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arran	gement			Tube-Tubesh			
Expansion Joint	-			Type			
Rho-V2 Inlet Nozz	le	900	Bundle Entrar		673	Bundle Exit	651
Gasket-Shellside			Tubeside	-	-	Floating Head	
Code Requirement	t	ASME Section	n 8, Divsion 1			TEMA Class	
Weight/Shell	-		Filled with Wa	ater		Bundle	
Remarks:			770				
i tomanto.							

		Н	eat Exchar	nger Speci	fication s	heet	
					Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	ase
Address					Proposal I	No.	
Plant Location					Date		Rev. 0
Service of Unit	ZnO SG Coole	r/BFW Prehea	ater		Item No	H-321	
Size 60x 192		Туре	BEM - HORZ	Connected in	1 Par	allel	1 Series
Surf/Unit (Eff)	5440 ft ²		1	Surface/Shel		5440 ft²	. 0000
our or ne (En)	011010		PERFORMAI	VCE OF ONE	IINIT	011010	
Fluid Allocation			7 270 07000	Shellside	<u> </u>		Tubeside
Fluid Name			S,	ngas fr ZnO E	Rode		BFW
Total Fluid Enterin	20	lb/hr	- 5	118,500	beus		111,600
	ig	10/111		118,500			0
Vapor				-,			•
Liquid				0			111,600
Steam							
Noncondens							
Fluid Vaporized or				0			0
Liquid Density (In/	(Out)	lb/ft³		0.000/0.000			54.688/45.460
Liquid Viscosity		cP		0.000			0.115
Liquid Specific He	at	Btu/lb-F		0.000			1.429
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.352
Vapor Mol. Weigh				10.99/10.99			0.0/0.0
Vapor Viscosity	,	cР		0.0203			0.0000
Vapor Specific He	at	Btu/lb-F		0.663			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.086			0.000
Temperature (In/C		°F		750.0/370.0	1		349.0/565.0
Operating Pressur		psi(Abs)		412.000	'		1,285.000
Velocity	I C	ft/sec		30.448			1,285.000
Pressure Drop (Al	low/Colo)			5.000/3.935			5.000/0.407
		psi			1		
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged				mtd (corr)	75.373 °F		
Transfer Rate, Se	rvice	72.8		Clean	99.1 Btu/l	nr-tt²-H	
			CONSTRUCT		_		
		Shel	Iside	Tubes			Sketch
Design/Test Pres.	psi	455/		1,350)/		
Design Temp.	°F	800		61	5		
No. Passes per SI	hell	1			1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	ln	1-15.0)	4.0			
Size &	Out	1-13.0		6.0			
Rating	Intermediate	0		0			
rading	intermediate	Ū		Ū			
Tube No	1902	OD 0.750 in		Thk 0.065	Length 16	00 ft	Pitch 1.25000 / 30.0°
		PLAIN		Material	Lengin 10).UU IL	1 IIGH 1.20000 / 30.0
Tube Type	F) in			Įk I T	
Shell	.1	I.D 60.00 OE	<i>)</i> III	Shell Cover	~-	INT	
Channel or Bonne				Channel Cov			
Tubesheet-Station				Tubesheet-Fl		\/F0	
Floating Head Cov	ver			Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 14.0 (/	Area)	Spacing-cc	14.5
Baffles-Long				Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arrar	ngement			Tube-Tubesh	eet Joint		
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	zle	2,063	Bundle Entrai		272	Bundle Exit	2,203
Gasket-Shellside			Tubeside			Floating Head	
Code Requiremen	nt	ASME Section	n 8, Divsion 1			TEMA Class	
Weight/Shell	-		Filled with Wa	ater		Bundle	
Remarks:			77101 776			Banaio	
i Ciliaino.							

		Н	leat Exchar	nger Specifi	cation shee	et .	
				•	Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Post ZnO Syno	as Cooler			Item No	H-322	
Size 36x 96		Type	BEM - HORZ	Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	1620 ft²	Shells/Unit		Surface/Shell		1620 ft²	1 001100
our voint (Eir)	102011	CHOILO, CHIL		NCE OF ONE		102011	
Fluid Allocation			. <u> </u>	Shellside			Tubeside
Fluid Name			Sv	ngas fr. ZnO B	ade		Cooling Water
Total Fluid Enterir	200	lb/hr	Зу	118,500	cus		995,500
	ng	10/111		118,500			0
Vapor							•
Liquid				0			995,500
Steam							
Noncondens							
Fluid Vaporized o				0			0
Liquid Density (In.	/Out)	lb/ft³		0.000/0.000			62.000/62.000
Liquid Viscosity		cP		0.000			0.762
Liquid Specific He	eat	Btu/lb-F		0.000			1.000
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.363
Vapor Mol. Weigh				10.99/10.99			0.0/0.0
Vapor Viscosity	(,	сP		0.0148			0.0000
Vapor Specific He	eat	Btu/lb-F		0.647			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.065			0.000
Temperature (In/0		°F		370.0/110.0			80.0/100.0
Operating Pressu		psi(Abs)		407.000			65.000
Velocity	ii C	ft/sec		47.403			05.000
Pressure Drop (A	llow/Colo)			5.000/3.747			5.000/0.585
		psi					
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged				mtd (corr)	109.229 °F		
Transfer Rate, Se	ervice	112.6		Clean	183.2 Btu/hr-f	t²-F	
				ION OF ONE			
			Iside	Tubesi			Sketch
Design/Test Pres		450/		80/			
Design Temp.	°F	420		150			
No. Passes per S	hell	1		1			
Corrosion Allow.	in	0.0625		0.0625			
Connections	ln	1-13.	0	12.0			
Size &	Out	1-12.	0	12.0			
Rating	Intermediate	0		0			
		-					
Tube No	1102	OD 0.750 in		Thk 0.065	Length 8.00 ft	<u> </u>	Pitch 0.93750 / 30.0°
Tube Type		PLAIN		Material	Longin 0.00 II	•	1 1011 0.00700 7 00.0
Shell	Г	I.D 36.00 OE) in	Shell Cover		INT	
Channel or Bonne	2t	ال 30.00 UL	<i>7</i> 111	Channel Cove	r	11111	
Tubesheet-Station				Tubesheet-Flo		VEC	
Floating Head Co	ver	T \ /CDT	000	Impingement I		YES	04.0
Baffles Cross		Type VERT-	SEG	%Cut 24.3 (A	rea)	Spacing-cc	24.0
Baffles-Long				Seal Type	_		
Supports-Tube			U-Bend		Туре		
Bypass Seal Arra	ngement			Tube-Tubeshe	et Joint		
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	zle	2,539	Bundle Entrar	nce	1,981	Bundle Exit	3,675
Gasket-Shellside			Tubeside			Floating Head	
Code Requiremen	nt	ASME Section	n 8, Divsion 1				R
Weight/Shell			Filled with Wa	ater		Bundle	
Remarks:							
r comanto.							

		Н	eat Exchar	nger Specifi	cation shee	et .	
					Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	MeOH Compre	essor Interstac	e Cooler		Item No	H-400A	
Size 23x 72		Туре		Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	476 ft²	Shells/Unit	1	Surface/Shell		476 ft²	
our or a control	17010	CHOILE/ CHIL		NCE OF ONE		17010	
Fluid Allocation				Shellside		Ī	Tubeside
Fluid Name				Cooling water			Syngas
Total Fluid Enteri	na	lb/hr		537,000			118,500
Vapor	ng	10/111		0			118,500
							,
Liquid				537,000			0
Steam							
Noncondens							
Fluid Vaporized o				0			0
Liquid Density (In	/Out)	lb/ft³		62.000/62.000			0.000/0.000
Liquid Viscosity		cP		0.762			0.000
Liquid Specific He	eat	Btu/lb-F		1.000			0.000
Liquid Thermal C	onductivity	Btu/hr-ft-F		0.363			0.000
Vapor Mol. Weigh				0.0/0.0			10.99/10.99
Vapor Viscosity	,	cР		0.0000			0.0155
Vapor Specific He	eat	Btu/lb-F		0.000			0.655
Vapor Thermal C		Btu/hr-ft-F		0.000			0.068
Temperature (In/0		°F		80.0/100.0			338.0/200.0
Operating Pressu		psi(Abs)		65.000			1,000.000
Velocity		ft/sec		4.236			25.340
Pressure Drop (A	llow/Calc)	psi		5.000/2.578			5.000/0.675
Fouling resistance		hr-ft²-F/Btu		0.002000			0.001000
					470.040.0E		0.001000
Heat Exchanged				mtd (corr)	172.318 °F	12 =	
Transfer Rate, Se	ervice	127.7	00110=5110	Clean	216.4 Btu/hr-1	TF	
		<u> </u>		TION OF ONE	_	T	
			lside	Tubesi			Sketch
Design/Test Pres		80/		1,050/			
Design Temp.	°F	150		390			
No. Passes per S	Shell	1		1			
Corrosion Allow.	in	0.0625	0.0625				
Connections	In	1-10.0		12.0			
Size &	Out	1-10.0)	10.0			
Rating	Intermediate	0		0			
	•			•		•	
Tube No	442	OD 0.750 in		Thk 0.065	Length 6.00 f	t	Pitch 0.93750 / 30.0°
Tube Type		PLAIN		Material	. J.: 2.201		
Shell	·	I.D 23.25 OE) in	Shell Cover		INT	
Channel or Bonne	et			Channel Cove	r		
Tubesheet-Statio				Tubesheet-Flo			
Floating Head Co				Impingement		YES	
Baffles Cross	7701	Type VERT-	SEG	%Cut 23.5 (A		Spacing-cc	16.3
Baffles-Long		Type VEIXIT	0_0	Seal Type	i cu j	opacing-cc	10.0
Supports-Tube			U-Bend	осаг гурс	Typo		
	naomont		U-DEIIU	Tubo Tuboshi	Type		
Bypass Seal Arra	ngement			Tube-Tubeshe	et John		
Expansion Joint		1.000	.	Туре	1010	B = ::	1.010
Rho-V2 Inlet Noz		1,206	Bundle Entra	nce	1,316	Bundle Exit	1,940
Gasket-Shellside			Tubeside			Floating Head	
		on 8, Divsion 1			TEMA Class	R	
Weight/Shell			Filled with Wa	ater		Bundle	
Remarks:							

		Н	eat Exchai	nger Speci	fication shee	et .		
					Job No.			
Customer	NREL				Ref No.	HP Syngas Ca	ase	
Address					Proposal No.			
Plant Location					Date		Rev. 0	
Service of Unit	MeOH Syngas	Preheat			Item No	H-401		
Size 72x 216		Туре	BEM - HORZ	Connected in			1 Series	
Surf/Unit (Eff)	16212 ft ²		1	Surface/Shel		16212 ft ²		
			PERFORMA	NCE OF ONE	UNIT			
Fluid Allocation				Shellside			Tubeside	
Fluid Name				Steam		Syr	ngas to MeOH Rxn	
Total Fluid Enterin	g	lb/hr		17,610			118,500	
Vapor				17,610			118,500	
Liquid				0			0	
Steam								
Noncondensa	able							
Fluid Vaporized or	Condensed			17,610			0	
Liquid Density (In/	Out)	lb/ft³		0.000/54.78	0		0.000/0.000	
Liquid Viscosity		cР		0.128			0.000	
Liquid Specific Hea	at	Btu/lb-F		1.157			0.000	
Liquid Thermal Co		Btu/hr-ft-F		0.393			0.000	
Vapor Mol. Weight	(In/Out)			18.02/18.02	2		10.99/10.99	
Vapor Viscosity		cР		0.0161			0.0170	
Vapor Specific Hea	at	Btu/lb-F		0.483			0.660	
Vapor Thermal Co	nductivity	Btu/hr-ft-F		0.020			0.074	
Temperature (In/O		°F		471.7/324.0)		240.0/460.0	
Operating Pressur	е	psi(Abs)		100.000			1,165.000	
Velocity		ft/sec		4.482			2.118	
Pressure Drop (All	ow/Calc)	psi		5.000/0.586	6		5.000/0.430	
Fouling resistance		hr-ft²-F/Btu		0.005000			0.001000	
Heat Exchanged	17,140,000 Bt	u/hr		mtd (corr)	45.146 °F			
Transfer Rate, Ser		23.4		Clean	27.4 Btu/hr-ft	2-F		
,			CONSTRUCT	TION OF ONE	SHELL			
		Shel	lside	Tubes	side		Sketch	
Design/Test Pres.	psi	130/		1,22	5/	1		
Design Temp.	°F	545			5			
No. Passes per Sh	nell	1			1	1		
Corrosion Allow.	in	0.0625	0.0625		1			
Connections	ln	1-8.0	10.0		1			
Size &	Out	1-2.0		12.0		1		
Rating	Intermediate	0		0		1		
	•	•		•		•		
Tube No	5044	OD 0.750 in		Thk 0.065	Length 18.00	ft	Pitch 0.93750 / 30.0°	
Tube Type	F	PLAIN		Material				
Shell		I.D 72.00 OD) in	Shell Cover		INT		
Channel or Bonne	t			Channel Cov	er er			
Tubesheet-Station	ary			Tubesheet-F	loating			
Floating Head Cov	er			Impingement	t Protection	NO		
Baffles Cross		Type VERT-:	SEG	%Cut 10.2 (Area)	Spacing-cc	14.3	
Baffles-Long				Seal Type		<u> </u>		
Supports-Tube			U-Bend		Туре			
Bypass Seal Arran	gement			Tube-Tubesh	neet Joint			
Expansion Joint	-			Туре				
Rho-V2 Inlet Nozz	le	1,057	Bundle Entra	, .	1,398	Bundle Exit	1,158	
,,,,		Tubeside			Floating Head			
Gasket-Shellside			i ubcoluc					
	t	ASME Sectio	n 8, Divsion 1			TEMA Class	R	
Gasket-Shellside	t	ASME Sectio						

		Н	eat Exchar	nger Specifi	cation shee	et	
					Job No.		
Customer	NREL				Ref No.	HP Syngas Ca	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Blowdown Coo	ler			Item No	H-501	
Size 15x 48		Туре	BEM - HORZ	Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	130 ft ²	Shells/Unit	1	Surface/Shell	(Effective)	130 ft ²	
			PERFORMAI	NCE OF ONE U	INIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name				Blowdown			Cooling water
Total Fluid Entering	q	lb/hr		3,987			41,985
Vapor	<u> </u>			0			0
Liquid				3,987			41.985
Steam				-,			,
Noncondensa	able						
Fluid Vaporized or				0		 	0
Liquid Density (In/		lb/ft³		56.607/62.000			62.000/62.000
Liquid Viscosity		cP		0.311		 	0.762
Liquid Specific Hea	at	Btu/lb-F		1.059		 	1.000
Liquid Thermal Co		Btu/hr-ft-F		0.382		-	0.363
Vapor Mol. Weight		בונו/ווו-ונ-ר		0.0/0.0		-	0.0/0.0
Vapor Viscosity	(III/Out)	cР		0.0000			0.0000
Vapor Specific Hea	^	Btu/lb-F		0.000			0.000
Vapor Specific Hea		Btu/hr-ft-F		0.000			0.000
_							
Temperature (In/O		°F		298.0/110.0			80.0/100.0
Operating Pressure	e	psi(Abs)		65.000			65.000
Velocity	(0.1.)	ft/sec		0.143			0.528
Pressure Drop (All		psi		5.000/0.154			5.000/0.206
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged				mtd (corr)	89.027 °F		
Transfer Rate, Ser	vice	72.7		Clean	97.5 Btu/hr-ft	²-F	
				TION OF ONE	SHELL		
		Shel	lside	Tubesi	de		Sketch
Design/Test Pres.	psi	80/		80/			
Design Temp.	°F	350		150			
No. Passes per Sh	iell	1		1			
Corrosion Allow.	Corrosion Allow. in 0.0						
Connections	In	1-1.0		3.0			
Size &	Out	1-1.0)	3.0			
Rating	Intermediate	0		0		1	
	•					•	
Tube No	170	OD 0.750 in		Thk 0.065	Length 4.00 f	t	Pitch 0.93750 / 30.0°
Tube Type	F	PLAIN		Material	<u> </u>		-
Shell		I.D 15.25 OD) in	Shell Cover		INT	
Channel or Bonnet				Channel Cove	r		
Tubesheet-Station				Tubesheet-Flo			
Floating Head Cov				Impingement I	Protection	YES	
Baffles Cross	-	Type VERT-	SEG	%Cut 8.6 (Are		Spacing-cc	3.0
Baffles-Long		. , , , , , , , , , , , , , , , , , , ,		Seal Type	,	- pacig 00	
Supports-Tube			U-Bend	Jour Typo	Туре		
Bypass Seal Arran	gement		C DOING	Tube-Tubeshe			
Expansion Joint	genient			Type	ot John		
Rho-V2 Inlet Nozzl	۵	728	Bundle Entrar		9	Bundle Exit	423
Gasket-Shellside	<u> </u>	1 20		100	<u> </u>	Floating Head	
		Tubeside			TEMA Class		
•		on 8, Divsion 1 Filled with Water				R	
Weight/Shell			rilled with Wa	ater		Bundle	
Remarks:							

COMPRESSOR NUMBER		K-100			
SERVICE		Combustion Air			
GAS HANDLED		Air			
NORMAL FLOW	SCFM	58,597			
NORMAL FLOW	LB/HR	265,200			
DESIGN FLOW	SCFM	203,200			
MOL WT.	OOI W	28.63			
	Value	1.4			
C _p /C _v	@ F / PSIA	90 / 14.7			
SUCTION CONDITIONS	₩ I / I OIA	307 14.7			
SUCTION PRESSURE	PSIA	14.7			
COMPR. FACTOR @ SUCTION		0.999			
FLOW AT SUCTION	ACFM	61,910			
ORIGIN	PSIA	81,910			
	F	90			
TEMPERATURE		90			
LINE LOSS	PSI (2)	+			
OTHER LOSSES	PSI (1, 2)		1		
CONTINGENCY	PSI		+		
DIGGUADOS CONDITIONS			1		
DISCHARGE CONDITIONS	DOLA		 		
DISCH. PRESSURE	PSIA	20			
DISCH. TEMPERATURE	F (2)	157			
COMPR. FACTOR @ DISCH.		0.999			
DELIVERY	PSIA				
LINE LOSS	PSI (2)				
EXCHANGER LOSS	PSI (2)		ļ		
HEATER LOSS	PSI (2)				
CONTROL VALVE LOSS	PSI (2)				
OTHER LOSSES	PSI (2)				
CONTINGENCY	PSI (2)				
TOTAL LOSSES	PSI (2)				
COMPRESSION RATIO		1.36			
EFFICIENCY	(2)	0.75			
ВНР	(2)	1800			
COMPRESSOR TYPE					
DRIVER TYPE					
GAS COMPOSITION: Vol. %					
	H₂O	3.1			
	O ₂	20.3			
	Ar	0.9			
	N ₂	75.7			
(1) INCLUDES ALLOWANCE FOR	SUCTION OR DISCHAR	GE SNUBBER	•	<u>.</u>	•
(2) VALUE TABULATED IS ESTIM			DESIGN		
(2) VALUE TABOLATED TO LOTTIVE	ATED AND MOOT BE VE	ALL LED BY FINAL MEGINATION	DEGIGIA		
			1		

						1		
NO	DATE	REVISIONS	PROC	PROJ.	CLIENT			
						JOB NO	NREL Contract ACO-5	5-44027
		NREL BIOMASS GASIFICATION: High Pressure Synga	as Case (G	TI Gasifier)		DRAWING	NO	REV
		TAREE BIOWINGS OF CHITOTAL HIGHT TOSSUIC SYNG	uo 0uoc (0	TT Guoinor,				

COMPRESSOR NUMBER			K-320		
SERVICE					
CERTICE			Flue Gas Blower		
GAS HANDLED			Flue Gas		
NORMAL FLOW	SCFM		64,194		
NORMAL FLOW	LB/HR		279,800		
DESIGN FLOW	SCFM				
MOL WT.			27.58		
C _p /C _v	Value		1.365		
	@ F / P	SIA	202.5 / 14.3		
SUCTION CONDITIONS					
SUCTION PRESSURE	PSIA		14.3		
COMPR. FACTOR @ SUCTION			0.9985		
FLOW AT SUCTION	ACFM		85,400		
ORIGIN	PSIA				
TEMPERATURE	F		214		
LINE LOSS	PSI	(2)			
OTHER LOSSES	PSI	(1, 2)			
CONTINGENCY	PSI				
DISCHARGE CONDITIONS					
DISCH. PRESSURE	PSIA		14.7		
DISCH. TEMPERATURE	F	(2)	221		
COMPR. FACTOR @ DISCH.			0.9985		
DELIVERY	PSIA				
LINE LOSS	PSI	(2)			
EXCHANGER LOSS	PSI	(2)			
HEATER LOSS	PSI	(2)			
CONTROL VALVE LOSS	PSI	(2)			
OTHER LOSSES	PSI	(2)			
CONTINGENCY TOTAL LOSSES	PSI PSI	(2)			
	P31	(2)	1.03		
COMPRESSION RATIO EFFICIENCY		(2)	0.75		
BHP		(2)	207		
COMPRESSOR TYPE		(2)	207		
DRIVER TYPE					
GAS COMPOSITION: Vol. %					
CAS COMM CONTON. VOI. 78	CO ₂		14.33		
	H ₂ O		10.93		1
	O ₂		1.03		
	Ar		0.73		
	N ₂		72.98		
	_				
(1) INCLUDES ALLOWANCE FOR SU	JCTION OR	DISCHARGE S	SNUBBER		
(2) VALUE TABULATED IS ESTIMAT				DESIGN	

NO	DATE	REVISIONS	PROC	PROJ.	CLIENT						
		NREL BIOMASS GASIFICATION: High Pressure Synga	as Casa (G	TI Casifier)		DRAWING	S NO	REV			
		TARLE BIOWAGO GAGII TOATTON. HIGHT TOSSUIC GYING									

NO DATE

COMPRESSOR NUMBER			K-400A	K-400B	
SERVICE			MeOH Comp-1	MeOH Comp-2	
GAS HANDLED			Treated Syngas	Treated Syngas	
NORMAL FLOW	SCFM		68,247	68,247	
NORMAL FLOW	LB/HR		118,500	118,500	
DESIGN FLOW	SCFM		-,	-,	
MOL WT.			10.99	10.99	
	Value		1.418	1.423	
C _p /C _v	@ F / PS	SIA	110 / 402	200 / 995	
SUCTION CONDITIONS					
SUCTION PRESSURE	PSIA		402	995	
COMPR. FACTOR @ SUCTION			1.006	1.021	
FLOW AT SUCTION	ACFM		1,567	1,306	
ORIGIN	PSIA				
TEMPERATURE	F		110	200	
LINE LOSS	PSI	(2)			
OTHER LOSSES	PSI	(1, 2)			
CONTINGENCY	PSI				
DISCHARGE CONDITIONS					
DISCH. PRESSURE	PSIA		1,000	1,165	
DISCH. TEMPERATURE	F	(2)	334.8	240.4	
COMPR. FACTOR @ DISCH.			1.022	1.026	
DELIVERY	PSIA				
LINE LOSS	PSI	(2)			
EXCHANGER LOSS	PSI	(2)			
HEATER LOSS	PSI	(2)			
CONTROL VALVE LOSS	PSI	(2)			
OTHER LOSSES	PSI	(2)			
CONTINGENCY	PSI	(2)			
TOTAL LOSSES	PSI	(2)			
COMPRESSION RATIO			2.49	1.17	
EFFICIENCY		(2)	0.75	0.75	
ВНР		(2)	7,102	1,286	
COMPRESSOR TYPE					
DRIVER TYPE					
GAS COMPOSITION: Vol. %					
		H ₂	65.10	65.1	
		CO ₂	1.50	1.5	
		CO	30.08	30.08	
		H ₂ 0	0.27	0.27	
		CH₄	2.70	2.7	
		C ₂ H ₂			
		C ₂ H ₄	0.02	0.02	-
		C ₂ H ₆	0.00003	0.00003	
		Benzene (C ₆ H ₆)	0.00005	0.00005	
		Tar (C ₁₀ H ₈)	0.000001	0.000001	
		NH ₃	0.00002	0.00002	
		N ₂	0.08	0.08	
(1) INCLUDES ALLOWANCE FOR S (2) VALUE TABULATED IS ESTIMAT				DESIGN	
+ +					

NREL BIOMASS GASIFICATION: High Pressure Syngas Case (GTI Gasifier)

PROC PROJ. CLIENT

REVISIONS

REV

JOB NO NREL Contract ACO-5-44027

DRAWING NO

COM	IPRESSOR	NUMBER			M-50	1A	M-5	01B			
					Steam Tu			Γurbine -			
SER	VICE				Extraction			n Stage 2			
GAS	HANDLED				Stea			am			
NOR	MAL FLOV	V	SCFM		110,1	38	51,	979			
NOR	MAL FLOV	1	LB/HR		313,6	00	148	,100			
DES	IGN FLOW		SCFM								
MOL	WT.				18.0)2	18	.02			
C _p /C _v			Value		1.38	34	1.3	353			
- p v			@ F / P	SIA	1000 /	1260	758	/ 460			
	TION CON										
		PRESSURE	PSIA		126			60			
		ACTOR @ SUCTION			0.93			521			
	FLOW AT	SUCTION	ACFM		3,36	9	3,7	709			
	ORIGIN		PSIA		ļ						
	TEMPERA		F		100	0	7	58			
	LINE LOSS		PSI	(2)	ļ						
	OTHER LC		PSI	(1, 2)	ļ						
	CONTINGE	ENCY	PSI		1						
		ONDITIONS			1						
	DISCH. PR		PSIA		460			00			
		MPERATURE	F	(2)	758			72			
		ACTOR @ DISCH.	50::		0.95	21	0.9	974			
	DELIVERY		PSIA	(0)							
	LINE LOSS		PSI	(2)	+						
	EXCHANG		PSI	(2)							
	HEATER L		PSI	(2)	+						
		VALVE LOSS	PSI	(2)	+						
	OTHER LC		PSI	(2)	+						
	CONTINGE TOTAL LO		PSI PSI	(2)	+						
			FOI	(2)	-			-			
	IPRESSION CIENCY	RATIO		(2)	0.7			- 75			
				(2)	9,34			75 371			
	enerated ine TYPE			(2)	Stea			am			
	ER TYPE				Siea	1111	310	aiii			
		TION: Vol. %			+						
GAG	CONFOSI	11ON. VOI. /6		H ₂	1						
				CO ₂							
				CO							
				H ₂ 0	100	%	10	0%			
				CH₄	1	,-					
				C ₂ H ₂							
				C ₂ H ₄						1	
				C ₂ H ₆	1					1	
				Benzene (C ₆ H ₆)	1						
				Tar (C ₁₀ H ₈)							
				NH ₃							
				N ₂							
(1) IN	CLUDES A	ALLOWANCE FOR SU	CTION OR	DISCHARGE SNUB	BER						
		ULATED IS ESTIMATE				HANICAL	DESIGN				
` ,											
									1		
									1		
NO	DATE		REVIS	IONS		PROC	PROJ.	CLIENT			
									IOD NO NEE	1 0	F 44007
									JOB NO INRE	L Contract ACO-	5-44027
		LIBEL ELE	4400 01	SIFICATION: High Pre		. 0 :	TI 0 - 15 :		DRAWING NO	L Contract ACO-	5-44027 REV

Site Location					Specification	0001	Date			Rev.
			· ·	SERVICE OF H	IGH PRESSUR	E UNIT S-100				
Inlet Condition	ns			Flow	Viscosity	Density	Molecular Weight (Ave.)	Particle Size (mm) (Stokes' MMD)	Volumetric Flowrate	Temperature
				lb/h	lb/ft-sec	lb/ft3	lb/mole		acfm	°F
Gas				418,416.00	2.54E-05	0.47800	21.5		14,589.00	1,57
Particulate				9,440.00		62.40		60		
Gas Inlet Pressure	(neia)			460.00						
Gas Discharge Pre				455.57						
Pressure Drop, Ma)		120.00						
Design/Test Press				460.00						
Design Particulate				50						
Design Separation	Efficiency at Cu	itpoint (%)		98						
Emery Design Cald	culations Summ	ary for S-100	(for Reference	o Only)						
Mechanical Sizing		Inside Diam (in)	Uninsulated Outside Diam	e Offiny)	ID (in)	OD (in)	Thickness (in)	Designation		Overall Heigh
		, ,	(in)							(ft)
Connections Size & Rating		32 24		Upper Shell	58	60	1	ASME VIII		2
& Raung	Out Bottom		34	Inner Tube Cone	24	26	1	ASME VIII		
				Refractory	50		4	. CIVIL VIII		
	Com	ponent Dat		,		Cyclo	ne Body Mate	rials of Cons	struction	
	Design Temperature (°F)	Solids Removal Flowrate (CFM)	Differential Design Pressure (psig)	Туре	Upper S	ection	Lower Conic	cal section	No	zzles
Rotary Air Lock	1598				Inner Wall	Outer Shell	Inner Wall	Outer Shell		Outer Shell
Level Indicator	1598				Cercast™	MS	Cercast™	MS	Cercast™	MS
					Inner Tube MS					
					IVIO					
Vendor/Supplier	Specifications	and Price	Quote							
Fisher-Klosterma						(Refer to Ven	dor Communic	ations and D	ata Sheets)	
Ryan Bruner, Sa	es Manager									
P.O. Box 11190 Lousville, KY										
Ph: 502-572-400	0 ext 213									
Email: rab@fkind										
Recommendation	Replace S-10	0 and S-101	with one (1)	cyclone only:						
One (1) cyclone	XQ120-30M) w	ith the follo	owing feature	s:						
	, tested, and sta				Interior surface	s to be lined w	vith 4" of Vesu	ius Cercast	3300 castable i	efractory
					All welding per	FKI Class 3 p	reocedures wit	h 100% pene	etration	
1-1/4" plate carbo	n steel construc					andblastad av	d pointed with	to the factor and a second	-4 1 1	noint
1-1/4" plate carbo Dust receiver sect	n steel construction with flanged	d discharge			Exterior to be s	anubiasieu ar		nign tempera	ature aluminum	i pairit
1-1/4" plate carbo Dust receiver sect Inlet transition to 2	n steel construction with flanged 24"∅ gas inlet f	d discharge			Design pressur	e (psig)	460	nign tempera	ature aluminum	гранц
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30"∅ verticle gas	n steel construction with flanged 24"Ø gas inlet for outlet flange	discharge lange	~			e (psig)		nign tempera	ature aluminum	раш
1-1/4" plate carbo Dust receiver sect Inlet transition to 2	n steel construction with flanged 24"Ø gas inlet for outlet flange	discharge lange	5 ft∅ x 25 ft	tall	Design pressur	e (psig)	460	nign tempera	ature aluminum	раш
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" Ø verticle gas Approximate Over	n steel construction with flanged 24" gas inlet for outlet flange rall Dimensions:	discharge lange	5 ft∅ x 25 ft		Design pressur Design Temper	re (psig) rature (F)	460	nign tempera	ature aluminum	раш
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30"∅ verticle gas	n steel construction with flanged 24" gas inlet foottlet flange rall Dimensions:	discharge lange	5 ft∅ x 25 ft t		Design pressur Design Temper Design Temper	re (psig) rature (F)	460	nign tempera	ature aluminum	ранц
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (lbm/ft3)	n steel construction with flanged 24" gas inlet for outlet flange rall Dimensions:	d discharge lange 14,589 0.478	5 ft∅ x 25 ft	Particulate Co	Design pressur Design Temper anditions at Inle	re (psig) rature (F) et:	460	nign tempera	ature aluminum	ранц
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (lbm/ft3)	n steel construction with flanged 24" gas inlet for outlet flange rall Dimensions:	d discharge flange	5 ft⊘ x 25 ft	Particulate Co Specific Gravi	Design pressur Design Temper anditions at Inle	e (psig) rature (F) et:	460	nign tempera	ature aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30"∅ verticle gas Approximate Over Gas Conditions 3 Volume per cylo Density (Ibm/ft3) Viscosity (Ibm/ft4)	n steel construction with flanged 24" gas inlet flange rall Dimensions: at Inlet: ne (acfm)	d discharge lange 14,589 0.478 2.54E-05	5 ft∅ x 25 ft	Particulate Co Specific Gravi Dust Loading	Design pressur Design Temper Inditions at Inle ity (Grains/acf)	e (psig) rature (F) et: 1.000 31.3	460 650	nign tempera	ature aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) Inlet Velocity (ft/s	n steel construction with flanged 24" Ø gas inlet flange all Dimensions: the coullet flange all Dimensions: the coullet flange at Inlet: the coullet flange all Dimensions: the coullet fl	1 discharge lange 14,589 0.478 2.54E-05 68.39	5 ft∅ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Iencies: Stoke	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	ature aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft∅ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns)	Design pressur Design Temper D	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	ature aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) Inlet Velocity (ft/s	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39	5 ft∅ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Iencies: Stoke Weight % 6.11 15.75	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	aure aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft∅ x 25 ft i	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.55 3 3.5	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Iencies: Stoke: Weight % 6.11 15.75 21.47	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	ature aluminum	panit
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5	Design pressur Design Temper D	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	ature aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Inditions at Inle ity	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	ature aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Idencies: Stoke Weight % 6.11 15.75 21.47 27.4 33.3 39.04	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	ature aluminum	рапт
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 6 6	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Iencies: Stoke Weight % 6.11 15.75 21.47 27.4 33.3 39.04 44.49 49.6	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nign tempera	ature aluminum	рапт
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5 6 6.5 7.5	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Inditions at Inle ity	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	ature aluminum	panit
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft∅ x 25 ft	Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 6 6.5 7.5 8.5	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Idencies: Stoke Weight % 6.11 15.75 21.47 27.4 33.3 39.04 44.49 49.6 58.71 66.32	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	aure aluminun	ранц
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft∅ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3.5 4 4.5 5 6 6.55 7.5 8.5 9.5	Design pressur Design Temper Inditions at Infe ity (Grains/acf) Iencies: Stoke: Weight % 6.11 15.75 21.47 27.4 33.3 39.04 44.49 49.6 58.71 66.32 72.57	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	aure aluminun	ранк
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 6 6.5 7.5 8.5	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Bencies: Stoke Bencies: Stoke 15.75 21.47 27.4 33.3 39.04 44.49 49.6 58.71 66.32 72.57 83.53	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	aure aluminum	рапк
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foutlet flange rall Dimensions: at Inlet: ne (acfm)	1 discharge lange 14,589 0.478 2.54E-05 68.39 106.35	5 ft⊘ x 25 ft	Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.55 3.3 3.55 4.4 4.55 5.6 6.55 7.55 8.5 9.5 12 16 23	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Idencies: Stokes Weight % 6.11 15.75 21.47 27.4 33.3 39.04 44.49 49.6 58.71 66.32 72.57 83.53 89.99	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	aure aluminum	paint
1-1/4" plate carbo Dust receiver sect Inlet transition to 2 30" ✓ verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft4) No load pres. dra	n steel construction with flanged 24" gas inlet foultet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.) rop (in. W.C.)	14,589 0,478 2.54E-05 68.39 106.35 85.46	5 ft∅ x 25 ft	Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 6 6.5 7.5 8.5 9.5 12 16	Design pressur Design Temper Inditions at Inle ity (Grains/acf) Iencies: Stoke Weight 6,11 15,75 21,47 27,4 33,3 39,04 44,49,6 58,71 66,32 72,57 83,53 89,99	e (psig) rature (F) ot: 1.000 31.3 s Equiv. % Ef	460 650	nigh tempera	aure aluminum	рапт

Site Location				Cycloni	e Specification	Sileet	Date	Г		Rev.
Site Location				SERVICE OF H	IIGH PRESSUR	F LINIT S-102				Rev.
Inlet Condition	ns			Flow	Viscosity	Density	Molecular Weight (Ave.)	Particle Size (mm) (Stokes' MMD)	Volumetric Flowrate	Temperatur
				lb/h	lb/ft-sec	lb/ft3	lb/mole	2)	acfm	°F
Gas				434,982.00		0.38390	27.6		18,883.00	1,5
Particulate				9,440.00		62.40		60		
Sas Inlet Pressure				460.00 455.57						
Bas Discharge Pre Pressure Drop, Ma		١		120.00						
Design/Test Press				460.00						
Design Particulate	Cutpoint			50						
Design Separation	Efficiency at Cu	ıtpoint (%)		98						
	1.0									
mery Design Cald	ulations Summa		Uninsulated	e Only)						
Mechanical Sizing		Inside Diam (in)	Outside Diam (in)		ID (in)	OD (in)	Thickness (in)	Designation	Height (In)	Height (ft)
Connections Size		32.0769	42.10	Upper Shell			1	ASME VIII	160	13
& Rating	Out			Inner Tube	32.10		4	A O A F : """		
	Bottom			Cone Refractory	1		1	ASME VIII		
	Comi	Donent Dat	ia	i veriacioi y	 	Cvclor	ne Body Mate	rials of Cons	struction	
	Design Temperature (°F)	Solids Removal Flowrate (CFM)	Differential Design Pressure (psig)	Туре	Upper S	•	Lower Coni			zzles
Rotary Air Lock	1598	20.4	15		Inner Wall	Outer Shell	Inner Wall	Outer Shell	Inner Wall	Outer Shell
evel Indicator	1598				Cercast™	MS	Cercast™	MS	Cercast™	MS
					Inner Tube					
					MS					
endor/Supplier	Specifications	and Price	Quote							
isher-Klosterma						(Refer to Ven	ndor Communi	cations and D	ata Sheets)	
Ryan Bruner, Sa	es Manager									
P.O. Box 11190										
ousville, KY h: 502-572-400	0 ext 213									
mail: rab@fking										
Recommendation	:									
One (1) cyclone ((XO420 20M) ···	ith the fell								
Design, fabricated					Interior surface	s to be lined w	vith 4" of Vesus	ius Cercast :	3300 castable	refractory
I-1/4" plate carbo			THE VESSION OF THE VE	51	All welding per					Circulationy
Oust receiver sect					Exterior to be s					paint
nlet transition to 2	24"∅ gas inlet f	lange			Design pressur	re (psig)	460			
80"∅ verticle gas	outlet flange				Design Tempe	rature (F)	650			
opproximate Over	rall Dimensions:		5-1/2 ft∅ x 2	7 1/2 ft tall						
					L	<u> </u>				
Gas Conditions a Olume per cylor		18,883		Particulate Co Specific Grav	onditions at Inle	et: 1.000	 			
Density (lbm/ft3)		0.3839		Dust Loading		6.97				
/iscosity (lbm/ft-		2.78E-05			Ĺ					
nlet Velocity (ft/s		69.94 83.63		Fraction Effic Dia.(microns)	iencies: Stoke Weight %	s ⊨quiv. % Ef I	miciency I			
ull load pres. D		72.52		3	7.64					
		,, 52		4						
				4.5						
				5						
	 			5.5 6			-			
				7			 			
				8	54.2					
				9	61.4					
							1			i
				10						
				10 11	72.7					
				10	72.7 83.68					
				10 11 14	72.7 83.68 89.34					
				10 11 14 18 25 35	72.7 83.68 89.34 94.31 97.29					
Price (2000		\$ 4	110,000.00	10 11 14 18 25	72.7 83.68 89.34 94.31 97.29					

Site Location				5,0.011	Specification		Date			Rev.
One Location				SERVICE OF	IIGH PRESSUR	F UNIT S-102				INEV.
Inlet Condition	าร			Flow	Specific Heat	Density	Molecular Weight (Ave.)	Particle Size (mm) (Stokes' MMD)	Volumetric Flowrate	Temperatur
				lb/h	BTU/lb°F	lb/ft3	lb/mole		acfm	°F
Gas				434,982.00		0.41421	20.14507		16,835.82	1576
Particulate				9,440.00		33.00		60		
Gas Inlet Pressure				460.00						
Gas Discharge Pre				455.57						
Pressure Drop, Ma)		120.00						
Design/Test Pressı Design Particulate				460.00 50						
Design Particulate Design Separation		itnoint (%)		98						
Design Separation	Linciency at ot	rtpoint (78)		30						
Emery Design Calc	ulations Summ	ary for S-10	3 (for Reference	e Only)						
Mechanical Sizing		Inside Diam (in)	Uninsulated Outside Diam (in)		ID (in)	OD (in)	Thickness (in)	Designation	Height (In)	Height (ft)
Connections Size	In	32.0769		Upper Shell			1	ASME VIII	160	13
& Rating	Out			Inner Tube	32.10		4			
	Bottom		ļ	Cone				ASME VIII		
		<u> </u>	<u> </u>	Refractory		<u> </u>	4		4	
		ponent Dat Solids	a Differential	1		Cyclo	ne Body Mate	rials of Cons	truction	
	Design Temperature (°F)	Removal Flowrate (CFM)	Design Pressure (psig)	Туре	Upper S	ection	Lower Coni	cal section	No	ozzles
Rotary Air Lock	1598	20.4	15		Inner Wall	Outer Shell	Inner Wall	Outer Shell		Outer Shell
Level Indicator	1598				Cercast™	MS	Cercast™	MS	Cercast™	MS
					Inner Tube					
					MS					
/I(OI'	0	and Brian	0							
Vendor/Supplier Fisher-Klosterma		and Price	Quote	1		(Defer to Ven	dor Communic	actions and D	oto Chooto)	
Ryan Bruner, Sal						(Relei to ver	dor Communic		ata Sileets)	
P.O. Box 11190	es manager									
Lousville, KY										
Ph: 502-572-4000	ext 213									
Email: rab@fkinc	.com									
Recommendation:										
One (1) cyclone (VO420 20M) 11	ith the fell	l owing footure							
Design, fabricated					Interior surface	s to be lined w	ith 4" of Vesus	ius Cercast 1	3300 castable	refractory
1-1/4" plate carbor			l voca	j.	All welding per					l circuitory
Dust receiver sect					Exterior to be s					n paint
Inlet transition to 2	.4"∅ gas inlet f	lange			Design pressur	e (psig)	460			
30"∅ verticle gas	outlet flange				Design Temper	rature (F)	650			
Approximate Over			4 ft∅ x 18 ft	tall						
Gas Conditions a					nditions at Inle					
Volume per cylor		8,223		Specific Grav		1.000				
Density (lbm/ft3)		0.5679		Dust Loading	(Grains/acf)	16				
Viscosity (lbm/ft-	sec)	2.87E-05								
Inlet Velocity (ft/s	sec)	68.53	 	Fraction Effic	l iencies: Stoke	s Equiv. % Ff	ficiency			
No load pres. dro		103.76	1	Dia.(microns)	Weight %					1
Full load pres. Dr		85.86		2.5	6.71					
				3.5						
				4						
				4.5						
			 	5						
	-		}	5.5 6						-
				7						
			1	8						1
			Ì	9						
				10						
				13						
				17						
	1]	24						
					97.41		1	I	ı	1
				34						
				89						
Price (200	5 Q &\	\$ 2	265,000.00							

DATA SHEETS, LOW PRESSURE DESIGN

		Н	eat Exchai	nger Specif	ication she	et	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Tar Reformer S	SG Cooling/St	eam Generato	or	Item No	H-100 Tar Re	f Cooler
Size 72x 168		Туре	BEM - HORZ	Connected in	2 Paralle	I	1 Series
Surf/Unit (Eff)	10708 ft ²	Shells/Unit	2	Surface/Shell	(Effective)	5354 ft ²	
			PERFORMA	NCE OF ONE	UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name			Syn	gas fr Tar Refo	ormer		Preheated BFW
Total Fluid Entering	g	lb/hr		329,000			251,800
Vapor				329,000			0
Liquid				0			251,800
Steam							
Noncondensa	ible						
Fluid Vaporized or	Condensed			0			251,800
Liquid Density (In/0	Out)	lb/ft³		0.000/0.000			46.533/45.419
Liquid Viscosity	•	cР		0.000			0.092
Liquid Specific Hea	at	Btu/lb-F		0.000			1.636
Liquid Thermal Co		Btu/hr-ft-F		0.000		1	0.321
Vapor Mol. Weight	(In/Out)			16.74/16.74			0.0/18.02
Vapor Viscosity	,	cР		0.0280			0.0200
Vapor Specific Hea	at	Btu/lb-F		0.520			0.774
Vapor Thermal Co		Btu/hr-ft-F		0.078			0.025
Temperature (In/O	ut)	°F		1,598.0/624.0)		546.5/575.0
Operating Pressure	e	psi(Abs)		29.900			1,285.000
Velocity		ft/sec		280.241			7.682
Pressure Drop (Alle	ow/Calc)	psi		5.000/3.920			5.000/0.977
Fouling resistance		hr-ft²-F/Btu		0.001000			0.005000
Heat Exchanged		Btu/hr		mtd (corr)	318.656 °F		
Transfer Rate, Ser		48.9		Clean	80.8 Btu/hr-f	t²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel		Tubes			Sketch
Design/Test Pres.	psi	45/		1,350	l	7	
Design Temp.	°F	1700		625	5	7	
No. Passes per Sh	iell	1		6	3	7	
Corrosion Allow.	in	0.0625		0.0625	5	7	
Connections	In	1-33.0)	6.0		7	
Size &	Out	1-29.0)	10.0		7	
Rating	Intermediate	0		0		7	
		L.					
Tube No	1664	OD 1.000 in		Thk 0.065	Length 14.00) ft	Pitch 1.25000 / 30.0°
Tube Type	F	PLAIN		Material	<u>_</u>		
Shell		I.D 72.00 OE) in	Shell Cover		INT	•
Channel or Bonnet				Channel Cove	er		
Tubesheet-Station				Tubesheet-Flo			
Floating Head Cov				Impingement	Protection	YES	
Baffles Cross		Type VERT-	SEG	%Cut 34.7 (A		Spacing-cc	73.7
Baffles-Long				Seal Type			
Supports-Tube			U-Bend	<i>7</i> 1: -	Туре		
Bypass Seal Arran	gement		-	Tube-Tubeshe			
Expansion Joint	<u> </u>			Type			
Rho-V2 Inlet Nozzl	e	2,611	Bundle Entra		3,399	Bundle Exit	4,375
			Tubeside 3,399		Floating Head		
Code Requirement ASME Section					TEMA Class		
Weight/Shell	-		Filled with Wa	ater		Bundle	
Remarks:							
. tomanto.							

		Н	leat Eychar	nger Specif	fication shee	at .	
			eat Excitati	iger opecii	Job No.	, i	
Customer	NREL				Ref No.	LP Syngas Ca	ase
Address	TTTLL				Proposal No.	Li Oyligus oc	
Plant Location					Date		Rev. 0
Service of Unit	Tar Reformer S	C Cooling/DI	TM Droboot		Item No	H-101 Tar Ref	
Size 57x 168	rai Reioiillei s		BEM - HORZ	Connected in			
	40004 ft2	Type					1 Series
Surf/Unit (Eff)	13334 ft²	Shells/Unit		Surface/Shell		6667 ft²	
=			PERFORMAN		UNII		
Fluid Allocation				Shellside			Tubeside
Fluid Name			Syn	gas fr Tar Ref	ormer		BFW
Total Fluid Enterir	ng	lb/hr		329,000			142,594
Vapor				329,000			0
Liquid				0			142,594
Steam							
Noncondens	able						
Fluid Vaporized o	r Condensed			0			0
Liquid Density (In	/Out)	lb/ft³		0.000/0.000			58.509/46.533
Liquid Viscosity	· · · · · · · · · · · · · · · · · · ·	cР		0.000			0.139
Liquid Specific He	eat	Btu/lb-F		0.000			1.340
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.359
Vapor Mol. Weigh		III IC I		16.74/16.74			0.0/0.0
Vapor Viscosity	it (iiii Gut)	cР		0.0189			0.0000
Vapor Viscosity Vapor Specific He	at	Btu/lb-F		0.475		 	0.000
Vapor Thermal Co		Btu/hr-ft-F		0.473		-	0.000
Temperature (In/C		°F		624.0/300.0			240.0/546.5
				26.900			1,295.000
Operating Pressu	re	psi(Abs)					1,295.000
Velocity		ft/sec		234.572			-
Pressure Drop (Al		psi		5.000/4.568			5.000/0.513
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged	50,610,000 Bt			mtd (corr)	68.377 °F		
Transfer Rate, Se	ervice	55.5		Clean	68.5 Btu/hr-ft	²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	lside	Tubes	ide		Sketch
Design/Test Pres.	. psi	35/		1,360	/		
Design Temp.	°F	675		60	0		
No. Passes per S	hell	1			1	1	
Corrosion Allow.	in	0.0625		0.062	5	1	
Connections	In	1-29.	0	3.0	-	1	
Size &	Out	1-29.		4.0		1	
Rating	Intermediate	0		0		1	
9	toou.uto	Ţ.					
Tube No	2688	OD 0.750 in		Thk 0.065	Length 14.00	ft	Pitch 0.93750 / 30.0°
Tube Type		PLAIN		Material	Longin 14.00	11	1 Item 0.99730 7 30.0
Shell		I.D 57.00 OE) in	Shell Cover		INT	
Channel or Bonne	\t	טטטטני טוו UL	ווו	Channel Cover	or	IIVI	
Tubesheet-Station				Tubesheet-Fl		VEO	
Floating Head Co	ver	T \:	050	Impingement		YES	75.5
Baffles Cross		Type VERT-	SEG	%Cut 37.1 (A	Area)	Spacing-cc	75.5
Baffles-Long				Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arra	ngement			Tube-Tubesh	eet Joint		
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	zle	2,563	Bundle Entrar	nce	2,914	Bundle Exit	3,741
Gasket-Shellside			Tubeside			Floating Head	
Code Requiremen	nt	ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell			Filled with Wa	iter		Bundle	
Remarks:							
i tomanto.							

		Н	eat Exchar	naer Specif	ication shee	et .	
				9	Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Tar Reformer S	SG Cooler/Dea	erator FW Pro	eheat	Item No	H-102 Tar Re	
Size 75x 168	Tai recionner		BEM - HORZ				1 Series
Surf/Unit (Eff)	5621 ft²	71		Surface/Shell		5621 ft²	1 Selles
Suil/Offic (Eff)	3021 IL		PERFORMAN	Surface/Shell	(Ellective)	302 I IL	
Fluid Allocation			PERFURINA	Shellside	UNII	1	Tubeside
					24	Des	
Fluid Name		Ile /le u		Syngas fr H-10) I	Dea	aerator Feed Water
Total Fluid Enterin	g	lb/hr		329,000			257,000
Vapor				329,000			0
Liquid				0			257,000
Steam							
Noncondensa							
Fluid Vaporized or				0			0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000			59.592/58.402
Liquid Viscosity		cP		0.000			0.273
Liquid Specific Hea		Btu/lb-F		0.000			1.054
Liquid Thermal Co	nductivity	Btu/hr-ft-F		0.000			0.392
Vapor Mol. Weight	t (In/Out)			16.74/16.74			0.0/0.0
Vapor Viscosity	` '	cР		0.0156			0.0000
Vapor Specific Hea	at	Btu/lb-F		0.461			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.040			0.000
Temperature (In/O		°F		300.0/225.0			195.0/237.0
Operating Pressur	e .	psi(Abs)		23.880			30.000
Velocity		ft/sec		168.427			-
Pressure Drop (All	ow/Calc)	psi		5.000/2.790			5.000/0.489
Fouling resistance		hr-ft²-F/Btu		0.001000		-	0.002000
Heat Exchanged				mtd (corr)	44.478 °F		0:002000
				. ,	58.8 Btu/hr-ft	2 -	
Transfer Rate, Ser	vice	45.4	CONCEDUO	Clean		<u></u>	
		Shel	CONSTRUCT		_		Cleatab
Danis /Tank Danis			ISIGE	Tubes			Sketch
Design/Test Pres.		35/		45			
Design Temp.	°F	350		28	-		
No. Passes per Sh		1			1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	ln	1-41.0		6.0			
Size &	Out	1-42.0)	6.0			
Rating	Intermediate	0		0			
Tube No	2096	OD 0.750 in		Thk 0.065	Length 14.00	ft	Pitch 1.25000 / 30.0°
Tube Type	F	PLAIN		Material			
Shell		I.D 75.00 OD) in	Shell Cover		INT	
Channel or Bonne	t			Channel Cove	er		
Tubesheet-Station	ary			Tubesheet-Fl	oating		
Floating Head Cov	ver .			Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 41.0 (A	Area)	Spacing-cc	81.9
Baffles-Long				Seal Type	,		
Supports-Tube			U-Bend		Туре		
Bypass Seal Arran	ngement		-	Tube-Tubesh			
Expansion Joint	<u> </u>			Туре			
Rho-V2 Inlet Nozz	le	2,021	Bundle Entrar		1,271	Bundle Exit	2,155
Gasket-Shellside		_,~	Tubeside	·	.,	Floating Head	
Code Requiremen	t	ASME Sectio				TEMA Class	
Weight/Shell		, LOIVIL GCGIIO				Bundle	13
Remarks:			ca with vvc			Dariale	
ixemaiks.							

			last Evahar	war Chaaif	iostian aba		
			eat Exchar	iger Specii	ication she	રા	
Ouete es es	NDEL				Job No. Ref No.	ID Common Co	
Customer	NREL					LP Syngas Ca	ase
Address					Proposal No.		D0
Plant Location		101			Date		Rev. 0
Service of Unit	Flue Gas Cool				Item No	H-103	
Size 90x 168		Туре		Connected in			1 Series
Surf/Unit (Eff)	5770 ft ²	Shells/Unit		Surface/Shell		5770 ft ²	
			PERFORMAI	NCE OF ONE	UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name			Flue	e Gas fr. Tar R	egen	Sı	perheated Steam
Total Fluid Enterin	ıg	lb/hr		248,400			251,800
Vapor				248,400			251,800
Liquid				0			0
Steam							
Noncondens							
Fluid Vaporized or				0			0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000			0.000/0.000
Liquid Viscosity		сP		0.000			0.000
Liquid Specific He		Btu/lb-F		0.000			0.000
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.000
Vapor Mol. Weigh	t (In/Out)			27.57/27.57			18.02/18.02
Vapor Viscosity		cP		0.0405			0.0254
Vapor Specific He	at	Btu/lb-F		0.313			0.678
Vapor Thermal Co	onductivity	Btu/hr-ft-F		0.040			0.036
Temperature (In/C	Out)	°F		1,798.0/935.0)		575.0/1,000.0
Operating Pressur		psi(Abs)		14.700			1,275.000
Velocity		ft/sec		215.255			5.762
Pressure Drop (Al	low/Calc)	psi		2.000/1.727			5.000/0.629
Fouling resistance		hr-ft²-F/Btu		0.001000			0.005000
Heat Exchanged				mtd (corr)	550.248 °F		
Transfer Rate, Se		21.2		Clean	25.0 Btu/hr-ft	²-F	
			CONSTRUCT	TION OF ONE			
		Shel	Iside	Tubes			Sketch
Design/Test Pres.	psi	30/		1,350		1	
Design Temp.	°F	1900		1100			
No. Passes per SI	•	1		1.00		1	
Corrosion Allow.	in	0.0625		0.0625	-		
Connections	In	1-57.	n	12.0		-	
Size &	Out	1-53.		15.0		1	
Rating	Intermediate	0	<u> </u>	0		1	
raung	intermediate	· ·		•			
Tube No	2475	OD 0.750 in		Thk 0.065	Length 14.00	ft	Pitch 1.25000 / 45.0°
Tube Type		PLAIN		Material	Longar 11.00		1 11011 11.20000 7 10.0
Shell		I.D 90.00 OE) in	Shell Cover		INT	
Channel or Bonne	t	00.00 01	· 111	Channel Cove	or .	1111	
Tubesheet-Station				Tubesheet-Flo			
Floating Head Cov				Impingement		YES	
Baffles Cross	701	Type VERT-	SEG	%Cut 38.4 (A		Spacing-cc	71.2
Baffles-Long		Type VERT-	OLU	Seal Type	uca)	ораспід-сс	11.4
Supports-Tube			U-Bend	ocai iype	Туре		
Bypass Seal Arrar	ngement		O-DEIIU	Tube-Tubesh			
Expansion Joint	igenient				CCL JUILIL		
•	do.	006	Dundle Entre	Type	2 230	Dundle Evit	1.030
Rho-V2 Inlet Nozz	ie	906	Bundle Entrar	ice	2,230	Bundle Exit	,
Gasket-Shellside		ACME Casti	Tubeside			Floating Head	
Code Requiremen	ıı	ASIVIE Section	n 8, Divsion 1	****		TEMA Class	R
Weight/Shell			Filled with Wa	ııeı		Bundle	
Remarks:							

		Н	eat Exchar	nger Specif	ication shee	et	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	NREL Biomass	3			Item No	H-200 Quech	Water Cooler
Size 71x 120		Туре	BEM - HORZ	Connected in	1 Paralle		1 Series
Surf/Unit (Eff)	9232 ft²		1	Surface/Shell		9232 ft²	
				NCE OF ONE			
Fluid Allocation				Shellside			Tubeside
Fluid Name				Quench Wate	ır		Cooling Water
Total Fluid Enterin	α	lb/hr		1,189,000	•		1,107,500
Vapor	3			0			0
Liquid				1,189,000			1,107,500
Steam				1,100,000			1,107,300
Noncondensa	hle					1	
Fluid Vaporized or				0			0
Liquid Density (In/		lb/ft³		61.342/61.76	5	+	62.470/62.000
Liquid Density (In/	Out)	cP		0.578	J	-	0.744
Liquid Viscosity Liquid Specific Hea	at	Btu/lb-F		1.003			0.744
Liquid Thermal Co		Btu/hr-ft-F		0.366			0.361 0.0/0.0
Vapor Mol. Weight	(III/Out)					1	
Vapor Viscosity	-1	cP		0.0000			0.0000
Vapor Specific Hea		Btu/lb-F		0.000			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.000			0.000
Temperature (In/O		°F		128.0/110.0			80.0/100.0
Operating Pressur	e	psi(Abs)		26.000			20.000
Velocity		ft/sec		1.924			-
Pressure Drop (All		psi		5.000/1.722			5.000/0.549
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged	22,150,000 Bt	u/hr		mtd (corr)	28.989 °F		
Transfer Rate, Ser	vice	82.8		Clean	115.4 Btu/hr-	ft²-F	
				TION OF ONE			
		Shel	lside	Tubes	ide		Sketch
Design/Test Pres.		45/		45			
Design Temp.	°F	215		150)		
No. Passes per Sh	nell	1			1	Ī	
Corrosion Allow.	in	0.0625		0.062	5	Ī	
Connections	In	1-13.0)	12.0			
Size &	Out	1-13.0)	12.0			
Rating	Intermediate	0		0		1	
						•	
Tube No	4860	OD 0.750 in		Thk 0.065	Length 10.00	ft	Pitch 0.93750 / 30.0°
Tube Type	F	LAIN		Material	<u> </u>		
Shell		I.D 71.00 OE) in	Shell Cover		INT	
Channel or Bonnet	t			Channel Cove	er		
Tubesheet-Station	ary			Tubesheet-Flo	oating		
Floating Head Cov				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 9.2 (Ar		Spacing-cc	14.1
Baffles-Long				Seal Type		. 0	
Supports-Tube			U-Bend	71	Туре		
Bypass Seal Arran	aement		-	Tube-Tubesh			
Expansion Joint				Type			
Rho-V2 Inlet Nozz	le	2,093	Bundle Entra		913	Bundle Exit	2,867
Gasket-Shellside		_,000	Tubeside		310	Floating Head	
Code Requirement	t	ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell		MOINIT OFCIIO	Filled with Wa	ater		Bundle	IX
_			i ilieu witii Wa	aici		Duriuie	
Remarks:							

		Н	eat Exchai	nger Specif	ication shee	et	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Compressor In				Item No	H-300A	
Size 82x 144		71	BEM - HORZ	Connected in			1 Series
Surf/Unit (Eff)	28471 ft ²		2	Surface/Shell		14235 ft²	
			PERFORMA	NCE OF ONE	UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name				Cooling water	r	1	st Stage Syngas
Total Fluid Entering	g	lb/hr		6,100,000			317,400
Vapor				0			317,400
Liquid				6,100,000			0
Steam							
Noncondensa							
Fluid Vaporized or				0			85,698
Liquid Density (In/0	Out)	lb/ft³		62.000/62.000	0		0.000/62.020
Liquid Viscosity		cР		0.762			0.432
Liquid Specific Hea		Btu/lb-F		1.000			1.035
Liquid Thermal Co		Btu/hr-ft-F		0.363			0.380
Vapor Mol. Weight	(In/Out)			0.0/0.0			16.7/16.7
Vapor Viscosity		cP		0.0000			0.0157
Vapor Specific Hea		Btu/lb-F		0.000			0.460
Vapor Thermal Co	nductivity	Btu/hr-ft-F		0.000			0.043
Temperature (In/O		°F		80.0/100.0			344.0/110.0
Operating Pressure	е	psi(Abs)		65.000			35.000
Velocity		ft/sec		3.977			39.521
Pressure Drop (All	ow/Calc)	psi		5.000/4.889			5.000/0.642
Fouling resistance		hr-ft²-F/Btu		0.002000			0.001000
Heat Exchanged	122,000,000 E	Stu/hr		mtd (corr)	80.189 °F		
Transfer Rate, Ser	vice	53.4		Clean	64.5 Btu/hr-ft	² -F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	lside	Tubes	ide		Sketch
Design/Test Pres.	psi	80/		50	/	1	
Design Temp.	°F	150		400)	1	
No. Passes per Sh	ell	1		,	1	1	
Corrosion Allow.	in	0.0625		0.0625	5	1	
Connections	In	1-23.0)	25.0		1	
Size &	Out	1-23.0)	23.0		1	
Rating	Intermediate	0		0		1	
				•		•	
Tube No	6298	OD 0.750 in		Thk 0.065	Length 12.00	ft	Pitch 0.93750 / 30.0°
Tube Type	F	LAIN		Material	-		
Shell		I.D 82.00 OD) in	Shell Cover		INT	
Channel or Bonnet				Channel Cove	er		
Tubesheet-Station				Tubesheet-Flo	oating		
Floating Head Cov	er			Impingement	Protection	YES	
Baffles Cross		Type VERT-	SEG	%Cut 12.4 (A	rea)	Spacing-cc	24.0
Baffles-Long				Seal Type	•	. <u> </u>	
Supports-Tube			U-Bend	7.	Туре		
Bypass Seal Arran	gement			Tube-Tubesh			
Expansion Joint	-			Туре			
Rho-V2 Inlet Nozzl	е	1,391	Bundle Entra		1,525	Bundle Exit	2,034
Gasket-Shellside			Tubeside		•	Floating Head	,
		ASME Sectio				TEMA Class	R
ICode Reduirement		AOME OFFIRE	II O, DIVSIOII I				
Code Requirement Weight/Shell		ASIVIL Section	Filled with Wa	ater			11
Code Requirement Weight/Shell Remarks:		AGIVIL GECTIO		ater		Bundle	

		Н	eat Exchar	nger Specif	ication shee	et	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ase
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Compressor In				Item No	H-300B	
Size 47x 120		71	BEM - HORZ	Connected in			1 Series
Surf/Unit (Eff)	3435 ft ²	Shells/Unit	1	Surface/Shell	(Effective)	3435 ft ²	
			PERFORMAI	NCE OF ONE	UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name			2	nd Stage Syng	jas		Cooling water
Total Fluid Entering	g	lb/hr		232,600			1,639,500
Vapor				232,600			0
Liquid				0			1,639,500
Steam							
Noncondensa							
Fluid Vaporized or	Condensed			0			0
Liquid Density (In/0	Out)	lb/ft³		0.000/0.000			62.000/62.000
Liquid Viscosity		cР		0.000			0.762
Liquid Specific Hea		Btu/lb-F		0.000			1.000
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.363
Vapor Mol. Weight	(In/Out)			16.26/16.26			0.0/0.0
Vapor Viscosity		cP		0.0162			0.0000
Vapor Specific Hea	at	Btu/lb-F		0.470			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.050			0.000
Temperature (In/O		°F		350.0/110.0			80.0/100.0
Operating Pressure	е	psi(Abs)		84.000			65.000
Velocity		ft/sec		119.731			1.938
Pressure Drop (All	ow/Calc)	psi		5.000/3.994			5.000/0.664
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged	32,790,000 Bt	u/hr		mtd (corr)	103.761 °F		
Transfer Rate, Ser	vice	92.0		Clean	134.2 Btu/hr-	ft²-F	
				TION OF ONE	SHELL		
		Shel	side	Tubes	ide		Sketch
Design/Test Pres.	psi	100/		80	1	1	
Design Temp.	°F	400		150)	1	
No. Passes per Sh	ell	1		•	1	1	
Corrosion Allow.	in	0.0625		0.062	5	1	
Connections	In	1-25.0)	15.0		1	
Size &	Out	1-23.0)	15.0		1	
Rating	Intermediate	0		0		1	
						•	
Tube No	1808	OD 0.750 in		Thk 0.065	Length 10.00	ft	Pitch 0.93750 / 30.0°
Tube Type	F	PLAIN		Material			
Shell		I.D 47.00 OD) in	Shell Cover		INT	
Channel or Bonnet				Channel Cove	er		
Tubesheet-Station	ary			Tubesheet-Flo	oating		
Floating Head Cov	er			Impingement	Protection	YES	
Baffles Cross		Type VERT-	SEG	%Cut 37.2 (A	rea)	Spacing-cc	58.0
Baffles-Long				Seal Type	•		
Supports-Tube			U-Bend	7.	Туре		
Bypass Seal Arran	gement			Tube-Tubesh			
Expansion Joint	-			Туре			
Rho-V2 Inlet Nozzl	le	2,286	Bundle Entrar		3,535	Bundle Exit	3,995
Gasket-Shellside			Tubeside			Floating Head	
Code Requirement	t	ASME Sectio				TEMA Class	R
Weight/Shell			Filled with Wa	ater		Bundle	
Remarks:							

				0		- 4	
		н	eat Excnar	iger Specif	ication she	<u>et </u>	
_					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	Compressor In				Item No	H-300C	
Size 51x 120			BEM - HORZ	Connected in	1 Paralle		1 Series
Surf/Unit (Eff)	4368 ft²	Shells/Unit	1	Surface/Shell	(Effective)	4368 ft²	
			PERFORMAI	NCE OF ONE	JNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name				Cooling water		31	rd Stage Syngas
Total Fluid Enterir	na	lb/hr		1.384.500			225,800
Vapor				0			225,800
Liquid				1,384,500			0
Steam				.,00.,000			
Noncondens	ahle						
Fluid Vaporized or				0		1	2,710
Liquid Density (In/		lb/ft³		62.000/62.000)	+	0.000/62.250
Liquid Viscosity	Out)	cP		0.762	,	+	0.000/62.250
	oot	Btu/lb-F		1.000		+	1.038
Liquid Specific He							
Liquid Thermal Co		Btu/hr-ft-F		0.363			0.368
Vapor Mol. Weigh	it (In/Out)			0.0/0.0			16.21/16.21
Vapor Viscosity		cP		0.0000			0.0164
Vapor Specific He		Btu/lb-F		0.000			0.468
Vapor Thermal Co		Btu/hr-ft-F		0.000			0.051
Temperature (In/C		°F		80.0/100.0			349.0/110.0
Operating Pressu	re	psi(Abs)		65.000			220.000
Velocity		ft/sec		3.395			26.531
Pressure Drop (Al	llow/Calc)	psi		5.000/3.694			5.000/0.747
Fouling resistance	;	hr-ft²-F/Btu		0.002000			0.001000
Heat Exchanged		u/hr		mtd (corr)	92.157 °F		
Transfer Rate, Se		68.8		Clean	88.3 Btu/hr-ff	2-F	
			CONSTRUCT	TION OF ONE			
		Shell		Tubes		I	Sketch
Design/Test Pres.	nsi	80/	.0.40	245		1	Choton
Design Temp.	°F	150		400		-	
No. Passes per S		100		700		-	
Corrosion Allow.	in	0.0625		0.0625		-	
Connections	IIn	1-15.0	1	19.0		4	
	Out	1-15.0		17.0		4	
Size &		0)	0			
Rating	Intermediate	U		U			
Tuba Na	2250	OD 0.750 :		This 0.005	Longth 40.00	т.	Ditab 0.00750 / 00.00
Tube No	2350	OD 0.750 in		Thk 0.065	Length 10.00	IL	Pitch 0.93750 / 30.0°
Tube Type	ŀ	PLAIN		Material		14	
Shell		I.D 51.00 OD	ın	Shell Cover		INT	
Channel or Bonne				Channel Cove			
Tubesheet-Station				Tubesheet-Flo			
Floating Head Co	ver			Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 18.9 (A	rea)	Spacing-cc	24.0
Baffles-Long				Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arrai	ngement			Tube-Tubesh	eet Joint		
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	zle	1,584	Bundle Entra		1,413	Bundle Exit	2,336
Gasket-Shellside		-	Tubeside		•	Floating Head	
Code Requiremen	nt	ASME Sectio				TEMA Class	R
Weight/Shell			Filled with Wa	ater		Bundle	
Remarks:			770				
ixciliairo.							

		Н	eat Exchar	nger Specif	ication shee	et .	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ase
Address					Proposal No.	•	
Plant Location					Date		Rev. 0
Service of Unit	Compressor In	terstage Cooli			Item No	H-300D	
Size 42x 120		Туре	BEM - HORZ	Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	2934 ft ²	Shells/Unit	1	Surface/Shell		2934 ft ²	
			PERFORMAI	NCE OF ONE	UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name				Cooling water		4	th Stage Syngas
Total Fluid Entering	g	lb/hr		910,500			223,200
Vapor				0			223,200
Liquid				910,500			0
Steam							
Noncondensa	ible						
Fluid Vaporized or				0			670
Liquid Density (In/0	Out)	lb/ft³		62.000/62.000)		0.000/62.210
Liquid Viscosity		cP		0.762			0.580
Liquid Specific Hea	at	Btu/lb-F		1.000			1.036
Liquid Thermal Co		Btu/hr-ft-F		0.363			0.367
Vapor Mol. Weight	(In/Out)			0.0/0.0			16.2/16.2
Vapor Viscosity	,	cР		0.0000			0.0160
Vapor Specific Hea	at	Btu/lb-F		0.000			0.470
Vapor Thermal Co	nductivity	Btu/hr-ft-F		0.000			0.049
Temperature (In/O	ut)	°F		80.0/100.0			277.0/110.0
Operating Pressure	9	psi(Abs)		65.000			450.000
Velocity		ft/sec		3.281			17.909
Pressure Drop (Alle	ow/Calc)	psi		5.000/3.891			5.000/0.750
Fouling resistance		hr-ft²-F/Btu		0.002000			0.001000
Heat Exchanged	18,210,000 Bt	u/hr		mtd (corr)	79.340 °F		
Transfer Rate, Ser	vice	78.2		Clean	104.5 Btu/hr-	ft²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	lside	Tubesi	ide		Sketch
Design/Test Pres.	psi	80/		500/	1	1	
Design Temp.	°F	150		330)	1	
No. Passes per Sh	ell	1		1		1	
Corrosion Allow.	in	0.0625		0.0625	5	1	
Connections	In	1-12.0)	15.0		1	
Size &	Out	1-12.0)	15.0		1	
Rating	Intermediate	0		0		1	
Tube No	1594	OD 0.750 in		Thk 0.065	Length 10.00	ft	Pitch 0.93750 / 30.0°
Tube Type		PLAIN		Material	<u> </u>		
Shell		I.D 42.00 OE) in	Shell Cover		INT	
Channel or Bonnet				Channel Cove	er	-	
Tubesheet-Station	ary			Tubesheet-Flo	pating		
Floating Head Cov				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 19.2 (A		Spacing-cc	19.2
Baffles-Long		, , , , , , , , , , , , , , , , , , ,		Seal Type			
Supports-Tube			U-Bend		Туре		
Bypass Seal Arran	gement			Tube-Tubeshe			
Expansion Joint	<u> </u>			Туре	-		
Rho-V2 Inlet Nozzl	е	1,673	Bundle Entrai		1,289	Bundle Exit	2,454
Gasket-Shellside			Tubeside	-	,	Floating Head	
Code Requirement		ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell			Filled with Wa	ater		Buriale	
Weight/Shell Remarks:			Filled with Wa	ater		Bundle	

		Н	eat Exchai	nger Specif	fication shee	et	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	ZnO Preheater				Item No	H-420 ZnO Pr	eheater
Size 90x 96		Туре	BEM - HORZ	Connected in			1 Series
Surf/Unit (Eff)	14480 ft²	Shells/Unit		Surface/Shell		14480 ft²	
Cum Cint (Em)	1110011	CHOILO, CHIL		NCE OF ONE		1110011	
Fluid Allocation			7 27 (3 (3 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	Shellside	<u> </u>	1	Tubeside
Fluid Name			Flu	e Gas fr. Tar R	Penen		Sweet Syngas
Total Fluid Enterin	α	lb/hr	110	248,400	cgcii		127,000
Vapor	9	10/111		248,400		1	127,000
Liquid				0			0
Steam				U			0
	-1-1-						
Noncondensa							
Fluid Vaporized or		11 16:0		0		ļ	0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000			0.000/0.000
Liquid Viscosity		cP		0.000			0.000
Liquid Specific Hea		Btu/lb-F		0.000			0.000
Liquid Thermal Co	nductivity	Btu/hr-ft-F		0.000			0.000
Vapor Mol. Weight	t (In/Out)			27.57/27.57			10.99/10.99
Vapor Viscosity		cP		0.0256			0.0182
Vapor Specific Hea	at	Btu/lb-F		0.286			0.659
Vapor Thermal Co	nductivity	Btu/hr-ft-F		0.024			0.076
Temperature (In/O		°F		935.0/190.0			114.0/750.0
Operating Pressur		psi(Abs)		14.500			440.000
Velocity	-	ft/sec		-			-
Pressure Drop (All	ow/Calc)	psi		1.000/-			5.000/0.287
Fouling resistance		hr-ft²-F/Btu		0.001000			0.001000
Heat Exchanged				mtd (corr)	122.52.15 °F		0.001000
Transfer Rate, Ser		29.82		Clean	Btu/hr-ft²-F		
Hansiel Nate, Sei	VICE	29.02		TION OF ONE			
		Shal	Iside	Tubes		1	Sketch
Design/Test Dres	noi	30/	isiue	480		4	Sketch
Design/Test Pres.	°F			800		-	
Design Temp.		990				4	
No. Passes per Sh		1			1	_	
Corrosion Allow.	in	0.0625	_	0.062	5		
Connections	In .	1-35.0		10.0		4	
Size &	Out	1-31.0)	12.0		1	
Rating	Intermediate	0		0			
Tube No		OD 0.750 in		Thk 0.065	Length 8.00 f	t	Pitch 0.9375 / 30.0°
Tube Type	F	LAIN		Material			
Shell		I.D 96.00 OE) in	Shell Cover		INT	
Channel or Bonnet	t			Channel Cove	er		
Tubesheet-Station	ary			Tubesheet-Fl	oating		
Floating Head Cov				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 49.0 (A	Area)	Spacing-cc	50
Baffles-Long				Seal Type	,	<u> </u>	
Supports-Tube			U-Bend	71	Туре		
Bypass Seal Arran	gement			Tube-Tubesh			
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	le .		Bundle Entra			Bundle Exit	
Gasket-Shellside			Tubeside	100		Floating Head	
Code Requirement	I	ASME Soction	n 8, Divsion 1			TEMA Class	R
	ι	ASIVIE SECTIO	Filled with Wa				TX.
Weight/Shell			rilled with Wa	alei		Bundle	
Remarks:							

		Н	eat Exchar	nger Specif	ication shee	et	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	ZnO Syngas C				Item No	H-421	
Size 64x 144		71	BEM - HORZ	Connected in			1 Series
Surf/Unit (Eff)	6915 ft²	Shells/Unit	1	Surface/Shell		6915 ft²	
			PERFORMAI	NCE OF ONE	UNIT		
Fluid Allocation				Shellside			Tubeside
Fluid Name			S	yngas fr ZnO E	Bed		BFW
Total Fluid Enterin	g	lb/hr		127,000			114,306
Vapor				127,000			0
Liquid				0			114,306
Steam							
Noncondensa	able						
Fluid Vaporized or	Condensed			0			0
Liquid Density (In/	Out)	lb/ft³		0.000/0.000			58.509/46.533
Liquid Viscosity		cР		0.000			0.139
Liquid Specific He	at	Btu/lb-F		0.000			1.340
Liquid Thermal Co		Btu/hr-ft-F		0.000			0.359
Vapor Mol. Weight				10.99/10.99			0.0/0.0
Vapor Viscosity		cР		0.0196			0.0000
Vapor Specific Hea	at	Btu/lb-F		0.660			0.000
Vapor Thermal Co	nductivity	Btu/hr-ft-F		0.082			0.000
Temperature (In/O		°F		750.0/265.0			240.0/546.5
Operating Pressur	e	psi(Abs)		425.000			1,295.000
Velocity		ft/sec		27.606			-
Pressure Drop (All	ow/Calc)	psi		5.000/2.034			5.000/0.399
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged	40,570,000 Bt			mtd (corr)	85.130 °F		
Transfer Rate, Ser		68.9		Clean	90.2 Btu/hr-ft	²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	Iside	Tubes			Sketch
Design/Test Pres.	psi	470/		1,360	/		
Design Temp.	°F	800		600)	1	
No. Passes per Sh	nell	1			1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	In	1-15.0)	4.0			
Size &	Out	1-13.0)	6.0			
Rating	Intermediate	0	-	0			
- · · · J						•	
Tube No	3364	OD 0.750 in		Thk 0.065	Length 12.00	ft	Pitch 1.00000 / 30.0°
Tube Type		PLAIN		Material			
Shell	·	I.D 64.00 OE) in	Shell Cover		INT	
Channel or Bonne	t		·	Channel Cove	er		
Tubesheet-Station	-			Tubesheet-Fl			
Floating Head Cov				Impingement		YES	
Baffles Cross		Type VERT-	SEG	%Cut 18.6 (A		Spacing-cc	24.0
Baffles-Long		. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Seal Type	/	- - - - - - - - - -	_ ··•
Supports-Tube			U-Bend	- ca , po	Туре		
Bypass Seal Arran	ngement			Tube-Tubesh			
Expansion Joint	igoinont			Type	OUT OUT IT		
Rho-V2 Inlet Nozz	le	2,297	Bundle Entrar	71	611	Bundle Exit	3,020
Gasket-Shellside	10	2,201	Tubeside	100	J11	Floating Head	
Code Requiremen	t	ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell	•	, CIVIL OCCIO	Filled with Wa	ater		Bundle	11
Remarks:			ca vviti vve	4.01		Dariale	
ixelliaiks.							

		Н	eat Exchar	nger Specif	ication shee	et .	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	ZnO Syngas C	ooler			Item No	H-422	
Size 30x 96	, ,	Туре	BEM - HORZ	Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	1190 ft²	Shells/Unit	1	Surface/Shell		1190 ft²	
			PERFORMAI	NCE OF ONE	UNIT		
Fluid Allocation			-	Shellside	_		Tubeside
Fluid Name				Syngas fr H-42	21		Cooling Water
Total Fluid Enterin	α	lb/hr		127,000	-		593,000
Vapor	3			127,000			0
Liquid				0			593,000
Steam				- 0			333,000
Noncondensa	hle						
Fluid Vaporized or				0		 	0
Liquid Density (In/		lb/ft³		0.000/0.000			62.850/62.283
Liquid Viscosity	out)	cP		0.000/0.000		 	0.734
Liquid Specific Hea	ot .	Btu/lb-F		0.000		 	1.027
				0.000			0.363
Liquid Thermal Co Vapor Mol. Weight		Btu/hr-ft-F		10.99/10.99		<u> </u>	0.0/0.0
	(In/Out)	-D					
Vapor Viscosity	-1	cP		0.0140			0.0000
Vapor Specific Hea		Btu/lb-F		0.645			0.000
Vapor Thermal Co		Btu/hr-ft-F		0.062			0.000
Temperature (In/O		°F		265.0/120.0			80.0/100.0
Operating Pressure	e	psi(Abs)		420.000			65.000
Velocity		ft/sec		54.190			1.566
Pressure Drop (All		psi		5.000/4.440			5.000/0.420
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged				mtd (corr)	88.210 °F		
Transfer Rate, Ser	vice	113.0		Clean	184.6 Btu/hr-	ft²-F	
				TION OF ONE			
		Shel	lside	Tubes			Sketch
Design/Test Pres.		465/		80			
Design Temp.	°F	315		150)		
No. Passes per Sh	nell	1			1		
Corrosion Allow.	in	0.0625		0.062	5		
Connections	ln	1-13.0)	10.0			
Size &	Out	1-12.0)	10.0		Ī	
Rating	Intermediate	0		0		1	
Tube No	802	OD 0.750 in		Thk 0.065	Length 8.00 f	t	Pitch 0.93750 / 30.0°
Tube Type	F	PLAIN		Material			
Shell		I.D 30.00 OE) in	Shell Cover		INT	
Channel or Bonnet	t			Channel Cove	er		
Tubesheet-Station	ary			Tubesheet-Flo	oating		
Floating Head Cov	,			Impingement		NO	
Baffles Cross		Type VERT-	SEG	%Cut 32.3 (A		Spacing-cc	24.0
Baffles-Long				Seal Type	,		
Supports-Tube			U-Bend		Туре		
Bypass Seal Arran	gement			Tube-Tubesh			
Expansion Joint	<u> </u>			Type			
Rho-V2 Inlet Nozz	le	2,469	Bundle Entrai	,,	3,979	Bundle Exit	4,341
Gasket-Shellside	· -	_,	Tubeside		5,0.0	Floating Head	,
Code Requirement	f	ASME Section	n 8, Divsion 1			TEMA Class	R
Weight/Shell	•	000tio	Filled with Wa	ater		Bundle	,,
Remarks:			77101 776			- unuio	
i volliai no.							

	Н	eat Exchang	er Specifi	cation shee	et .	
			•	Job No.		
Customer NREL				Ref No.	LP Syngas Ca	ise
Address				Proposal No.	, 0	
Plant Location				Date		Rev. 0
	mpressor Interstag	e Cooling		Item No	H-500A	
Size 24x 72		BEM - HORZ C	onnected in	1 Parallel		1 Series
Surf/Unit (Eff) 511 ft ²	71		urface/Shell		511 ft²	1 001100
Garii Griit (Elli)		PERFORMANO			OTTIC	
Fluid Allocation		T LIG OTTIMATE	Shellside	,,,,,		Tubeside
Fluid Name			Cooling water			Syngas
Total Fluid Entering	lb/hr		553,000			127,000
Vapor	10/111		0			127,000
Liquid						0
			553,000			0
Steam						
Noncondensable						
Fluid Vaporized or Condense		_	0			0
Liquid Density (In/Out)	lb/ft³	6	2.000/62.000			0.000/0.000
Liquid Viscosity	cP		0.762			0.000
Liquid Specific Heat	Btu/lb-F		1.000			0.000
Liquid Thermal Conductivity	Btu/hr-ft-F		0.363			0.000
Vapor Mol. Weight (In/Out)			0.0/0.0			10.99/10.99
Vapor Viscosity	cP		0.0000			0.0155
Vapor Specific Heat	Btu/lb-F		0.000			0.655
Vapor Thermal Conductivity	Btu/hr-ft-F		0.000			0.068
Temperature (In/Out)	°F		80.0/100.0			333.0/200.0
Operating Pressure	psi(Abs)		65.000			1,000.000
Velocity	ft/sec		4.182			25.131
Pressure Drop (Allow/Calc)	psi		5.000/2.552			5.000/0.721
Fouling resistance	hr-ft²-F/Btu		0.002000			0.001000
Heat Exchanged 11,060,00		m	ntd (corr)	170.297 °F	<u> </u>	0.001000
Transfer Rate, Service	127.1		lean	215.4 Btu/hr-	H2_C	
Transier (Vale, Service	127.1	CONSTRUCTION			(-I	
-	Shell		Tubesi		1	Sketch
Design/Test Press poi	80/	isiue	1,050/	ue		Sketch
Design/Test Pres. psi Design Temp. °F						
	150		385			
No. Passes per Shell	1		1			
Corrosion Allow. in	0.0625		0.0625			
Connections In	1-10.0		12.0			
Size & Out	1-10.0)	10.0		Į	
Rating Intermedia	ate 0		0			
·						
Tube No 476	OD 0.750 in		hk 0.065	Length 6.00 f	t	Pitch 0.93750 / 30.0°
Tube Type	PLAIN		laterial			
Shell	I.D 24.00 OD		hell Cover		INT	
Channel or Bonnet		С	hannel Cove	r		
Tubesheet-Stationary		Т	ubesheet-Flo	ating		
Floating Head Cover		Ir	npingement F	Protection	YES	
Baffles Cross	Type VERT-		Cut 23.4 (A		Spacing-cc	16.3
Baffles-Long	······		eal Type		<u>. </u>	
Supports-Tube		U-Bend	75-	Туре		
Bypass Seal Arrangement			ube-Tubeshe	• •		
Expansion Joint			уре			
Rho-V2 Inlet Nozzle	1,279	Bundle Entrance	,,	1,349	Bundle Exit	2,039
Gasket-Shellside	1,210	Tubeside		1,040	Floating Head	,
Code Requirement	ASME Soction	n 8, Divsion 1			TEMA Class	R
Weight/Shell	ASIVIE SECTION	Filled with Wate	ar .		Bundle	11
		i ilicu willi vvale	71		שמוועול	
Remarks:						

		Н	eat Exchar	nger Specifi	ication shee	et .	
				•	Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.		
Plant Location					Date		Rev. 0
Service of Unit	MeOH Syngas	Preheat			Item No	H-501	
Size 73x 168		Туре	BEM - HORZ	Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	12712 ft²	Shells/Unit	1	Surface/Shell		12712 ft²	
Carii Criic (Err)	127 12 10	CHOILE, CHIL		NCE OF ONE		127 12 10	
Fluid Allocation			7 2747 67433743	Shellside			Tubeside
Fluid Name				Steam		Syn	igas to MeOH Rxn
Total Fluid Enterin	0	lb/hr		18,830		Oyii	127,000
Vapor	9	10/111		18.830			127,000
				0			0
Liquid				U			0
Steam	1-1-						
Noncondensa							
Fluid Vaporized or				18,830			0
Liquid Density (In/	Out)	lb/ft³		0.000/52.387			0.000/0.000
Liquid Viscosity		cP		0.148			0.000
Liquid Specific Hea	at	Btu/lb-F		1.120			0.000
Liquid Thermal Co		Btu/hr-ft-F		0.404			0.000
Vapor Mol. Weight	t (In/Out)			18.02/18.02			10.99/10.99
Vapor Viscosity		cP		0.0161			0.0170
Vapor Specific Hea	at	Btu/lb-F		0.492			0.659
Vapor Thermal Co		Btu/hr-ft-F		0.020			0.074
Temperature (In/O	out)	°F		487.0/324.0			239.0/460.0
Operating Pressur		psi(Abs)		100.000			1,160.000
Velocity		ft/sec		4.726			2.192
Pressure Drop (All	ow/Calc)	psi		5.000/0.548			5.000/0.492
Fouling resistance		hr-ft²-F/Btu		0.005000			0.001000
Heat Exchanged				mtd (corr)	60.365 °F		0.001000
Transfer Rate, Ser		24.0		Clean	28.3 Btu/hr-ft	2 [
Transier Nate, Sei	VICE	24.0	CONSTRUCT	TION OF ONE			
		Chal	Iside	Tubesi		ı	Sketch
Danima/Tank Dana	:		isiae	1,220/		4	Sketch
Design/Test Pres.		100/		,		4	
Design Temp.	°F	540		515			
No. Passes per Sh		1		1			
Corrosion Allow.	in	0.0625		0.0625	1		
Connections	In	1-8.0		10.0			
Size &	Out	1-2.0		12.0			
Rating	Intermediate	0		0			
Tube No	5242	OD 0.750 in		Thk 0.065	Length 14.00	ft	Pitch 0.93750 / 30.0°
Tube Type	F	PLAIN		Material			
Shell		I.D 73.00 OE) in	Shell Cover		INT	
Channel or Bonnet				Channel Cove			
Tubesheet-Station	ary			Tubesheet-Flo	ating		
Floating Head Cov				Impingement		NO	
Baffles Cross		Type VERT-	SEG	%Cut 10.4 (A		Spacing-cc	14.5
Baffles-Long				Seal Type	· · · · · · · · · · · · · · · · · · ·		
Supports-Tube			U-Bend	76-	Туре		
Bypass Seal Arran	gement			Tube-Tubeshe			
Expansion Joint				Туре			
Rho-V2 Inlet Nozz	e	1,228	Bundle Entrar		1,623	Bundle Exit	1,384
Gasket-Shellside	10	1,220	Tubeside	100	1,020	Floating Head	
	4	ACME Coatio					
Code Requiremen	ι	ASIVIE Section	n 8, Divsion 1	tor			R
Weight/Shell			Filled with Wa	iter		Bundle	
Remarks:							

		Н	eat Exchai	nger Specif	ication shee	et .	
					Job No.		
Customer	NREL				Ref No.	LP Syngas Ca	ise
Address					Proposal No.	, ,	
Plant Location					Date		Rev. 0
Service of Unit	Blowdown Cod	ler			Item No	H-601	
Size 12x 48	2.0	Туре	BEM - HORZ	Connected in	1 Parallel		1 Series
Surf/Unit (Eff)	89 ft²	Shells/Unit	1	Surface/Shell		89 ft²	
Carriottic (Ell)	00 10		•	NCE OF ONE		00 10	
Fluid Allocation			T ETG OTGINA	Shellside	51411	1	Tubeside
Fluid Name				Blowdown			Cooling water
Total Fluid Entering	<u> </u>	lb/hr		3,164			30,465
Vapor	9	10/111		0			0
Liquid				3,164			30,465
Steam				3,104			30,403
	hla						
Noncondensa							0
Fluid Vaporized or		IL /£13		0	`	<u> </u>	0
Liquid Density (In/C	Jut)	Ib/ft³		56.607/62.000	J	ļ	62.000/62.000
Liquid Viscosity	-1	cP		0.311			0.762
Liquid Specific Hea		Btu/lb-F		1.059			1.000
Liquid Thermal Co	nauctivity	Btu/hr-ft-F		0.382			0.363
Vapor Mol. Weight	(in/Out)	_		0.0/0.0			0.0/0.0
Vapor Viscosity		cP		0.0000			0.0000
Vapor Specific Hea		Btu/lb-F		0.000			0.000
Vapor Thermal Co	nductivity	Btu/hr-ft-F		0.000			0.000
Temperature (In/O		°F		298.0/110.0			80.0/100.0
Operating Pressure	e	psi(Abs)		65.000			65.000
Velocity		ft/sec		0.170			0.561
Pressure Drop (All		psi		5.000/0.111			5.000/0.536
Fouling resistance		hr-ft²-F/Btu		0.001000			0.002000
Heat Exchanged	609,300 Btu/h	r		mtd (corr)	89.027 °F		
Transfer Rate, Ser	vice	76.9		Clean	104.4 Btu/hr-	ft²-F	
			CONSTRUCT	TION OF ONE	SHELL		
		Shel	lside	Tubes	ide		Sketch
Design/Test Pres.	psi	80/		80.	/	1	
Design Temp.	°F	350		150)		
No. Passes per Sh	nell	1		1		1	
Corrosion Allow.	in	0.0625		0.0625	5	1	
Connections	In	1-1.0		2.0		1	
Size &	Out	1-1.0		2.0		1	
Rating	Intermediate	0		0			
- 1 5						•	
Tube No	116	OD 0.750 in		Thk 0.065	Length 4.00 f	t	Pitch 0.93750 / 30.0°
Tube Type		PLAIN		Material	. 5		
Shell	·	I.D 12.00 OE) in	Shell Cover		INT	
Channel or Bonnet	1			Channel Cove	er		
Tubesheet-Station	-			Tubesheet-Flo			
Floating Head Cov				Impingement		YES	
Baffles Cross	- .	Type VERT-	SEG	%Cut 10.1 (A		Spacing-cc	2.3
Baffles-Long		. , , , , , , , , , , , , , , , , , , ,		Seal Type		epacing oc	
Supports-Tube			U-Bend	20a. 1 ypc	Туре		
Bypass Seal Arran	nement		o Bolla	Tube-Tubeshe			
Expansion Joint	gement			Type	JOE OOME		
Rho-V2 Inlet Nozzl	۵	459	Bundle Entra		10	Bundle Exit	268
Gasket-Shellside	16	408	Tubeside	IUC	10	Floating Head	
Code Requirement	.	ASME Soction	n 8, Divsion 1			TEMA Class	R
		ASIVIE SECTIO	Filled with Wa	ator		Bundle	Γ
Weight/Shell			rilled with Wa	alei		Duriule	
Remarks:							

CON	MPRESSOR	NUMBER				100	1		1		
		NOWIDER			IX-	100					
SER	VICE				Combu	stion Air					
GAS	HANDLED)			_	Air					
	RMAL FLOV		SCFM			,965					
NOR	RMAL FLOV	v	LB/HR		235	,200					
DES	IGN FLOW	1	SCFM								
MOL	WT.				28	3.63					
C _p /C _v			Value			.4					
-pv			@ F / P	SIA	90 /	14.7					
SUC	TION CON										
		PRESSURE	PSIA			4.7					
		ACTOR @ SUCTION			_	999					
	FLOW AT	SUCTION	ACFM		54	,910					
	ORIGIN	TUDE	PSIA F		+ ,	20				_	
	LINE LOS		PSI	(2)	,	90				_	
	OTHER LO		PSI	(1, 2)							
	CONTING		PSI	(1, 2)							
	300								1	1	
DISC	CHARGE C	ONDITIONS									
	DISCH. PR		PSIA			20					
	DISCH. TE	MPERATURE	F	(2)	1	57					
	COMPR. F	ACTOR @ DISCH.			0.	999					
	DELIVERY	1	PSIA								
	LINE LOS	S	PSI	(2)							
	EXCHANG		PSI	(2)							
	HEATER L		PSI	(2)							
		VALVE LOSS	PSI	(2)							
	OTHER LO		PSI	(2)							
	TOTAL LO		PSI PSI	(2)			-				
			P31	(2)	+ 4	26					
	<u>IPRESSION</u>	NATIO		(2)		.36 .75					
BHP				(2)		300				-	
	//PRESSOR	TYPE		(=)	<u>'</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				_	
	VER TYPE										
GAS	COMPOSI	TION: Vol. %									
			H ₂ O		3	3.1					
			O ₂		2	0.3					
			Ar		C).9					
			N ₂		7:	5.7			ļ		
									<u> </u>		
(4) 11	NOLLIDEO	ALLOWANOE FOR O	LIOTION OR	DIGGLIADOE ONUE	DED.						
		ALLOWANCE FOR S				CLIANICAL	DEGLON				
(2) V	ALUE IAB	ULATED IS ESTIMAT	ED AND MC	15 I BE VERIFIED B	OT FINAL ME	CHANICAL	DESIGN				
]		
NO	DATE		REVIS	IONS		PROC	PROJ.	CLIENT			
										Contract ACO-5	
		NREL BIO	OMASS GAS	IFICATION: Low Pre	essure Synga	as Case (Bl	_C Gasifier)		DRAWING NO		REV
		I				•	•		Ī.		1

COMPRESSOR N	IUMBER			K-300A - Stage 1	K-300B	Stage 2	K-300C - Stage 3	K-300D - St
SERVICE				Syngas Compressor Stag 1		ompressor ge 2	Syngas Compressor Stage 3	Synga: Compressor 4
GAS HANDLED				Syngas	Syn	igas	Syngas	Synga
NORMAL FLOW		SCFM		120,208	90,	448	88,044	87,158
NORMAL FLOW		LB/HR		317,371	232	,617	225,773	223,22
DESIGN FLOW		SCFM						
MOL WT.				16.7		.26	16.21	16.2
C _p /C _v		Value		1.36		100	1.379	1.39
		@ F / PS	SIA .	157 / 15.88	110	/ 30	110 / 79	110 / 2
SUCTION CONDI		DCIA		45.00	+	^	70	215
SUCTION PI	CTOR @ SUCTION	PSIA		15.88 0.9979	_	0 99	79 0.9985	0.9972
FLOW AT S		ACFM		131,756	_	531	17,936	6,513
ORIGIN	5011014	PSIA		131,730	70,	001	17,950	0,515
TEMPERAT	URE	F		157.1	1	10	110	110
LINE LOSS	<u></u>	PSI	(2)					
OTHER LOS	SES	PSI	(1, 2)					
CONTINGE		PSI						
DISCHARGE CO	NDITIONS							
DISCH. PRE	SSURE	PSIA		35	8	4	220	450
DISCH. TEM	IPERATURE	F	(2)	344.2	34	9.6	349.1	277
COMPR. FA	CTOR @ DISCH.			0.9982	1.0	001	1.003	1.005
DELIVERY		PSIA			_			
LINE LOSS		PSI	(2)					
EXCHANGE		PSI	(2)					
HEATER LO		PSI	(2)					
	/ALVE LOSS	PSI	(2)					
OTHER LOS		PSI	(2)					
CONTINGEN TOTAL LOS		PSI PSI	(2)		+			
COMPRESSION		POI	(2)	2.204	—	.8	2.78	2,002
EFFICIENCY	KATIO		(2)	0.75		. <u>8</u> 75	0.75	2.093 0.75
BHP			(2)	11,248		75 251	10,251	7,036
COMPRESSOR T	YPF		(2)	11,240	10,	201	10,231	7,030
DRIVER TYPE								
GAS COMPOSITI	ON: Vol. %							
			H ₂	39.79	52	.87	54.32	54.88
			CO ₂	12.36	16	.42	16.87	17.04
			СО	18.42	24	.48	25.15	25.41
			H₂O	27.97	4.	28	1.67	0.66
			CH₄	1.19		58	1.62	1.64
			C ₂ H ₂	0.02		02	0.02	0.02
			C ₂ H ₄	0.02		22	0.23	0.23
			C ₂ H ₆	0	0.00		0.00002	0.0000
			Benzene (C ₆ H ₆)	0	0.00		0.000006	0.00000
			Tar (C ₁₀ H ₈)	0	0.00		0.000001	0.00000
			Ammonia (NH ₃) H ₂ S	0.01	0.	01 04	0.01 0.04	0.01 0.04
			Π ₂ S	0.03		08	0.04	0.04
			- "2	3.00	1		0.00	0.00
` '	LOWANCE FOR SUC LATED IS ESTIMATEI				CAL DESIGN	N		
NO DATE		REVISI	ONS	PROC	PROJ.	CLIENT		
NO DATE		REVISI	ONS	PROC	PROJ.	CLIENT	JOB NO NREL CO	ntract ACO-5-

SERVICE	CON	MPRESSOR	NUMBER			K-4	120					
File Class Blower			HOMBER									
NORMAL FLOW LBH/R 248,400	SER	VICE				Flue Ga	s Blower					
NORMAL FLOW LEHER 248,400	GAS	HANDLED)			Flue	Gas					
DESIGN FLOW SCFM												
MOL WT: 27.57						248	400					
C _p /C _c				SCFM		07						
SUCTION CONDITIONS SUCTION PRESSURE PSIA 14.3 SUCTION PRESSURE PSIA 14.3 SUCTION PRESSURE PSIA 14.3 SUCTION PRESSURE PSIA 14.3 COMPR. FACTOR @ SUCTION 0.9982 PLOW AT SUCTION ACFM 71,490 ORIGIN PSIA 175.8 TEMPERATURE F 175.8 LINE LOSS PSI (2) OTHER LOSSES PSI (1, 2) CONTINGENCY PSI DISCHARGE CONDITIONS DISCH. TEMPERATURE F (2) 182 COMPR. FACTOR @ DISCH. DELIVERY PSIA 14.7 DISCH. TEMPERATURE F (2) 182 COMPR. FACTOR @ DISCH. DELIVERY PSIA (2) EXCHANGER LOSS PSI (2) EXCHANGER LOSS PSI (2) CONTROL VALVE LOSS PSI (2) CONTROL VALVE LOSS PSI (2) CONTROL VALVE LOSS PSI (2) CONTROL VALVE LOSS PSI (2) CONTINGENCY PSI (2) CONTINGENCY PSI (2) COMPRESSION RATIO 1.028 EFFICIENCY (2) 0.75 BHP (2) 0.03 COMPRESSOR TYPE GAS COMPOSITION: Vol. % CO_ 0.03 Ar 0.91 N ₂ 75.67				Value								
SUCTION CONDITIONS SUCTION PRESSURE PSIA 14.3 14.4 14.5 14	C _p /C _v				RIA							
SUCTION PRESSURE	SUC	TION CON	DITIONS	<u> </u>	50.1	1101	14.0					
COMPR. FACTOR @ SUCTION				PSIA		14	.3					
ORIGIN						_						
TEMPERATURE F 175.8		FLOW AT	SUCTION	ACFM		71,	490					
LINE LOSS OTHER LOSSES PSI (1, 2) OTHER LOSSES PSI (1, 2) DISCHARGE CONDITIONS DISCH. PRESSURE PSIA 14.7 DISCH. PRESSURE PSIA 14.7 DISCH. TEMPERATURE F (2) 162 COMPR. FACTOR @ DISCH. DELIVERY PSIA 14.7 LINE LOSS PSI (2) EXCHANGER LOSS PSI (2) EXCHANGER LOSS PSI (2) CONTROL VALVE LOSS PSI (2) OTHER LOSSES PSI (2) CONTROL VALVE LOSS PSI (2) CONTINGENCY PSI (2) CONTINGENCY PSI (2) CONTINGENCY PSI (2) COMPRESSION RATIO 1.028 EFFICIENCY (2) 0.75 BHP (2) 177 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO ₂ 0.0.03 H ₂ O 3.1 N ₂ 75.67		ORIGIN		PSIA								
OTHER LOSSES						17	5.8					
DISCHARGE CONDITIONS					- ' '							
DISCHARGE CONDITIONS DISCH. PRESSURE DISCH. TEMPERATURE F (2) 182 COMPR. FACTOR @ DISCH. DELIVERY PSIA LINE LOSS PSI (2) EXCHANGER LOSS PSI (2) EXCHANGER LOSS PSI (2) CONTROL VALVE LOSS PSI (2) CONTROL VALVE LOSS PSI (2) CONTROL SALVE LOSS PSI (2) CONTROL SALVE LOSS PSI (2) COMPRESSION RATIO TOTAL LOSSES PSI (2) COMPRESSION RATIO EFFICIENCY (2) 0.75 BHP (2) 177 COMPRESSOR TYPE BRIVER TYPE GAS COMPOSITION: Vol. % CO2 Q2 Q2 Q2 Q2 Q2 Q3 P567					(1, 2)							
DISCH. PRESSURE		CONTINGE	ENCY	PSI						 	\longrightarrow	
DISCH. PRESSURE	DIO:	CUADOE O	ONDITIONS							-	-+-	
DISCH. TEMPERATURE F (2) 182 (2) (DISC			DCIA		4.	7	-		 	-+	
COMPR. FACTOR @ DISCH. 0.9982					(2)					 		
DELIVERY					(2)							
LINE LOSS				PSIA		0.0	302					
EXCHANGER LOSS					(2)							
CONTROL VALVE LOSS PSI (2) OTHER LOSSES PSI (2) CONTINGENCY PSI (2) TOTAL LOSSES PSI (2) COMPRESSION RATIO EFFICIENCY (2) 0.75 BHP (2) 177 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CC ₂ 0.03 H ₂ O 3.1 O ₂ 20.29 Ar 0.91 N ₂ 75.67		EXCHANG	ER LOSS									
OTHER LOSSES PSI (2) CONTINGENCY PSI (2) TOTAL LOSSES PSI (2) COMPRESSION RATIO 1.028 EFFICIENCY (2) 0.75 BHP (2) 177 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO2 0.03 H ₂ O 3.1 O2 20.29 Ar 0.91 N ₂ 75.67		HEATER L	.oss	PSI	(2)							
CONTINGENCY PSI (2) TOTAL LOSSES PSI (2) COMPRESSION RATIO EFFICIENCY (2) 0.75 BHP (2) 177 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO ₂ 0.03 H ₂ O 3.1 O ₂ 20.29 Ar 0.91 N ₂ 75.67		CONTROL	VALVE LOSS	PSI	(2)							
TOTAL LOSSES PSI (2) COMPRESSION RATIO EFFICIENCY (2) 0.75 BHP (2) 1.028 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO ₂ 0.03 H ₂ O 3.1 O ₂ 20.29 Ar N ₂ 75.67					(2)							
COMPRESSION RATIO												
EFFICIENCY (2) 0.75 BHP (2) 177 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO ₂ 0.03 H ₂ O 3.1 O ₂ 20.29 Ar 0.91 N ₂ 75.67				PSI	(2)							
BHP (2) 177 COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO2 0.03 H ₂ O 3.1 O2 20.29 Ar 0.91 N ₂ 75.67			N RATIO									
COMPRESSOR TYPE DRIVER TYPE GAS COMPOSITION: Vol. % CO ₂ 0.03 H ₂ O 3.1 O ₂ 20.29 Ar N ₂ 75.67												
DRIVER TYPE GAS COMPOSITION: Vol. % CO2 0.03 H ₂ O 3.1 O2 20.29 Ar 0.91 N ₂ 75.67			TVDE		(2)	1,	7					
GAS COMPOSITION: Vol. % CO2 0.03 H ₂ O 3.1 O2 20.29 Ar 0.91 N ₂ 75.67			TIFE									
CO ₂ 0.03 H ₂ O 3.1 O ₂ 20.29 Ar 0.91 N ₂ 75.67			TION: Vol. %									
O ₂ 20.29 Ar 0.91 N ₂ 75.67				CO ₂		0.	03					
Ar 0.91 N ₂ 75.67				H₂O		3	.1					
N ₂ 75.67				O ₂		20	29					
				N ₂		75	67					
WARRANDER ALL CHARLES FOR CHARLOS PROGRADOS CHARLOS												
(1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	(1) II	NCLUDES A	ALLOWANCE FOR S	UCTION OR	DISCHARGE SNUE	BBER						
	` '	-										
(2) VALUE TABULATED IS ESTIMATED AND MUST BE VERIFIED BY FINAL MECHANICAL DESIGN												
(), 1												
		, .							1	T		
										4		
										4		
		 			10110				01.1=:::=	 		
	NO	DATE		REVIS	IUNS		PROC	I PROJ.	CLIENT	IOP NO NO	L Contract ACC :	E 44007
NO DATE REVISIONS PROC PROJ. CLIENT											L CONTRACT ACO-5	
NO DATE REVISIONS PROC PROJ. CLIENT JOB NO NREL Contract ACO-5-44027 DRAWING NO PROC PROJ. PROC PROJ. CLIENT			NREL BIO	OMASS GAS	IFICATION: Low Pro	essure Synga	s Case (Bo	CL Gasifier)		DRAWING NO		KEV
NO DATE REVISIONS PROC PROJ. CLIENT			i e									i .

COMPRESSOR NUMBER			K-500A	K-500B		
SERVICE			MeOH Compressor Stage 1	MeOH Compressor Stage 2		
GAS HANDLED			Treated Syngas	Treated Syngas		
NORMAL FLOW	SCFM		73,055	73,055		
NORMAL FLOW	LB/HR		127,035	127,035		
DESIGN FLOW	SCFM					
MOL WT.			10.99	10.99		
·p/C _v	Value		1.418	1.424		
p - v	@ F / PS	SIA	115 / 415	200 / 995		
SUCTION CONDITIONS						
SUCTION PRESSURE	PSIA		415	995		
COMPR. FACTOR @ SUCTION			1.006	1.021		
FLOW AT SUCTION	ACFM		2,881	1,400		
ORIGIN	PSIA					
TEMPERATURE	F		110	200		_
LINE LOSS	PSI	(2)				+
OTHER LOSSES	PSI	(1, 2)				
CONTINGENCY	PSI					
						_
DISCHARGE CONDITIONS				4.400		_
DISCH. PRESSURE	PSIA		1,000	1,160	-	
DISCH. TEMPERATURE	F	(2)	326	239.3		
COMPR. FACTOR @ DISCH.			1.023	1.026		_
DELIVERY	PSIA	(0)				
LINE LOSS	PSI	(2)			<u> </u>	
EXCHANGER LOSS HEATER LOSS	PSI PSI	(2)				_
CONTROL VALVE LOSS	PSI	(2)				-
OTHER LOSSES	PSI	(2)				-
CONTINGENCY	PSI	(2)				-
TOTAL LOSSES	PSI	(2)				-
COMPRESSION RATIO		(=)	2.41	1.17		-
EFFICIENCY		(2)	0.75	0.75		1
BHP		(2)	7,377	1,340		
COMPRESSOR TYPE		(2)	7,077	1,040		
DRIVER TYPE						+
GAS COMPOSITION: Vol. %						
OAD COM COTTON. VOI. 70		H ₂	65.45	65.45		+
		CO ₂	1.63	1.63		1
		CO	30.3	30.3		
		H ₂ 0	0.26	0.26		
		CH₄	1.96	1.96		
		C ₂ H ₂	0.03	0.03		
		C ₂ H ₄	0.28	0.28		
		C ₂ H ₆	0.00002	0.00002		
		Benzene (C ₆ H ₆)	0.000008	0.000008		
		Tar (C ₁₀ H ₈)	0.000001	0.000001		
		NH ₃	0.01	0.01		
		N ₂	0.095	0.095		

						1		
NO	DATE	REVISIONS	PROC	PROJ.	CLIENT			
						JOB NO	NREL Contract ACO-	5-44027
		NREL BIOMASS GASIFICATION: Low Pressure Synga	s Case (RC	: Gasifier)		DRAWING	NO	REV
		TARKEE BIOMINGO GNOW TO THORK EGW F TOSSGIO GYNGE	20, 2000 020	or Casiller)				

COMPRESSOR NUMBER	
CAS HANDLED Steam	
GAS HANDLED Steam Steam NORMAL FLOW SCFM 88,402 31,815	
NORMAL FLOW LBHR 251,800 232,900	
NORMAL FLOW LBHR 251,800 232,900 DESIGN FLOW SCFM	
DESIGN FLOW SCFM	
MOL WT.	
Value	
Compression Compression	
SUCTION CONDITIONS	
SUCTION PRESSURE	
COMPR. FACTOR @ SUCTION	
FLOW AT SUCTION ACFM 2,691 21,390	
ORIGIN	
TEMPERATURE F	
LINE LOSS	
OTHER LOSSES	
DISCHARGE CONDITIONS	
DISCHARGE CONDITIONS	
DISCH. PRESSURE	
DISCH. PRESSURE	
DISCH. TEMPERATURE F (2) 487 376	
COMPR. FACTOR @ DISCH. 0.977 0.9833	
DELIVERY	
LINE LOSS PSI (2) EXCHANGER LOSS PSI (2) HEATER LOSS PSI (2) CONTROL VALVE LOSS PSI (2) OTHER LOSSES PSI (2) CONTROLENCY PSI (2) CONTINGENCY PSI (2) COMPRESSION RATIO	
EXCHANGER LOSS	
HEATER LOSS	
CONTROL VALVE LOSS	
OTHER LOSSES PSI (2) CONTINGENCY PSI (2) TOTAL LOSSES PSI (2) COMPRESSION RATIO EFFICIENCY (2) 0.75 0.75 0.75	
CONTINGENCY	
TOTAL LOSSES PSI (2)	
COMPRESSION RATIO EFFICIENCY (2) 0.75 0.75 KW Generated (2) 16,067 3,343 Turbine TYPE Steam Steam DRIVER TYPE GAS COMPOSITION: Vol. % H ₂ CO ₂ CO H ₂ O 100% 100% CH ₄ C ₂ H ₂ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ Benzene (C ₆ H ₆) Tar (C ₁₀ H ₈) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
EFFICIENCY	
kW Generated (2) 16,067 3,343 Turbine TYPE Steam Steam DRIVER TYPE Steam Steam GAS COMPOSITION: Vol. % Image: Color of the color	
Turbine TYPE Steam Steam DRIVER TYPE	
DRIVER TYPE GAS COMPOSITION: Vol. % H ₂ CO ₂ CO H ₂ O 100% 100% CH ₄ C ₂ H ₂ C ₂ H ₄ C ₂ H ₆ Benzene (C ₆ H ₆) Tar (C ₁₀ H ₉) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
GAS COMPOSITION: Vol. % H ₂	
H ₂	
CO2	
CO H ₂ 0 100% 100% CH ₄ C ₂ H ₂ C ₂ H ₄ C ₂ H ₆ Benzene (C ₆ H ₆) Tar (C ₁₀ H ₈) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
H ₂ 0	
CH ₄ C ₂ H ₂ C ₂ H ₄ C ₂ H ₆ Benzene (C ₆ H ₆) Tar (C ₁₀ H ₉) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
C ₂ H ₂ C ₂ H ₄ C ₂ H ₆ Benzene (C ₆ H ₆) Tar (C ₁₀ H ₆) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
C ₂ H ₄ C ₂ H ₆ Benzene (C ₆ H ₆) Tar (C ₁₀ H ₈) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
C2H6 Benzene (C6H6) Benzene (C6H6) Tar (C10H8) NH3 N2 (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
Benzene (C ₆ H ₆)	
Tar (C ₁₀ H ₈) NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
NH ₃ N ₂ (1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
N ₂	
(1) INCLUDES ALLOWANCE FOR SUCTION OR DISCHARGE SNUBBER	
(2) VALUE TABULATED IS ESTIMATED AND MUST BE VERIFIED BY FINAL MECHANICAL DESIGN	
NO DATE REVISIONS PROC PROJ. CLIENT	
JOB NO NREL Contract	
NREL BIOMASS GASIFICATION: Low Pressure Syngas Case (BCL Gasifier) DRAWING NO	REV

Site Location	(Note: Four	(4) narali	el cyclones		Specification		Date			Rev.
	(Hotel I dai	(-) Paran	_	•	DECCUPE UN	T C 400 and				Nev.
			SERV	ICE OF LOW F	PRESSURE UN	I S-100 and	S-101			
Inlet Condition	ns			Flow	Viscosity	Density	Molecular Weight (Ave.)	Particle Size (mm) (Stokes' MMD)	Volumetric Flowrate	Temperature
				lb/h	lb/ft-sec	lb/ft3	lb/mole		acfm	°F
Gas (Split into for	ur parallel flows)		316,369.00	2.35 x 10-5	0.03500	18.7		150,652.00	1,59
Particulate				40,407.00		62.40		60		
0 1-1-4 B	(!-\			22.00						
Gas Inlet Pressure Gas Discharge Pre				33.00 32.64						
Pressure Drop, Ma		`		10.48						
Design/Test Press		,		33.00						
Design Particulate				50						
Design Separation		itpoint (%)		98						
	-									
Emery Design Cald	culations Summ	ary for S-10	(for Referenc	e Only)						
Mechanical Sizing		Inside Diam (in)	Uninsulated Outside Diam (in)		ID (in)	OD (in)	Thickness (in)	Designation		Overall Heigh (ft)
Connections Size	In	48		Upper Shell	82	84	1	ASME VIII		3
& Rating	Out	36		Inner Tube	36					
	Bottom	TBD		Cone			1	ASME VIII		
				Refractory	74		4			
	Com	ponent Dat				Cyclo	ne Body Mate	rials of Cons	truction	
	Design Temperature (°F)	Solids Removal Flowrate (CFM)	Differential Design Pressure (psig)	Туре	Upper S	ection	Lower Coni	cal section	No	ozzles
Rotary Air Lock	1598				Inner Wall	Outer Shell	Inner Wall	Outer Shell		Outer Shell
Level Indicator	1598				Cercast™	MS	Cercast™	MS	Cercast™	MS
					Inner Tube					
					MS					
Vandar/Cumplier	Cnacifications	and Drice	Ouete							
Vendor/Supplier Fisher-Klosterma		and Price	Quote			(Defer to Ven	dor Communic	nations and D	lata Chaote)	
Ryan Bruner, Sal						(Refer to veri	doi Communic	ations and D	ala Sileels)	
P.O. Box 11190	les Manager									
Lousville, Ky										
Ph: 502-572-400	0 ext 213									
Email: rab@fkind	c.com									
Recommendation.	: Replace S-10	0 and S-10	1 with 4 cyclon	es operated in	parallel using sp	lit air flow:				
F (4) VO400 4	IONA accelerate an		والمراك والكارون والمراو							
Four (4) XQ120-4						s to be lined w	vith 4" of \/ocus	ius Coroast 1	3300 castable	rofractory
Design, fabricated	l, tested, and st	amped as a			Interior surface					refractory
Design, fabricated 3/8" plate carbon s	l, tested, and sta steel construction	amped as a on			Interior surface All welding per	FKI Class 3 p	reocedures wit	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect	I, tested, and sta steel construction tion with flanged	amped as a on			Interior surface All welding per Exterior to be s	FKI Class 3 p andblasted ar	reocedures wit nd painted with	h 100% pene	etration	
Design, fabricated 3/8" plate carbon : Dust receiver sect 40"∅ gas inlet fla	I, tested, and sta steel construction tion with flanged inge	amped as a on			Interior surface All welding per Exterior to be s Design pressur	FKI Class 3 p andblasted ar e (psig)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon son the carbon	I, tested, and sta steel construction tion with flanged ange soutlet flange	amped as a on I discharge	n ASME vesse	el	Interior surface All welding per Exterior to be s	FKI Class 3 p andblasted ar e (psig)	reocedures wit nd painted with	h 100% pene	etration	
Design, fabricated 3/8" plate carbon : Dust receiver sect 40"∅ gas inlet fla	I, tested, and sta steel construction tion with flanged ange soutlet flange	amped as a on I discharge		el	Interior surface All welding per Exterior to be s Design pressur	FKI Class 3 p andblasted ar e (psig)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon son the carbon	I, tested, and sta steel construction tion with flanged ange soutlet flange	amped as a on I discharge	n ASME vesse	el	Interior surface All welding per Exterior to be s Design pressur	FKI Class 3 p andblasted ar e (psig)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" as inlet fla 48" verticle gas Approximate Over	I, tested, and stated construction with flanged outlet flange rall Dimensions.	amped as a on I discharge	n ASME vesse	tall	Interior surface All welding per Exterior to be s Design pressur	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon son the carbon	I, tested, and stated construction with flanged counter flange rall Dimensions:	amped as a on I discharge	n ASME vesse	tall	Interior surface All welding per Exterior to be s Design pressur Design Tempe	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon 3 0 plate carbon 3 0 plate carbon 4 0 plate	I, tested, and state of the construction with flanged on the country of the count	amped as a con discharge amped as a con discharge amped as a con discharge are a conditional amped as a conditiona	n ASME vesse	tall Particulate Cc	Interior surface All welding per Exterior to be s Design pressur Design Temper anditions at Inleity	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon so Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylor	I, tested, and state of the construction with flanged on the country of the count	amped as a on discharge	n ASME vesse	el tall Particulate Co	Interior surface All welding per Exterior to be s Design pressur Design Temper anditions at Inleity	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with d painted with 33	h 100% pene	etration	
Design, fabricated 3/8" plate carbon 3 Dust receiver sect 40" gas inlet fla 48" Verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft3)	I, tested, and stated construction with flanged inge coutlet flange rall Dimensions: at Inlet: ne (acfm)	amped as a on discharge discharge 37,663 0.035 2.53E-05	n ASME vesse	tall Particulate Co Specific Gravi Dust Loading	Interior surface All welding per Exterior to be s Design pressur Design Tempe anditions at Inle ity (Grains/acf)	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" as a single gas inlet fla 48" error verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/ft3) Viscosity (Ibm/ft4) Inlet Velocity (ft/s	I, tested, and stated construction with flanged in the construction of the constructio	amped as a pn I discharge I discharge I discharge I 37,663 0.035 2.53E-05	n ASME vesse	el Particulate Cc Specific Grav Dust Loading Fraction Effic	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Interior Ity (Grains/acf)	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	tall Particulate Co Specific Gravi Dust Loading	Interior surface All welding per Exterior to be s Design pressur Design Tempe anditions at Inle tity (Grains/acf) iencies: Stoke Weight %	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" as a single gas inlet fla 48" error verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/ft3) Viscosity (Ibm/ft4) Inlet Velocity (ft/s	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	amped as a pn I discharge I discharge I discharge I 37,663 0.035 2.53E-05	n ASME vesse	Particulate Co Specific Grav Dust Loading Fraction Effic Dia.(microns)	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inleity (Grains/acf) Iencies: Stoke Weight % 7.37	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Grav Dust Loading Fraction Effic Dia.(microns) 3 3.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inle ity (Grains/acf) iencies: Stoke Weight % 7.37 16.3	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Co Specific Grav Dust Loading Fraction Effic Dia.(microns)	Interior surface All welding per Exterior to be s Design pressur Design Tempe ditions at Inle ity (Grains/acf) encies: Stoke Weight % 7.37 16.3 21.44	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3,5,4	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inle ity (Grains/acf) iencies: Stoke Weight % 7.37 16.3	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Co Specific Grav Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5	Interior surface All welding per Exterior to be s Design pressur Design Tempe ditions at Inle ity (Grains/acf) iencies: Stoke Weight % 7.37 16.3 21.44 26.75 32.07 37.27	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Co Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5 5 5.5 6.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inleity (Grains/acf) Idencies: Stoke Weight % 7.37 16.3 21.44 26.75 32.07 37.27 42.27	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5 5.5 6.5 7.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inle ity (Grains/acf) iencies: Stoke Weight % 7.37 16.3 21.44 26.75 32.07 37.27 42.27 51.48	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Grav Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5 5.5 6.5 7.5 8.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe dity (Grains/acf) iencies: Stoke Weight % 7.37 16.3 21.44 26.75 32.07 37.27 42.27 51.48 59.48	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coulet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3 3.5.5 4 4.5 5 5.5 6.5 7.5 8.5 9.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Design	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coullet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Grav Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5.5 6.5 7.5 8.5 9.5 10.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inle ity (Grains/acf) iencies: Stoke Weight % 7.37 16.3 21.44 26.75 32.07 37.27 42.27 51.48 59.48 66.29 71.99	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coullet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5 5.5 6.5 7.5 8.5 9.5 10.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Interior sat Inle Inter	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coullet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3 3.55 4 4.55 5 5.55 6.5 7.55 8.5 9.5 10.5 13	Interior surface All welding per Exterior to be s Design pressur Design Tempe Design	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coullet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5 5.5 6.5 7.5 8.5 9.5 10.5	Interior surface All welding per Exterior to be s Design pressur Design Tempe Interior sat Inle Inter	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon s Dust receiver sect 40" gas inlet fla 48" verticle gas Approximate Over Gas Conditions a Volume per cylon Density (Ibm/fts) Viscosity (Ibm/fts) No load pres. dro	I, tested, and stated construction with flanged inge coullet flange rall Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.)	37,663 0.035 2.53E-05 78,46	n ASME vesse	Particulate Cc Specific Grav Dust Loading Fraction Effic Dia.(microns) 3 3.5 4 4.5 5 6.5 7.5 8.5 10.5 133 177	Interior surface All welding per Exterior to be s Design pressur Design Tempe Inditions at Inle ity (Grains/acf) iencies: Stoke Weight % 7.37 16.3 21.44 26.75 32.07 37.27 42.27 51.48 66.29 71.99 82.36 89.12 94.36	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	
Design, fabricated 3/8" plate carbon 3/8" plate carbon 5 Dust receiver sect 40"	I, tested, and stated construction with flanged inge coulet flange and Dimensions: at Inlet: ne (acfm) sec) pp (in.W.C.) rop (in. W.C.)	37,663 0.035 2.53E-05 12.6 10.02	n ASME vesse	Particulate Cc Specific Gravi Dust Loading Fraction Effic Dia.(microns) 3.55 4.4.55 5.5.6.55 6.55 7.5.5 10.5 13.17 24 34	Interior surface All welding per Exterior to be s Design pressur Design Tempe Interior sat Inle Inter	FKI Class 3 p andblasted ar e (psig) rature (F)	reocedures with displayment of painted with 33 650	h 100% pene	etration	_

				Cyclone	Specification	Sheet				
Site Location							Date			Rev.
			5	SERVICE OF L	OW PRESSURE	UNIT S-102				
Inlet Condition	าร			Flow	Viscosity	Density	Molecular Weight (Ave.)	Particle Size (mm) (Stokes' MMD)	Volumetric Flowrate	Temperature
				lb/h	BTU/lb°F	Ib/ft3	lb/mole		acfm	°F
Gas Particulate				328,979.00 40,407.00	2.78E-05	0.34470 62.40	16.7	60	150,612.01	1,59
raiticulate				40,407.00		02.40		00		
Gas Inlet Pressure	(psia)			33.00						
Gas Discharge Pre				32.64						
Pressure Drop, Ma)		10.00						
Design/Test Pressi Design Particulate				33.00 50						
Design Separation		utpoint (%)		98						
gp		(,0,		-						
Emery Design Cald	ulations Summa	ary for S-102	(for Reference	Only)						
Mechanical Sizing		Inside Diam (in)	Uninsulated Outside Diam (in)		ID (in)	OD (in)	Thickness (in)	Designation		Overall Heigh (ft)
Connections Size	In	34		Upper Shell	58	60	1	ASME VIII		2
& Rating	Out	26	36	Inner Tube	34					
	Bottom			Cone			1	ASME VIII		
	Com	ponent Dat		Refractory	50	Cyclo	A Rody Mate	rials of Cons	truction	
		Solids	a Differential			Cycloi	ne Body Mate	iais of Cons	action	
	Design Temperature (°F)	Removal Flowrate (CFM)	Design Pressure (psig)	Туре	Upper S		Lower Coni			zzles
Rotary Air Lock	1598	20.4	15		Inner Wall		Inner Wall	Outer Shell		Outer Shell
Level Indicator	1598				Cercast™	MS	Cercast™	MS	Cercast™	MS
					Inner Tube MS					
					IVIO					
Vendor/Supplier	Specifications	and Price C	Quote							
Fisher-Klosterma						(Refer to Ven	dor Communic	cations and D	ata Sheets)	
Ryan Bruner, Sal	es Manager									
P.O. Box 11190 Lousville, Ky										
Ph: 502-572-4000) ext 213									
Email: rab@fking										
Recommendation:	Quote Pendin	g								
Four (4) XQ120-4	8M cyclone as	semblies ea	ch with the fo	ollowing Featu	res:					
Design, fabricated					Interior surface	s to be lined w	vith 4" of Vesuv	vius Cercast :	3300 castable	refractory
3/8" plate carbon s	steel construction	on			All welding per	FKI Class 3 p	reocedures wit	th 100% pene	etration	
Dust receiver sect		discharge			Exterior to be s	andblasted ar		high tempera	ature aluminum	paint
40"∅ gas inlet fla	_				Design pressur		460			
48"Ø verticle gas			5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 11	Design Temper	rature (F)	650			
Approximate Over	aii Dimensions:		5 ft∅ x 25 ft t	all						
Gas Conditions a				Particulate Co	nditions at Inle	et:				
Volume per cylor		15,906		Specific Grav		1.000				
Density (lbm/ft3)		0.3447		Dust Loading	(Grains/acf)	7.33				
Viscosity (lbm/ft-	sec)	2.78E-05								
Inlet Velocity (ft/s	sec)	70.11		Fraction Effic	l iencies: Stoke	s Equiv. % Ef	ficiency	1		
No load pres. dro		73.64		Dia.(microns)	Weight %	,				
Full load pres. Dr	op (in. W.C.)	63.69		2.5	4.91					
				3.5	12.88					
		1		<u>4.5</u> 5	22.89 28.13			 		
				5.5	33.31					
				6	38.34					
				7	47.7					
				<u>8</u>	55.93 63					
		1		10	68.97			1		
				11	73.98					
				13	81.64					
				17						
		1		24 34	94.08 97.25			-		
										i
Price (200	5 U.S.\$)	\$ 3	370.000.00	74	99.67					

Site Location				Syciolie	Specification	2.1001	Date			Rev.
One Eccation				SERVICE OF L	OW PRESSUR	E UNIT S-103				Itev.
Inlet Condition	าร			Flow	Voscosity	Density	Molecular Weight (Ave.)	Particle Size (mm) (Stokes' MMD)	Volumetric Flowrate	Temperature
				lb/h	lb/ft-sec	lb/ft3	lb/mole		acfm	°F
Gas Particulate				248,368.00	2.87E-05	0.03501	27.6	60	7,289.00	1,7
Particulate				40,407.00		1.00		60		
Gas Inlet Pressure	(psia)			33.00						
Gas Discharge Pre				32.64						
Pressure Drop, Ma)		10.00						
Design/Test Pressu				33.00						
Design Particulate Design Separation		itpoint (%)		50 98						
ooigii oopaiaiioii	Zinoiono, at oa	repoint (70)		00						
Emery Design Calc	ulations Summa	ary for S-103		e Only)						
Mechanical Sizing		Inside Diam (in)	Uninsulated Outside Diam (in)		ID (in)	OD (in)	Thickness (in)	Designation		Overall Heig (ft)
	In	26		Upper Shell	46	48	1	ASME VIII		
& Rating	Out	18	28	Inner Tube	18		4	A CME VIII		
	Bottom	 	 	Cone Refractory	38		1 4	ASME VIII		
	Com	ponent Dat		. torractory	36	Cyclor	ne Body Mate	rials of Cons	struction	1
	Design Temperature (°F)	Solids Removal Flowrate (CFM)	Differential Design Pressure (psig)	Туре	Upper S	ection	Lower Coni	cal section	No	ozzles
Rotary Air Lock	938	20.4			Inner Wall	Outer Shell	Inner Wall	Outer Shell	Inner Wall	Outer Shell
Level Indicator	938				Cercast™	MS	Cercast™	MS	Cercast™	MS
					Inner Tube					
					MS					
/endor/Supplier	Specifications	and Price	Quote							
isher-Klosterma		<u></u>				(Refer to Ven	dor Communic	cations and E	ata Sheets)	
Ryan Bruner, Sal	es Manager									
P.O. Box 11190										
Lousville, Ky Ph: 502-572-4000) ovt 213		-							
Email: rab@fkinc										
Recommendation:	Quote Pendin	g								
Four (4) XQ120-4	8M cyclone as	semblies e	ach with the	following Feat	iroe.					
Design, fabricated					Interior surface	s to be lined w	vith 4" of Vesu	ius Cercast	3300 castable	refractory
3/8" plate carbon s	steel construction	on			All welding per	FKI Class 3 p	reocedures wit	h 100% pene	etration	
Dust receiver sect		discharge			Exterior to be s			high tempera	ature aluminum	n paint
40"∅ gas inlet fla					Design pressur	e (psig)	460			
	outlet flesses									
18"∅ verticle gas					Design Temper	ature (F)	650			
18"∅ verticle gas			4 ft⊘ x 17 ft t	tall	Design Temper	ature (F)	650			
18"∅ verticle gas		:	4 ft∅ x 17 ft t	tall	Design Temper	ature (F)	650			
48"∅ verticle gas Approximate Over	all Dimensions:				Design Temper		650			
48" verticle gas Approximate Over Gas Conditions a	all Dimensions: ut Inlet: ne (acfm)	7,289		Particulate Co	onditions at Inle	et:	650			
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (lbm/ft3)	all Dimensions: t Inlet: ne (acfm)	7,289 0.5679		Particulate Co	onditions at Inle	et:	650			
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (lbm/ft3)	all Dimensions: t Inlet: ne (acfm)	7,289		Particulate Co	onditions at Inle	et:	650			
48" verticle gas Approximate Over Gas Conditions a Volume per cylor Density (lbm/ft3) Viscosity (lbm/ft-	all Dimensions: It Inlet: ne (acfm) sec)	7,289 0.5679 2.87E-05		Particulate Co Specific Gravi Dust Loading	onditions at Inleity (Grains/acf)	1.000 16				
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns)	onditions at Inle ity (Grains/acf) iencies: Stoke Weight %	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns)	onditions at Inkity (Grains/acf) lencies: Stoke Weight % 8.46	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5	onditions at Inletity (Grains/acf) encies: Stoke Weight % 8.46 13.57	1.000 16				
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns)	onditions at Inleity (Grains/acf) lencies: Stoke Weight % 8.46 13.57 19.29	1.000 16				
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3	onditions at Inletity (Grains/acf) encies: Stoke Weight % 8.46 13.57	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5	onditions at Inleity (Grains/acf) lencies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5	onditions at Inleity (Grains/acf) iencies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5 5.5 6	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84 57.08	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- Inlet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns)	encies: Stoke: Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84 57.08 64.8 71.14	1.000 16				
Ry gas linier land and a land and a land ll Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.55 4 4.5 5 6 7 8 9 9	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84 57.08 64.88 71.14 76.31	1.000 16					
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5 6 7 7 8 9 9	onditions at Inleity (Grains/acf) iencies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84 57.08 64.8 71.14 76.31	1.000 16				
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.55 4 4.5 5 5 6 77 8 8 9 10 12	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.11 42.64 47.84 57.08 64.8 71.14 76.31 83.89	1.000 16				
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5.5 6 7 8 9 10 12 16 21	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84 57.08 64.88 71.14 76.31 83.89 90.07	1.000 16				
18" Ø verticle gas Approximate Over Gas Conditions a /olume per cylor Density (Ibm/ft3) /iscosity (Ibm/ft- nlet Velocity (ft/s No load pres. dro	all Dimensions: ut Inlet: ne (acfm) sec) pp (in.W.C.)	7,289 0.5679 2.87E-05 72.29 120.63		Particulate Cc Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.55 4 4.5 5 5 6 77 8 8 9 10 12	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.11 42.64 47.84 57.08 64.8 71.14 76.31 83.89	1.000 16				
48" Ø verticle gas Approximate Over Gas Conditions a Volume per cylor Density (Ibm/ft3) Viscosity (Ibm/ft- niet Velocity (ft/s No load pres. dro	all Dimensions: at Inlet: ne (acfm) sec) pe (in.W.C.) op (in. W.C.)	7,289 0.5679 2.87E-05 72.29 120.63 99.82		Particulate Co Specific Gravi Dust Loading Fraction Effici Dia.(microns) 2.5 3 3.5 4 4.5 5 5 5.5 6 7 7 8 9 10 10 12 16 21	encies: Stoke Weight % 8.46 13.57 19.29 25.27 31.27 37.1 42.64 47.84 47.84 57.08 64.8 71.14 76.31 83.89 90.07 94.11	1.000 16				

D.1 INTRODUCTION

The first task undertaken by the team was to examine commercial technologies that are suitable for synthesis gas cleanup for biomass gasification. Currently, there are various types of technologies available dependent upon the specific cleanup requirements. For example, the clean-up required for syngas that will ultimately be fed to a reciprocating engine is much less than for syngas used in chemical synthesis. This study examined all technologies that could be required for syngas that will be used for Fischer-Tropsch (FT) liquids and alcohol synthesis.

The gas cleanup configuration for a system is generally determined by the composition of the syngas exiting the gasifier, the cleanup requirements for the intended use of the syngas, and economic considerations. Technologies such as cyclone separators, barrier filters, and electrostatic precipitators are routinely used for solid particulate removal. Catalytic tar crackers are employed to destroy tars and nitrogen contaminants. Wet scrubbers are used to remove a number of contaminants such particulates, alkali species, halides, soluble gases, and condensable liquids. Acid gas removal technologies encompass a large selection of processes including amine-based, physical solvent, liquid phase oxidation, and catalytic absorbent. Each section focuses on the operating size ranges and conditions, materials of construction, and cleanup parameters for each technology considered.

D.2 PARTICULATE REMOVAL TECHNOLOGIES

D.2.1 INTRODUCTION

During the gasification process, the mineral matter contained in the biomass feedstock will form inorganic ash, and the unconverted biomass will form char. These particulates are entrained in the syngas stream as it exits the gasifier. The concentration of particulates produced is often influenced by the gasifier design. These particulates can present emissions problem and can cause abrasion to downstream equipment. Therefore, the particulates concentration must be reduced using various technologies discussed in the following paragraphs.

Cyclone Separators

Cyclones use centrifugal forces to separate the bulk of large size particulates from a gas stream. In gasification systems, cyclones are normally used as the first step in the gas cleanup process. They are relatively inexpensive to manufacture and easy to operate which translate to low capital and maintenance costs. In general, 90-98% of particulates 10 µm or larger in diameter can be removed, but the removal efficiency decreases significantly for smaller particulates 13. The removal efficiency also decreases as the operating temperatures increases. Cyclones are capable of handling operating temperatures up to 2000°F and can be designed to operate at pressures normally encountered in gasifiers. Cyclones are usually made from carbon steel and are refractory lined to withstand high temperature environments. A flow range from 300 to 13,000 CFM is typical for cyclones. This flow range is within the parameter of the syngas flow rate specified by NREL for this project.

Donaldson Co., Inc. "Cyclone Dust Collectors," July 2003, http://www.donaldson.com/en/industrialair/literature/000984.pdf

D.2.2 BARRIER FILTERS

Barrier filters remove particulates by capturing the particulates on the filter surfaces as the gas stream passes through the filter medium. The particulates accumulated on the filter surfaces form a cake, which can be dislodged by initiating a blowback flow. The blowback gas flows in the reverse direction of normal process flow and dislodges the filter cake, which is then removed from the system. The operating principle of barrier filters is illustrated in Figure D-1. Barrier filters include high-temperature filters, such as ceramic and metal candle filters, and low-temperature filters, such as baghouse filters.

Filter Cake

Medium

Filtrate

FIGURE D-1 PRINCIPLE OF BARRIER FILTERS

Ceramic Candle Filters

Ceramic filters are designed to remove particulate matter from gas streams at elevated temperatures. Ceramic filters can be designed for any flow requirement and can remove 90% of particulates larger than 0.3 µm¹⁴. In theory, the ceramic filter elements, normally made of aluminosilicate or silicon carbide powder with a sodium aluminosilicate binder, have exceptional physical and thermal properties, and should be able to withstand high temperature operations of up to 1800°F. However, commercial operations using ceramic filters at this temperature range have not been successful due to the susceptibility of the filter elements to cracking. Advances in composite filter element materials that have resistance to crack propagation at high temperatures are being developed and tested¹⁵. At temperatures below 850°F, ceramic filters have demonstrated satisfactory operational reliability.

In operations where tars are formed in the gasifier, ceramic filters should be operated at temperatures above the dew point of the tars (usually about 700-750°F) to avoid tar condensation. Condensed tar accumulates on filter surfaces and leads to plugging which will reduce the lifetime of the filter and impact process flowrates.

Metal Candle Filters

Metal filters are used in high temperature cleanup systems to remove particulate matter and can achieve filtration level as low as 1 μ m. They can be designed to meet any flow requirement and can operate over a wide range of temperatures depending on the material of construction. Metal

Pall Corp., "Syngas Filter Proposal," 26 January 2005, office communication

Jay E. Lane, Jean-Francois LeCostaouec, "Ceramic Composite Hot Gas Filter Development," http://www.netl.doe.gov/publications/proceedings/98/98ps/pspb-5.pdf

filters made from stainless steel can be used in cleanup systems for temperatures below 650°F while Inconel or alloy HR filters are suitable for operating temperatures up to 1100°F. At even higher temperatures, Fercalloy can withstand temperatures up to 1800°F¹⁶, although commercial operation at this temperature has not been demonstrated. Commercial operation of metal filters operating at a maximum temperature of 915°F has been successful at a few gasification facilities in Europe¹⁷.

Some operational considerations for metal filters are the corrosion rate and tar deposition on filter elements. Under similar stream compositions and conditions, the corrosion rate of metal filter elements is ten times that of the surrounding piping; thus, a regular maintenance schedule is essential to ensure operational reliability. Additionally, in operations where filter elements are subjected to frequent cleaning cycles due to tar deposition, the lifetime of the filter will be reduced. Therefore, it is recommended that the filter be operated at a temperature above the dew point of the tars in the syngas stream to avoid tar condensation and deposition.

Baghouse Filters

Baghouse filters are made of a woven fabric or felted (non-woven) material to remove particulate matter from an air or gas stream and can remove particulates down to 2.5 μm¹⁸. For woven fabric filters, the removal efficiency increases as the thickness of filter cake increases; thus, the removal efficiency of these systems is constantly changing. Felted filter systems have a constant removal efficiency that does not depend on the thickness of the filter cake¹⁹. Baghouse filters are modular in design and thus can accommodate a wide flow range from 1,500 to 150,000 CFM. The air-to-cloth ratio, or ratio of the volumetric flow to cloth area, sets the size of a baghouse unit. The bag fabric can be made from various materials including polyester, acrylic, NOMEX, Teflon, Ryton, and fiberglass²⁰. The operating temperature range of an application influences the selection of bag material. For example, materials such as polyester or acrylic are suitable for applications with operating temperatures below 300°F, while NOMEX, Teflon, Ryton, or fiberglass is recommended for temperatures up to 500°F. Due to the temperature limits of the filter fabric, baghouse filters are only used in the low-temperature cleanup systems. They are often used downstream of the cyclones so that the particulate loading on the filters can be reduced.

Disadvantages of baghouse filters include the need for periodic bag replacement that can result in high maintenance costs and the potential for bag fire or explosion. A spark detection and extinguishment system, along with bag grounding strips, are recommended safety measures to mitigate the fire potential. Additionally, the performance of the filter fabrics degrades drastically with tar deposition on the fabric surface, so fabric surface treatments such as Teflon coating and pre-coating with limestone or other compatible filter aids is recommended. Such pre-coats can

_

Mott Corp., "Fiber Metal. The High-Flow, Low-Pressure Drop Alternative," June 2003, http://www.mottcorp.com/resource/pdf/PSFIBERfinal.pdf

¹⁷ Mike Wilson, Mott Corp., "Fercalloy Metal Filters," 2 February 2005, Vendor input

Donaldson Co., Inc. "Dalamatic Dust Collectors," December 2002, http://www.donaldson.com/en/industrialair/literature/000983.pdf

¹⁹ EPA, "Air Pollution Technology Fact Sheet-Fabric Filter – Pulse-Jet Cleaned Type," http://www.macrotek.net/pdf/FS_Pulse_Clean_Dust_Collector.pdf

Ducon, "Baghouse Filter," 2003, http://www.ducon.com/bag-house-filter.php

also be used to adsorb mercury and other contaminants.. Industry experience suggests that either ceramic or metal filters should be used in place of baghouse filters in high temperature operations.

D.2.3 ELECTROSTATIC PRECIPITATORS (ESPs)

ESPs are commonly used in large power plants to control fly ash emissions. ESPs consist of discharge electrodes centered between positively grounded collection plates. As the gas stream laden with particulates passes through the ESP, the discharge electrodes provide a negative charge to the particulates. The positively grounded collection plates act as a magnet for the negatively charged particulates, which collect on the plates. The collected particulates are transported into the collection hopper by the rapper or vibrator system.

ESPs are classified as either wet or dry processes. In wet ESPs, a water quench is applied either intermittently or continuously to the collection plates. The purpose of the water quench is to prevent possible fires that have occasionally resulted from the use of dry ESPs. The wastewater from wet ESPs must be treated prior to disposal.

For dry ESPs, the removal efficiency decreases for particulates with a high electrical resistivity since these particulates can introduce positive ions into the gas space resulting in reduced attraction of the negatively charged particulates to the collection plates. Particulates with a high resistivity are commonly produced from combustion of low-sulfur coals. Flow ranges of 10,000 – 300,000 CFM are typical for dry ESPs. Dry ESPs operate in the pressure range from vacuum conditions up to 150 psi and can operate at temperatures up to 750°F²¹.

Wet ESPs can achieve 99.9% removal of sub-micron particulates down to $0.01~\mu m$. Particulate resistivity does not affect removal efficiency of wet ESPs since the humid operating environment often reduces the resistivity of particulates. These systems are generally designed for gas flow range from 1,000 to 100,000 CFM. Gas streams with particulate sizes larger than 2 μm or with an exceptionally high particulate loading should be pretreated to reduce the load on the ESP. Wet ESPs operate in the pressure range from vacuum conditions up to 150 psi, with operating temperatures limited to 170-190°F^{22,23}.

The type of ESP selected for an application is largely influenced by the operating parameter and the type of particulates to be removed. However, the use of ESPs is limited in gasification systems due to the significant capital costs compared to other systems. Additionally, the removal efficiency of ESPs is sensitive to fluctuations in process conditions, such as changes in temperatures and pressures, gas compositions, and particulate loading. Therefore, ESPs are not suitable for biomass gasification applications that have highly variable syngas compositions from different feedstocks

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock Final Report

²¹ Gerry Graham, "Controlling Stack Emissions in the Wood Products Industry," http://www.ppcesp.com/ppcart.html

²² Ducon, "Wet & Dry Electrostatic Precipitators," 2003, http://www.ducon.com/wet-dry-precipitators.php (24 January 2005)

²³ EPA, "Air Pollution Technology Fact Sheet-Wet Electrostatic Precipitator (ESP)-Wire-Pipe Type," http://www.p2pays.org/ref/10/09890.pdf (25 January 2005)

D.3 TAR REMOVAL TECHNOLOGIES

D.3.1 INTRODUCTION

Following NREL guidelines for the purpose of this project, tar is defined as C10+ hydrocarbons. Tar in syngas products can cause serious operational problems when the syngas stream cools below the dew point of the tars (usually about 700-750°F) and tar deposition occurs on downstream equipment and piping. Thus, tar removal is critical when there is tar present in the syngas. Tar can be removed either by physical or chemical processes. The most common physical process involves cooling the syngas stream to condense the tar into fine droplets and removing these droplets by wet scrubbing. Chemical process involves catalytic steam reforming of tars to lighter gases.

D.3.2 WET SCRUBBERS

Wet scrubbing is generally used to remove water-soluble contaminants from the syngas by absorption into a solvent. Tar components are water-soluble can be removed by this method. Additionally, wet scrubbing is also often used to remove a number of other contaminants such as particulates, alkali species, halides, soluble gases, and condensable liquids. In wet scrubbing, water is a common solvent choice. Wet scrubbers with the venturi design are frequently used in gas cleanup applications to achieve sub-micron particulate removal requirements. As the gas stream enters the venturi scrubber, the scrubbing liquid is sprayed into the gas stream. The two streams are thoroughly mixed by the turbulence in the venturi throat section where fine particles are impacted and agglomerate into liquid droplets. The liquid droplets are separated from the gas stream in a separator unit consisting of a cyclone separator or a mist eliminator.

Venturi scrubbers can achieve 99.9% removal efficiency of sub-micron particulates. Flow range for a single-throat venturi is 500-100,000 SCFM. Flows above this range require either multiple venturi scrubbers in series or a multiple-throat venturi²⁴. Venturi scrubbers with a quench section can accommodate high temperature gas streams up to 450°F, and they can operate over a wide range of pressures²⁵.

The standard material of construction for venturi scrubbers is carbon steel. For corrosive or high temperature applications, stainless steel or special alloys such as FRP (fiberglass reinforced plastic) and Inconel are used.

The disadvantages of scrubbers include high pressure drop, the need to treat the wastewater effluent prior to disposal, and the loss of sensible heat of the syngas due to quenching. In power generation applications, the loss of sensible heat reduces the energy content of the gas and thus is undesirable; however, it is less of a concern in biomass refinery applications. Nevertheless, sensible heat loss will result in reduced overall system efficiency.

²⁴ EPA, "Air Pollution Technology Fact Sheet-Venturi Scrubber" < http://www.macrotek.net/pdf/FS_Venturi_Scrubber.pdf

²⁵ Envitech, Inc., "Venturi Scrubber," < http://www.envitechinc.com/scrubber.zhtml

D.3.3 CATALYTIC TAR REFORMING

Catalytic reforming of biomass tars is a developing technology for tar removal from syngas streams. The concept of this technology is to reform tar in a fluidized reactor bed, or tar cracker, into lighter gases using a proprietary catalyst. In addition to tar, light hydrocarbons (C1 to C5), benzene, and ammonia are also removed. A few large-scale biomass gasification facilities, such as Carbona in Denmark and the FERCO gasifier in Vermont, have demonstrated a novel catalyst in their tar crackers since commercial catalysts are too friable for this application²⁶. The FERCO tar cracker removed 90% of the tar in the syngas stream using a novel catalyst known as DN34²⁷. In both of these processes, a wet scrubber was used downstream of the tar cracker to remove residual tars and impurities.

A tar cracker known as the Reverse Flow Tar Cracking (RFTC) reactor developed by BTG uses the steam reforming process with a commercial nickel catalyst 28. The nickel catalyst is very sensitive to sulfur impurities; therefore, a syngas stream containing sulfur contaminants has to be desulfurized prior to entering the RFTC reactor. Due to the cooling requirement for the desulfurization process, the syngas is fed to the reactor at a temperature from 660 -1200°F and is heated to the reaction temperature of 1650 -1740°F in the reactor entrance section. The heated gas passes through a bed of nickel catalyst where tar, light hydrocarbons, and ammonia are removed by steam reforming. The main reactions of the RFTC reactor are:

$$C_nH_m + nH_2O \Leftrightarrow nCO + (\frac{1}{2}m+n)H_2$$
 Hydrocarbon reforming
 $2NH_3 \Leftrightarrow N_2 + 3H_2$ Reverse ammonia synthesis
 $CO + H_2O \Leftrightarrow CO_2 + H_2$ Water-gas shift

A small amount of the syngas is combusted to counterbalance the endothermic tar reforming reactions:

$$H_2 + \frac{1}{2} O_2 \rightarrow H_2O$$
 $CO + \frac{1}{2} O_2 \rightarrow CO_2$
 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

The typical conversion for the RFTC reactor is as follows:

Components	Conversion
Benzene	82
Napthalene	99
Phenol	96
Total Aromatic	94
Total Phenols	98
Total Tar	96
Ammonia	99

Don J. Stevens, "Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems," prepared by Pacific Northwest National Laboratory for NREL, August, 2001

Mark A. Paisley, Mike J. Welch, "Biomass Gasification Combined Cycle Opportunities Using the Future Energy SilvaGas Gasifier Coupled to Alstrom's Industrial Gas Turbines," ASME Turbo Expo Land, Sea, and Air, Georgia World Congress Center, June 16-19, 2003

BTG Biomass Technology Group, "Tar & Tar Removal," 22 March 2004, http://www.btgworld.com/technologies/tar-removal.html

The partial oxidation reaction (POx) was also investigated as a possible process for tar and hydrocarbons removal. In this process, the syngas enters the POx reactor and mixes with oxygen that is at about 300°F. Partial oxidation and reforming reactions occur in a combustion zone where tar, methane, light hydrocarbons, and benzene are converted to CO and H₂. The reformed gas exits the reactor at about 2500°F.

The main disadvantage of POx is a reduction of the product gas heating value. In order to achieve destruction of the tars and oils, a high temperature reactor is required. While it is possible to crack the tars and oils at moderate temperatures, it is very difficult to selectively react methane. However at high temperatures oxidation of CO and H₂ also occur. As a result, the gas composition will be shifted toward a lower H₂:CO ratio.

In order to improve the efficiency of POx, a catalyst can be used to lower the temperature, and hence also the amount of oxidizer required to destroy the tars and oils. A catalytic auto-reformer technology may provide a solution to biomass tar and oil elimination. Such an application would only apply to a particulate-free gas since any particulate in the gas could shortly blind the catalytic reactor. As shown in Table D-1 below, an auto-thermal reformer is essentially a hybrid between POx and steam reforming.

Gas Reforming Process	Typical H₂/CO ratio	Comments
Tar Cracking/Reforming	wide range	Developing technology. Operating information not widely available.
Steam (Methane) Reforming SR or SMR	3-4	Dominant technology for industrial H ₂ production Typically high efficiency
Partial Oxidation (POx)	1.7-1.8	Used in refining to upgrade heavy liquid fuels Low efficiency May generate coke or soot
Auto-thermal Reforming (ATR)	2.4-4	Hybrid of POx and SR

TABLE D-1 COMPARISON OF SYNGAS REFORMING PROCESS TECHNOLOGY

D.4 ACID GAS REMOVAL TECHNOLOGIES

D.4.1 INTRODUCTION

Sulfur contaminants such as H₂S, COS, CO₂, mercaptans, and HCN poison catalysts used in liquid fuel synthesis. Therefore, the syntheses of methanol and FT liquids from syngas require that the sulfur be removed from the syngas to a residual level of 0.10 ppm or less. The syngas considered for this study contains approximately 400 ppmv of H₂S; therefore, acid gas removal is critical in the gas cleanup process. Acid gas removal technologies can be categorized as amine-based, physical solvent, liquid phase oxidation, or catalytic absorbent processes. The type of technology selected is largely influenced by the system operating conditions, the sulfur level in the syngas stream, and the desired purity of the treated syngas. Brief descriptions to explain the overall process for each system are given in the following paragraphs.

D.4.2 AMINE-BASED SYSTEM

Amine processes are proven technologies for the removal of H₂S and CO₂ from gas streams by absorption. Amine systems generally consist of an absorber, a stripper column, a flash separator, and heat exchangers. This is a low-temperature process in which the gas to be treated usually enters the absorber at approximately 110°F. In the absorber, acid gases are removed from the gas stream by chemical reactions with the amine solution. The sweet gas stream exits at the top of the absorber. Regeneration of the rich amine is accomplished through the flash separator to remove absorbed hydrocarbons followed by a stripper column to remove the H₂S and CO₂ from the amine solution. The lean amine solution is cooled and returned to the absorber. The stripped acid gas stream is cooled to recover water and then sent to a sulfur recovery unit. A typical amine system is shown in Figure D-2.

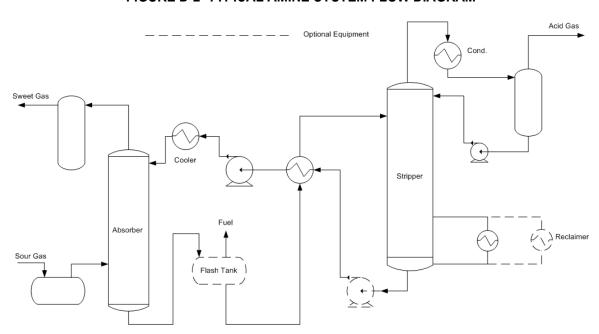


FIGURE D-2 TYPICAL AMINE SYSTEM FLOW DIAGRAM

Amine systems normally operate in the low to medium pressure range of 70-360 psi, although higher pressures can be accommodated with a specific amine solvent. However, in applications where the partial pressure of acid gases is high, the economy of an amine system declines in comparison to other systems. Amine systems can be designed to meet specific flow range and sulfur removal requirements. A sulfur removal level as low as 1 ppm can be achieved but at the expense of operating cost due to the large solvent circulation rate required²⁹.

There are a variety of amine solutions available. Each offers distinct advantages based on the specific treating condition. Commercially available amine solutions include³⁰:

²⁹ Input from GTI, "Gas Cleanup Technologies Discussion," 3 February 2005, office communication

³⁰ GPSA

MEA – Monoethanolamine removes both H₂S and CO₂ from gas streams and is generally used in low-pressure systems and in operations requiring stringent sulfur removal.

DGA – Diglycolamine is used when there is a need for COS and mercaptan removal in addition to H_2S . DGA can hydrolyze COS to H_2S ; thus, a COS hydrolysis unit is not needed in the cleanup system.

DEA - Diethanolamine is used in medium- to high-pressure systems (above 500 psi) and is suitable for gas stream with a high ratio of H_2S to CO_2 .

MDEA - Methyldiethanolamine has a higher affinity for H_2S than CO_2 . MDEA is used when there is a low ratio of H_2S to CO_2 in the gas stream so that the H_2S can be concentrated in the acid gas effluent. If a Claus plant is used for sulfur recovery, a relatively high concentration of H_2S (>15%) in the acid gas effluent is required for optimal Claus operation.

After prolonged use, MEA, DGA, and MDEA solutions accumulate impurities that reduce the H₂S removal efficiency of the solutions. A reclaim unit is needed to remove the impurities in order to improve system efficiency.

One major operating concern for amine systems is corrosion. In water, H₂S dissociates to form a weak acid while CO₂ forms carbonic acid. These acids attack and corrode metal. Therefore, equipment in the amine systems may be clad with stainless steel to improve equipment life.

D.4.3 PHYSICAL SOLVENT SYSTEM

This acid gas removal technology uses an organic solvent to remove acid gases from gas streams by physical absorption without chemical reaction. The driving force of this process is the high solubility of acid gases in the organic solvent. In most cases, solubility increases as the temperature decreases and the pressure increases. Thus, physical absorption is a low-temperature, high-pressure process, with high partial pressure of acid gases required for the economy and efficiency of this process. The temperature of the solvent should be as low as possible while the temperature of the gas to be treated usually enters the absorber at about 100°F. Physical solvent systems normally operate at pressures above 150 psi³¹.

In general, physical solvent systems consist of an absorber, a stripper column, a series of flash separators, and heat exchangers. In the absorber, acid gases in the syngas stream are absorbed into the solvent solution. The sweet syngas stream exits the top of the absorber. Regeneration of the rich solvent stream is accomplished through a series of flash separators at reduced pressures to remove absorbed hydrocarbons followed by the stripper column to remove the acid gases from the solvent. The lean solvent solution is cooled and returned to the absorber. The stripped acid gas stream is cooled to recover water and then sent to a sulfur recovery unit. A typical physical solvent system is shown in Figure D-3.

Task 2: Gas Cleanup Design and Cost Estimates, Wood Feedstock Final Report

³¹ Gerhard Ranke, "Advantages of the Rectisol-Wash Process in Selective H₂S Removal from Gas Mixtures," 1973, office communication, 30 January 2005

The two common physical systems are Rectisol and Selexol. The Rectisol process, which uses methanol at temperatures < 32°F, can achieve a sulfur removal level as low as 0.1 ppm. The Selexol process, which uses mixtures of dimethyl ethers of polyethylene glycol, can achieve a sulfur removal level of 1ppm³².

Selection of material of construction depends on the solvent used. For example, stainless steel is required for much of the Rectisol process equipment, contributing to a significant capital cost. In the Selexol process, carbon steel is the standard material of construction, except for those areas with high severity where stainless steel will be used.

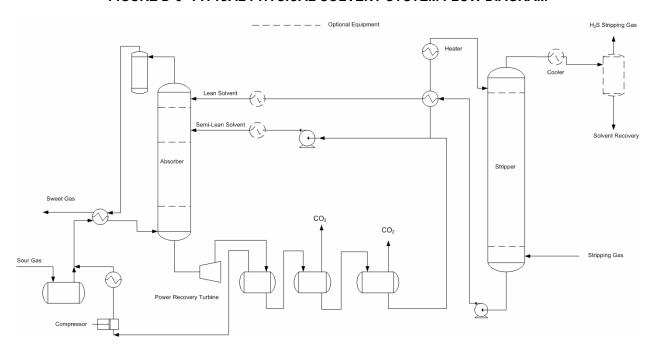


FIGURE D-3 TYPICAL PHYSICAL SOLVENT SYSTEM FLOW DIAGRAM

D.4.4 LIQUID PHASE OXIDATION PROCESS -- LO-CATTM

LO-CATTM is an oxidation process that uses iron catalyst held in a chelating agent to oxidize H₂S to elemental sulfur. H₂S is the only acid gas being removed in this process but a high CO₂ concentration in the feedgas requires caustic for pH adjustment. A LO-CATTM process consists of 3 sections that include an absorber, an oxidizer for catalyst regeneration, and a sulfur handling unit. Figure D-4 illustrates a typical LO-CATTM unit. When the gas stream comes in contact with the LO-CATTM solution in the absorber, H₂S in the gas stream is converted to elemental sulfur. The spent catalyst along with the elemental sulfur exit the absorber, then enter the oxidizer where the spent catalyst is regenerated by contact with oxygen in air, and the elemental sulfur is concentrated into a sulfur slurry. The sulfur slurry moves to the sulfur handling unit where it is washed to recover any entrained catalyst. The sulfur recovered from a LO-CATTM

³² D.J. Kubek, E. Polla, F.P. Wilcher, "Purification and Recovery for Gasification," Gasification Technologies Conference, October 1996, San Francisco, CA.

process contains a small amount of entrained residual catalyst and is considered low-value sulfur that is suitable for agricultural purposes but is undesirable as a chemical feedstock.

The LO-CATTM process is suitable for small-scale applications that require less than 20 TPD of sulfur recovery capacity, making the LO-CATTM a candidate process for this study, which has less than 5 TPD of sulfur recovery. This process can achieve 99.9%+ of H₂S removal efficiency³³. This process can operate over a wide range of pressures from atmospheric up to 600 psi, but most are low-pressure applications in amine acid gas service. The operating temperature is normally maintained at about 110°F since high temperatures degrade the LO-CATTM solution that can affect removal efficiency. Advantages of this process include the ability to treat a wide range of gas compositions, a significant turndown flexibility, and less capital costs in comparison to the Claus process with the associated tail gas treating unit.

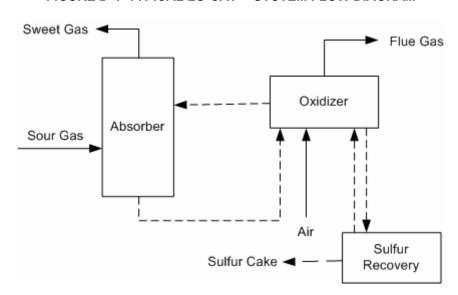


FIGURE D-4 TYPICAL LO-CAT™ SYSTEM FLOW DIAGRAM

Since LO-CATTM only removes H_2S , a COS hydrolysis unit upstream of the LO-CATTM is needed to hydrolyze any COS in the gas stream to H_2S . Other acid gases, such as HCN and mercaptans, would have to be removed by wet scrubbing.

The standard material used for LO-CATTM systems is stainless steel. Under certain conditions where there is build-up of chloride ions from the feed gas, FRP (fiberglass reinforced plastic) material is used to provide added stability for the stainless steel components³⁴.

D.4.5 CATALYTIC ABSORBENT—ZnO

ZnO is often used as a polishing step for sulfur removal in gas streams where the sulfur level is below 20 ppmv. In a traditional purification system, illustrated in Figure D-5, ZnO is used in

Douglas L. Heguy, Gary J. Nagl, "The State of Iron Redox Sulfur Plant Technology New Developments to an Established Technology," http://www.gtpmerichem.com/support/technical_papers/state_of_iron_redox.html (25 January 2005)

³⁴ GTP-Merichem, "FAQ's About Sulfur Removal and Recovery Using the LO-CAT System," < http://www.gtp-merichem.com/support/faq.html> (25 January 2005)

conjunction with hydrogenation catalysts based on cobalt, molybdenum and nickel. This system involves the hydrogenation of sulfur compounds such as mercaptans to H_2S , and halides such as chlorides to HCl. These compounds are then reacted with the ZnO absorbent where H_2S is converted to zinc sulfide, and HCl forms a stable chloride. Additionally, ZnO also removes COS by hydrolysis to form H_2S which is then adsorbed to form zinc sulfide. The general reactions are summarized below³⁵:

Hydrogenation reactions:

$$RSH + H_2 \rightarrow RH + H_2S$$

 $RC1 + H_2 \rightarrow RH + HC1$

Reaction with ZnO:

$$ZnO + H_2S \Leftrightarrow ZnS + H_2O$$

 $ZnO + COS \Leftrightarrow ZnS + H_2O$

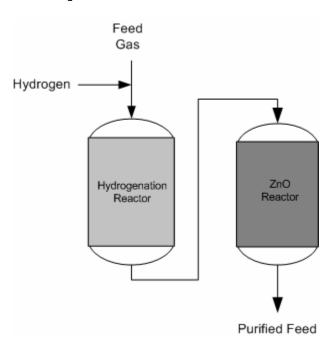


FIGURE D-5 TRADITIONAL ZNO PURIFICATION SYSTEM

A sulfur removal below 50 ppb is attainable with ZnO^{36} . Since the sulfur specifications for alcohols and FT liquids are 0.10 ppm or less, ZnO will be used to achieve these requirements. However, a hydrogenation reactor will not likely be required since the syngas stream given by NREL does not contain halogens or any other sulfur compounds other than H_2S .

Johnson Matthey Group, "Purification Catalysts and Absorbents for Hydrogen Production," available at http://www.jmcatalysts.com (25 January 2005)

³⁶ Johnson Matthey Group, "Absorbent for Sulphur Polishing," available at http://www.jmcatalysts.com (25 January 2005)

ZnO is active over a wide range of temperatures from ambient to 750°F; however, operating temperatures range between 660°F and 750°F are normally used to maximize absorption efficiency. Operating pressure limits are not a concern for the use of ZnO absorbent. The ZnO reactor is normally constructed from carbon steel clad with stainless steel to prevent corrosion caused by acid gases.

One drawback of this process is the significant operating costs contributed by frequent replacement and disposal of ZnO absorbent since it cannot be regenerated.

D.4.6 COS HYDROLYSIS

COS can be removed simultaneously with H₂S and other acid gases in some of the acid gas removal processes described above. In chemical absorption processes, the degree of COS removal is dependent upon the reactivity of the solvent solution with COS. For example, DGA can remove virtually all of the COS whereas MDEA has little reactivity with COS. In physical absorption processes, the solubility of COS in the physical solvent and the COS partial pressure determine the level of removal. A COS level of 0.1 ppm is attainable with the Rectisol process while the Selexol process can achieve 10 ppm COS³⁷. In the ZnO process, approximately 80% of the COS can be removed by hydrolysis.

When COS cannot be effectively removed by the conventional acid gas removal processes, a COS hydrolysis reactor is required and is placed upstream of the acid gas removal unit. COS removal is accomplished by hydrolysis of COS on a catalyst to form H_2S which is sent to the downstream acid gas removal unit. Activated alumina catalysts are often used in these applications. COS removal to 0.1 ppm or below can be achieved³⁸. COS hydrolysis reactors can operate over a wide range of pressures with temperatures in the range of $100^{\circ}F - 450^{\circ}F$. The COS hydrolysis reactor is normally constructed from carbon steel clad with stainless steel to prevent corrosion caused by acid gases.

D.4.7 SULFUR RECOVERY UNIT (SRU)

In the sulfur recovery unit, the acid gas stream from the amine or physical solvent unit is recovered to elemental sulfur. In operations where the sulfur recovery is more than 20 TPD, a Claus SRU is generally an economical approach. However, since the amount of sulfur in the syngas for this study is small (< 5 TPD), a Claus operation would not be a cost-effective solution. For a low sulfur recovery capacity, a LO-CAT SRU would be a more suitable process.

D.5 AMMONIA, ALKALI, AND OTHER CONTAMINANTS

D.5.1 AMMONIA REMOVAL

Two methods for removing ammonia include catalytic tar reforming and wet scrubbing. Tar cracker catalysts have been demonstrated to be effective at reducing ammonia in the syngas stream by conversion to N_2 and H_2 . A tar cracker can be used to remove ammonia followed by

Robert Chu, Senior Design Engineer, Nexant, "COS Removal," office communication, 17 February 2005

³⁸ United Catalysts Inc., "UCI COS Hydrolysis Catalysts," 22 June 1992, and office communication, 17 February 2005

gas cooling and a wet scrubber to remove residual ammonia. This cleanup configuration should achieve complete removal of ammonia.

D.5.2 ALKALI REMOVAL

Alkali removal is normally accomplished by cooling the syngas stream below 1100°F to allow condensation of alkali species followed by barrier filtration or wet scrubbing. Corrosion potential should be taken into consideration when using metal or ceramic candle filters due to possible reactions between the alkali and filter materials at high temperatures. Several demonstration facilities had used barrier filters to removal alkali along with other impurities. For example, ceramic filters were used at the Lahti facility in Finland and Varnamo in Sweden^{39,40}. The Varnamo facility experienced breakage of the ceramic filter elements and replaced them with sintered metal filters, which operated successfully. Baghouse filters were used in Lahti's low-pressure gasification system and the FERCO facility in Vermont.

Alkali can easily be removed by wet scrubbing, thus it is often the preferred method for alkali removal. Descriptions of operating and cleanup parameters for barrier filters and wet scrubbing are given earlier in this Appendix.

D.5.3 REMOVAL OF OTHER CONTAMINANTS

Contaminants such as halides or metals (i.e. nickel or iron) are not typical, but may exist in syngas produced from biomass gasification. If present, these impurities can be removed by wet scrubbing or purification by hydrogenation and ZnO absorption.

Krister Stahl, et al. "Biomass IGCC at Varnamo, Sweden-Past and Future," GCEP Energy Workshop, 27 April 2004, Stanford University, CA.

OPET Finland, OPET Report 4 "Review of Finnish Biomass Gasification Technologies," May 2002

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

	ently valid OMB control number. EASE DO NOT RETURN YOUR FO	RM TO TH	IE ABOVE ORGANI	ZATION.	-	
1.	REPORT DATE (DD-MM-YYYY)		EPORT TYPE			3. DATES COVERED (From - To)
	May 2006	Sı	ubcontract Repo	rt	_	
4.	TITLE AND SUBTITLE			5:		TRACT NUMBER
	Equipment Design and Cost Systems, Synthesis Gas Cle				DE-	AC36-99-GO10337
	Equipment; Task 2: Gas Cle				5b. GRA	NT NUMBER
	Wood Feedstock	anap Be	olgii alia occi L	oumatoo		
					5c. PRO	GRAM ELEMENT NUMBER
6.	AUTHOR(S)				5d. PRO	JECT NUMBER
	Nexant Inc.					EL/SR-510-39945
					Fo TAS	K NUMBER
						06.3710
					5f. WOF	RK UNIT NUMBER
7.	PERFORMING ORGANIZATION N	AME(S) A	AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
	Nexant Inc. 101 Second St., 11 th Floor					ACO-5-44027
	San Francisco, CA 94105					7.66 6 1.1627
	·					
9.	SPONSORING/MONITORING AGE			SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
	National Renewable Energy 1617 Cole Blvd.	Laborat	Ory			NREL
	Golden, CO 80401-3393					11. SPONSORING/MONITORING
	,					AGENCY REPORT NUMBER
						NREL/SR-510-39945
12.	DISTRIBUTION AVAILABILITY ST					
	National Technical Information		ce			
	U.S. Department of Commer 5285 Port Royal Road	Ce				
	Springfield, VA 22161					
13.	SUPPLEMENTARY NOTES					
	NREL Technical Monitor: Ke	elly Ibse	n			
14.	ABSTRACT (Maximum 200 Words))				
						appropriate process scheme for
						o different 2,000 metric tonne per day
						a high-pressure, direct system using f the gasifiers was provided to the team
						tor and principal investigator during this
	task; technical assistance wa					tor and principal invocagator during the
15.	SUBJECT TERMS	•	ž	· · · · · · · · · · · · · · · · · · ·		
						acking; steam methane reforming;
	natural gas liquids expander	s; scalin	g; wood; Nationa	al Renewable Er	nergy Lal	poratory; NREL
16.	SECURITY CLASSIFICATION OF:		17. LIMITATION		19a. NAME C	OF RESPONSIBLE PERSON
		S PAGE	OF ABSTRACT UL	OF PAGES		
Ur	nclassified Unclassified Uncl	assified	OL.	1	19b. TELEPH	IONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18