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Bistability of Cation Interstitials in II-VI Semiconductors 

Su-Huai Wei and Gustavo M. Dalpian

National Renewable Energy Laboratory, Golden, Colorado, suhuai_wei@nrel.gov


ABSTRACT 

The stability of cation interstitials in II-VI 
semiconductors is studied using ab initio methods. We 
find that interstitials in the neutral charge state are 
more stable in the tetrahedral interstitial site near the 
cation, whereas in the (2+) charge state, they are more 
stable near the anion. The diffusion energy barrier 
changes when the defect charge state changes. 
Therefore, if electrons/holes are taken from the defect 
level by light, changing its charge state, the interstitial 
atom will be able to diffuse almost spontaneously due 
to a reduced diffusion barrier.  

1. Objectives 
Recently, Chow and Watkins1 revealed that cation 

interstitials in II-VI semiconductors can stay either on a 
tetrahedral site surrounded by four nearest-neighbor 
anions (denoted as TA) or on a tetrahedral site 
surrounded by four nearest-neighbor cations (denoted 
as TC). They observed that the interstitials could be 
made to hop back and forth between the two sites by 
optical excitation. This is an important observation 
because it is known that cation self-interstitials are one 
of the most important intrinsic defects that limit p-type 
doping in semiconductors. Furthermore, because the 
interstitials are highly mobile, they also play a crucial 
role in understanding the degradation mechanism of II-
VI semiconductor devices such as CdTe solar cells. 

In this work, we study the defect properties of cation 
self-interstitial Zni in ZnX (X= O, S, Se, and Te)  
compounds. We calculate their formation energies, 
transition energy levels, and diffusion energy barriers 
at different charge states and discuss the chemical 
trends of Zni in these materials2. We find that the light­
enhanced diffusion of cation interstitials can be 
explained by a nearly barrier-less diffusion path 
between two charge-dependent minima. In the neutral 
charge state, the most stable position for the interstitial 
is at the TC site, and there is usually a high barrier for it 
to diffuse into the TA site. In the (2+) charged state, the 
interstitial is more stable at the TA site, and the 
diffusion barrier into the TC site is highly reduced. 
Shining light on the sample can change the charge 
state of the defect, resulting in a diffusion of Zni from 
one metastable site to the other more stable site. This 
behavior is found to be quite general in most II-VI 
semiconductors such as in CdTe. 

2. Technical Approach 
The calculations in this study were performed using 

the local density approximation (LDA) and ultrasoft 
pseudopotentials, as implemented in the VASP code2. 

The calculated lattice parameters for ZnO, ZnS, ZnSe,
and ZnTe are, respectively, 4.467 Å, 5.303 Å, 5.571 Å,
and 5.999 Å. We use the zinc-blende structure for all 
the materials, and all the internal structure parameters 
are fully relaxed. The defect calculations are modeled 
by putting the interstitial atom in the center of a 
periodic 64-atom supercell. For the charged state, a 
uniform background charge is added to keep the 
charge neutrality in the supercell. 

Our calculated band gaps at the special k point are 
2.06 eV, 3.17 eV, 2.48 eV, and 2.01eV, respectively, 
for ZnO, ZnS, ZnSe, and ZnTe, which are smaller than 
the experimental band gaps of 3.35 eV, 3.78 eV, 2.82 
eV, and 2.39eV. To correct this well-known LDA band 
gap error, we add a constant energy to the conduction 
band minimum (CBM), equal to the difference between 
the experimental and calculated band gaps. We also 
assume that the defect level has mostly the CBM 
character, and thus shifts by the same amount as the 
CBM.  Defect formation energies are then corrected 
for neutral and single positively charged defects. 

3. Results and Accomplishments 
We first calculated the formation energies of cation 

interstitial point defects at TA and TC sites for ZnO, 
ZnS, ZnSe, and ZnTe in different charge states. The 
results are shown in Table 1. We observed the 
following chemical trends. (1) For ZnS, ZnSe, and 
ZnTe in the neutral charge state, the interstitial defect 
is more stable at the TC site. The stability (the energy 
difference between the TC and TA sites) decreases as 
the ionicity increases from ZnTe to ZnSe to ZnS. (2) 
For the (2+) charged state, the interstitial defect is 
always more stable at the TA site. The stability 
increases when the ionicity increases. (3) For the 
single (+) charged state, the stability follows the same 
trend as in the neutral charged state, but the energy 
differences between the TC and TA sites are much 
smaller than those in the neutral charge state. This 

Table 1. Calculated formation energies (in eV) for 
cation interstitial defects at different sites and in 
different charge states.  

ZnO ZnS ZnSe ZnTe 
TA (0) — 5.18 3.91 3.38


TA (+ ) — 2.41 1.86 1.79


TA (2+) 0.16 -0.52 -0.27 0.35


TC (0) — 4.89 3.50 2.83


TC (+ ) — 2.38 1.73 1.59


TC (2+) 0.85 0.05 0.17 0.65
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bistability can be explained by the Coulomb coupling 
and energy level repulsion in the two different 
interstitial sites. ZnO is a particular case and is 
different from the other ZnX compounds. We find that 
Zni in ZnO is only stable in the (2+) charge state 
because the CBM of ZnO is much lower than the other 
ZnX compounds. Consequently, the interstitial will be 
stable only at the TA site. 

These results show that the cation interstitial has 
charge-induced bistability in these II-VI 
semiconductors. Thus, under optical excitation, when 
the charge state of the defect changes, the interstitial 
can hop from one equilibrium position to another. To 
explain this effect, we calculated the diffusion barrier of 
these interstitial impurities in different charge states. 
The diffusion path is a straight line between TA and TC 
along the <111> direction, passing through the 
hexagonal site (H). In Fig. 1 we show the variation of 
the formation energy as the interstitial atom moves. 
We find that as the charge state changes from (0) to 
(+) to (2+), the diffusion barrier increases when 
starting from the TA site, but decreases when starting 
from the TC site. Furthermore, the diffusion barrier 
increases with the ionicity when starting from the TA 
site, but decreases when starting from the TC site. 
These trends are consistent with the energy variations 
of these defects. As the formation energy of the defect 
at the starting point increases, the energy barrier 
decreases. Our results also confirmed that the energy 
barriers for the cation interstitial diffusion are relatively 
small, therefore, these defects are quite mobile in 
these II-VI semiconductors. 
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Fig. 1 Diffusion barriers of the cation interstitials for 
different charge states in the studied materials. 

4. Conclusions 
We studied the photoinduced migration of cation 

interstitials in II-VI semiconductors. We show that, in 
the neutral charge state, the more stable site for the 
interstitial is near the cations, whereas for the (2+) 
charge state, it is near the anions. This bistability is 
explained through the Coulomb coupling and energy 
level repulsion in the two different interstitial sites. We 
show that the diffusion energy barrier changes when 
the defect charge state changes, and suggest that this 
is the origin of experimentally observed photoinduced 
migration of the interstitials. 
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