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Rheological and Mechanical Considerations for Photovoltaic Encapsulants 

Michael D. Kempe  
National Renewable Energy Laboratory, Golden, Colorado, Michael_Kempe@NREL.gov 

ABSTRACT 

Photovoltaic (pv) devices) are encapsulated in 
polymeric materials not only for corrosion protection, 
but also for mechanical support.  Even though 
ethylene-vinyl acetate (EVA) suffers from having both 
glass and melting phase transitions at temperatures 
experienced under environmental exposure, its low 
cost and good optical transmission made EVA the 
most commonly used material for PV modules. These 
transitions, however, cause EVA to embrittle at low 
temperatures (~ -15oC) and to be very soft at high 
temperatures (>40oC). From mechanical 
considerations, one would prefer a material that was 
relatively unchanged under a wide temperature range. 
This would produce a more predictable and reliable 
package.  These concerns are likely to become more 
important as silicon based cells are made thinner. 

1. Objectives 
Photovoltaic (PV) modules are often exposed to 

the presence of both a melting and a glass transition 
(Tg) at or near temperatures that are commonly 
experienced by a module. 

In the melt (T >~65oC), the moduli are determined 
primarily by the distance between chemical cross-links 
and relatively little dependence on temperature is 
seen. As the temperature is lowered EVA crystallizes 
and a large increase is seen in the dynamic moduli 
along with a decrease in the phase angle.  Finally, at 
temperatures beginning at about -15oC, EVA goes 
through a Tg as seen by a temporary increase in the 
phase angle and by a very large increase in the 
dynamic moduli.1,2 When the same data was taken 
while cooling, the crystallization transition occurred 
more abruptly between 40oC and 45oC rather than 
over the range from 35oC to 65oC. 
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harsh environmental conditions involving the 
simultaneous application of moisture, temperature 
cycling, and mechanical loads.  As discussed in the 
Solar Program Multi-Year Technical Plan, a major 
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impediment for flat-plate PV systems is the limitation in 
cost and reliability of module packaging.1  Both  105 δ 

30 
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crystalline-silicone and thin-film technologies require 
advanced module packaging to survive in harsh 
operating environments. This project investigates the 
viscoelastic behavior of encapsulant materials to 
evaluate their use in PV modules.  

2. Technical Approach 
Dynamic mechanical analysis was performed on a 

TA Instruments Ares Rheometer equipped with an IGC 
Polycold Systems Inc. cryogenic refrigeration unit 
model #PGC-100 which is capable of producing 
temperatures of -60oC when used with the Ares forced 
convection oven. A rectangular torsional testing fixture 
was used because the polymers were highly cross
linked elastomers. Samples were about 3-mm thick, 
12-mm wide, and 25-mm long with about 12-mm of the 
length covered by the clamps holding the sample. 

3. Results and Accomplishments 
Because PV encapsulant materials provide 

mechanical support to the cells2, rheological 
measurements were made to determine at what 
temperatures the phase transitions occur and their 
effect on the dynamic mechanical moduli.3 Over the 
temperature range from 80oC to -40oC the moduli of 
EVA increased by a factor of about 500 (Fig. 1). This 
large change in mechanical properties is caused by 
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Fig. 1. Shear storage modulus (G’) and phase angle 
(δ) as a function of temperature measured at 
frequencies of 100, 10, 1 and 0.1 rad/s. Glass 
transition temperatures are also indicated. Data was 
taken while heating the sample.  

For frequencies of 100-rad/s the Tg was measured to 
be -15oC, which is much higher than the values of 
around -40oC frequently reported in the literature.4 The 
Tg is typically determined using differential scanning 
calorimetry. This kind of discrepancy is common for 
polymers because the two methods are measuring 
very different phenomena associated with a second 
order transition.5 Because the primary purpose of 
using an encapsulant is to provide mechanical 
support, the Tg measured using dynamic mechanical 
analysis is more relevant. 

Cuddihy et al.1 examined stresses in a glass 
superstrate module caused by a combination of 
thermal coefficient of expansion mismatch (with 
ΔT=100oC) and wind loading. They modeled a 161
km/hr wind loading on a 1.2-m square module as a 
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2400-Pa loading with the edges being supported. The 
silicon cells were modeled as 10-cm square, 381-μm 
thick, and able to withstand a 55.2-MPa bending 
stress. They found that the wind loading forces 
dominated and that a 3.2-mm thick glass module with 
a polymeric back-sheet requires at least 0.10 mm to 
0.13 mm of EVA to mechanically protect silicon-wafer
based PV cells at 25oC. Their models also 
demonstrated that the required thickness varied 
linearly with the Young’s modulus of the encapsulant. 
Because the shear moduli are linearly related to 
Young’s modulus, reduction of the module 
temperature is predicted (Fig. 1) to significantly 
increase the minimum thickness of EVA to around 1
mm below -10oC and about 10-mm at -40oC. To 
confidently produce a module capable of long-term 
exposure to temperatures below -10oC, one would 
need to use several millimeters thick EVA encapsulant 
films. 

Many other encapsulant materials do not have the 
same problems with phase transitions in the operating 
range of PV modules. We show three such materials 
in Figure 2. The TPU and the BRP-C materials do not 
have melting transitions but they both have glass 
transitions at -31oC, -38oC, and -40oC for TPU and      
-36oC, -40oC, and -44oC for BRP-C at frequencies of 
100 rad/s, 10 rad/s, and 1 rad/s respectively (Fig. 2). 
DC 186 is a two-part-addition-cure polydimethyl 
siloxane which has a melting point of -33oC. But upon 
cooling from the melt, we observed significant 
hysteresis in the rheological measurements with the 
freezing point being observed at -58oC. Because of 
these significantly reduced transition temperatures, 
these encapsulant materials should perform much 
more predictably and reliably over a wide variety of 
environmental conditions. 
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Fig. 2 Dynamic moduli for three encapsulant materials: 
a thermoplastic polyurethane (TPU) from Etimex, an 
experimental material from BRP Manufacturing, and a 
silicone Sylgard™ 186 from Dow Corning.  

4. Conclusions 
For many environments a temperature of -15oC is 

often experienced by PV modules, making EVA-based 
modules significantly more sensitive to sudden 

impacts and/or wind loading. PV modules are typically 
rated for use in environments as low as -40oC, but this 
may be too extreme. This low temperature is based on 
passing a qualification test (UL 1703) where the 
temperature of a module is cycled between 90oC and 
40oC. High winds at low temperatures could cause a 
module to flex, possibly breaking some components. 
Inclusion of some mechanical bending at low 
temperatures would be a good addition to UL 1703.  

If a module is found to be sensitive to the 
mechanical properties of the encapsulants, alternative 
materials, similar to those identified, could be used to 
expand their operating range. 
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