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ABSTRACT 

 Encapsulant materials are used in photovoltaic devices for 
mechanical support, electrical isolation, and protection 
against corrosion.  The ability of an encapsulant to protect 
against surface corrosion is related to its adhesional 
strength.  The adhesion of candidate encapsulants under 
accelerated environmental stress was examined to determine 
what materials have the best hydrolytic stability and are 
more likely to reduce corrosion rates.  Under environmental 
exposure, the ingress of water has been correlated with 
increased corrosion rates.  The diffusivity of different 
encapsulants has been measured to determine how long it 
takes for water to enter a module.  The high diffusivity of 
ethylene vinyl acetate indicates that, even with the use of an 
impermeable back-sheet, moisture from the sides will 
diffuse throughout the entire module.  To significantly 
reduce moisture ingress requires a true hermetic seal, the 
use of an encapsulant loaded with desiccant, or the use of a 
very low diffusivity encapsulant. 
 
1. Objectives 
 The processes that contribute to module failure must be 
understood to produce modules that will perform reliably 
for 20 years.  Service in moist environments is known to be 
correlated with an increase in the failure rate of photovoltaic 
(PV) modules; therefore the effects of water are important 
for failure analysis.  Materials must be evaluated to 
determine how much water can be kept out and if they 
protect a device against the moisture that does enter.  
 
2. Technical Approach 
 Determining how long it takes water to enter a module 
requires knowledge of its diffusivity and solubility.  This 
was accomplished by measuring the transient water vapor 
transmission rate (WVTR) through encapsulant films using 
a Mocon Permatron-WÒ 3/31.  Assuming Fickian diffusivity 
(diffusivity is independent of concentration), the transient 
WVTR can be described by 
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where D is the diffusivity, Cs is the saturation concentration, 
t is time, and l is the sample thickness [i].  The diffusivity 
determines the time required to reach steady state after 
which the water saturation concentration is determined by 
the steady state WVTR.  These physical constants permit 
the modeling of the ingress of moisture in a PV module. 
 Since the ability of an encapsulant to prevent corrosion is 
related to its adhesion to a surface, lap shear tests were 
performed to determine how different materials are affected 
by environmental stress.   

 
3. Results and Accomplishments 
 The diffusivity and solubility of water in ethylene vinyl 
acetate (EVA) and a number of other back-sheet materials 
and encapsulants were measured so that the ingress of 
moisture can be modeled (Fig. 1).  It was found that EVA 
had a high diffusivity relative to most materials measured.   
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Fig. 1.  Diffusivity measurement for several different types 
of polymers. 
 
 The high diffusivity of EVA enables water to enter PV 
modules rapidly.  If a PV module with impermeable glass 
superstrates and substrates is analyzed with a one 
dimensional model (by assuming it is infinitely long with a 
width equal to 2l), starting with an initially dry encapsulant, 
and holding the temperature and external humidity constant, 
then the moisture content as a function of time and distance 
from the edge can be represented as [i]  
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A finite element analysis using meterological data was used 
to determine that using the average temperature and 
atmospheric water concentration yields overlapping curves 
with Eq. 2 for long distances and times.  For Miami Florida 
this corresponds to a temperature of 26.7 oC and a relative 
humidity of 71%. 
 Figure 2 shows water concentration profiles as a function 
of time calculated using Eq. 2 for EVA and an experimental 
encapsulant by BRP Manufacturing Company.  The data 
show that the high diffusivity of EVA allows water to reach 
the center of the module in a few years.  These results are 
for a 1-D model.  For a 2-D model with a square shape, the 
ingress rate would be nearly twice as fast. 
 As shown in Fig. 1, the diffusivity of water varies by 
orders of magnitude for different materials.  Since changes 
in diffusivity have the same effect on the concentration 
profile as changes in time (Eq. 2), a material with a 
diffusivity an order of magnitude slower than that of EVA 
would take an order of magnitude longer to saturate.  This is 
shown in Fig. 2, where after 33 years the BRP material is 
still dry at distances greater than 8 or 10 cm into the module.  
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If EVA was replaced by materials with lower diffusivities, 
significant reductions in water content could be obtained. 
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Fig. 2.  Moisture ingress as a function of time for two 
different encapsulants for between 3 and 33 years.  The lines 
were calculated using Eq. 2 and data from Fig. 1 at a 
temperature of 26.7 oC and 71% relative humidity. 
 
 For the case of a breathable back-sheet, water is able to 
enter a module extremely rapidly.  Assuming that the water 
concentration in the encapsulant is uniform (i.e. DE>>DB, 
“D” refers to diffusivity, subscripts “B” and “E” refer to 
back-sheet and encapsulant properties, respectively) and that 
the WVTR across the back-sheet is proportional to the 
concentration change ∆C=C(0)-C(lB), then the change in 
water concentration as a function of time is given by 
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where “Sat” refers to maximum conditions in equilibrium 
liquid water.  With an initially dry module exposed to 
constant environmental conditions, Eq. 3 can be integrated 
to determine the water content as a function of time as: 
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This yields a half-time for equilibration of [ii] 
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As an example, a module consisting of a Tedlar®/ 
polyethylene terepthalate/EVA back-sheet (WVTR=1.13 
g/m2/day @ 25 oC) laminated to a 0.46 mm thick layer of 
EVA (CSat=0.0021 g/cm3 @ 25 oC) would have an 
equilibration half-time of 14 hours.  For a back-sheet to 
have an equilibration half-time on the order of 20 years, it 
would need a WVTR of approximately 1×10-4 g/m2/day.  If a 
WVTR this low was achieved, ingress from the sides would 
still be a concern as with a double glass laminate. 
 These calculations have demonstrated that the only way to 
keep moisture out of a module is to use a hermetic seal.  
Because of the prohibitive cost of this, the use of materials 
that resist the effects of moisture is more practical.  Since 
the ability of a material to prevent corrosion is strongly 
correlated with the diffusion of ionic species within the 
polymer and the adhesional strength to the surface being 
protected, lap shear experiments under accelerated 
environmental conditions were conducted to determine 
which materials are more likely to give good protection 
against corrosion. 

 Figure 3 shows experimental data for the lap shear 
strength of encapsulant materials after exposure to 85 oC 
and 85% relative humidity.  Here it can be seen that, 
although EVA has good initial strength, it quickly degrades, 
losing nearly half of its strength after 1000 hours exposure.  
This rapid loss in adhesion was probably enhanced by the 
presence of acetic acid produced as a decomposition 
product.  The silicone polymers failed either cohesively or 
at the primer-to-polymer interface, leaving at least a primer 
layer on the glass.  Comparison of the data sets using Dow 
Corning Sylgard 186 demonstrates the importance of the 
choice of primer on hydrolytic stability.  Lastly, the 
experimental material from BRP had strong adhesion with 
hydrolytic stability, and it failed cohesively.  A cohesive 
failure is preferential since it still leaves a protective coating 
on the substrate.  The other consideration with a cohesive 
failure is that the actual adhesive strength could be 
significantly higher. 
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Fig. 3.  Lap shear results for encapsulants exposed to 85 oC 
and 85% relative humidity.  The dominate mode of failure is 
indicated by the symbol (filled=adhesive, open=cohesive, 
and “X” or “+”=primer to encapsulant interface). 
 
4. Conclusions 
 Because of the high diffusivity of water in EVA, it is not 
possible to keep a module dry for a period of 20 years 
without incorporating large amounts of dessicant and/or 
creating a hermetic seal.  The use of alternative encapsulants 
with lower diffusivities and better adhesion can reduce the 
amount of water that does enter and could provide better 
protection against hydrolytic reacitions.  Furthermore, the 
production of acetic acid in EVA and its large number of 
polar groups give it some inherent problems with corrosion.  
By switching to a more non-polar polymer with better 
hydrolytic stability, better protection of module interfaces 
can be obtained, thereby creating a more durable product. 
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