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INTEGRATED CABIN AND FUEL CELL SYSTEM THERMAL 
MANAGEMENT WITH A METAL HYDRIDE HEAT PUMP 

Valerie Hovland 
National Renewable Energy Laboratory, Golden, Colorado 

 
Abstract 
Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and 
cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel 
economy, and cost. An integrated FC system and cabin thermal management system would address 
the cabin cooling and heating requirements, control the temperature of the stack by mitigating the 
waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the 
National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat 
pump (MHHP) for the fuel cell system and cabin thermal management. This paper details the design 
of a metal hydride heat pump to capture heat at 80°C, thereby capturing waste heat and cooling the 
FC stack partially, and cool the vehicle cabin (0°C). The waste heat available from a typical sedan is 
near 7 kW over a variety of drive cycles, and for an SUV the average waste heat is near 15 kW. This 
amount of waste heat can be successfully turned into the required 3-7 kW of cooling required to cool 
the vehicle cabin environment with a MHHP. Additionally, using waste heat to generate cabin 
cooling eliminates this load from the fuel cell, saving a significant amount of energy. 
Keywords: Hydrogen storage materials (A); Thermal analysis (D); Metal hydride heat pump; Fuel 
cell; Waste heat 
 
1. Introduction 
Why study heat-generated cooling in vehicles? The air-conditioning load in a vehicle is the largest 
ancillary load in the vehicle. That means that each year, 7.1 billion gallons (27 billion liters, Figure 
1) are used in the United States for air conditioning, which is equivalent to 10% of foreign crude oil 
imports [1]. The problem is similar across the globe. Therefore, by eliminating the air-conditioning 
load in vehicles, waste-heat generated cooling has the potential to save significant energy world-
wide. 

 
Figure 1: Millions of Gallons Used for Light-Duty Vehicle Air Conditioning 
 
Why address thermal management in fuel cells? It makes sense to focus research at the largest 
energy consumers in a vehicle, which in the case of fuel cells are the air-conditioning and air 
compressors (Figure 2). As many companies are focused on advancing air compressor technology, 
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this work focuses on air-conditioning. A 5 kW air-conditioning load in a fuel cell vehicle affects the 
vehicle operation, sizing and cost significantly. Assuming fuel cells reach the Department of 
Energy’s cost target of $45/kW by 2010, an extra load of 5 kW would drop fuel economy 10-50%, 
affect vehicle performance, or increase the fuel cell stack cost by $225, all of which are deterrents to 
fuel cell vehicle implementation and acceptance into the marketplace. Hydrides materials have a 
unique advantage in fuel cell vehicles. Capturing the waste heat is difficult in fuel cells due to their 
low operating temperatures (80°C). Other technologies, for example absorption heat pumps, require 
higher waste temperatures. A metal hydride heat pump has other advantages that make it suitable for 
fuel cell vehicles. Metal hydride systems have fewer total parts and fewer moving parts than a 
conventional vapor compression air-conditioning system, as the system doesn’t use a compressor or 
evaporator. Also, a metal hydride system does not require chloroflourocarbons (CFC) for cooling. 
CFC's, such as freon, have been linked to the destruction of stratospheric ozone. Therefore, in a fuel 
cell energy-efficient and environmentally friendly vehicle of the future, a metal hydride heat pump 
has its place. 

Figure 2: Energy Usage in a Fuel Cell Vehicle 
 
2. Metal Hydride Heat Pump Operation 
2.1 System Operation 
Hydride heat pumps utilize the fact that when hydrogen is adsorbed by the metal, heat is released 
because it is an exothermic reaction. Desorbing or releasing the hydrogen is endothermic, which 
needs heat as an input. In the equation below, M represents the metal, and MHx the metal hydride: 

HeatMHHxM x +↔+ 22
 

Figure 3 shows the basic operation of a hydride heat pump, for a dual-bed system. This system uses 
two metal hydride beds (a low temperature and high temperature metal), three heat exchanger 
sections (high, ambient, and low temperatures), and cycles the beds through these heat exchangers 
through time to achieve cooling. 

 
Figure 3: Basic Operation of Metal Hydride Heat Pump 
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2.2 Material Selection 
The list of potential high-temperature and low-temperature hydride materials was made by 
compiling materials used in past heat pumps with similar operating temperatures [3] and searching 
compatible materials through the Hydride Material Listing available on the web [4]. The material 
performances are shown in Figure 4 and Figure 5, with the two top hot and cold materials in bold. 
Criteria for material selection included: compatible temperatures (80°C and 0°C), reasonable 
pressures (less than 5 atm), a high temperature (>30°C) for the ambient rejection temperature, and 
high weight percent hydrogen. 
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Figure 4: Hot-side Potential Hydride Materials, Pressure-Temperature Plot 
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Figure 5: Cold-side Potential Hydride Materials, Pressure-Temperature Plot 
 
Table 1 details the material parameters for candidate materials. The top two materials for hot and 
cold materials are highlighted. The final material pair selected was CaNi5-TiFe0.9Mn0.1. The system 
operated near 3.5 atm, 80°C, and 32°C in the recharge mode and 1 atm, 40°C, and 0°C in cooling 
mode for the system pressure, hot-side temperature, and low-side temperature, respectively. 
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Table 1: Detailed Hydride Material Data Used for Selection 

 Material ∆H ∆S Wt% 
Plateau 
Slope Hysteresis 

  kJ/mol kJ/mol*K  
dlnP/d(H/M

) ln(Pa/Pd) 
Cold Matls TiFe -28.1 -0.106 1.86 0 0.64 
 LaNi5 -30.8 -0.108 1.49 0.13 0.13 
 MmNi4.15Fe0.85 -25.3 -0.105 1.14 0.36 0.17 
 MmNi4.5Al0.5 -28 -0.105 1.2 0.36 0.11 
 **TiFe0.9Mn0.1 -29.5 -0.107 1.9 0.92 0.62 
 *MmNi4.5Mn0.5 -17.6 -0.067 1.3 1.2 0.75 
 MmNi3Co2 -32.7 -0.12 1.4 0.28 n/a 
 ZrFe1.5Cr0.5 -25.61 -0.0975 1.5 1.26 0.34 
 TiV0.62Mn1.5 -28.6 -0.107 2.15 1.4 n/a 
Hot Matls *LaNi4.7Al0.3 -34 -0.1068 1.44 0.48 0.05 
 **CaNi5 -31.9 -0.101 1.87 0.19 0.16 
 TiFe0.8Ni0.2 -41.2 -0.119 1.3 0.36 0.05 
 LaNi4.6Mn0.4 -39.4 -0.117 1.49 0.76 0.1 
 MmNi3.5Co0.7Al0.8 -39.8 -0.115 1.24 1.2 n/a 
 MmNi4.2Co0.2Mn0.3Al0.3 -36.5 -0.1087 1.38 1.3 0.18 
 Pd0.9Rh0.1 -34.2 -0.102 0.69 0.29 0.71 
 
2.3 Design Parameters 
The system was designed for 5 kW cooling, including four hydride beds for continuous cooling. The 
mass of the hydride per bed was 1.25 kg, with a 1.9 weight percent H/M. The cycle time was 2 
minutes, a somewhat aggressive target. An example past cycle time (e.g. of the HYCSOS heat 
pump) was 4 minutes [5]. This 2-minute cycle time was chosen to design the system to 1 kW/kg 
based on hydride weight, as from [7], a heat pump having greater than 1kW/kg hydride is 
competitive in weight (and cost) with a conventional air conditioner. 
 
The Coefficient of Performance (COP) was calculated as follows [7]: 
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The heat exchanger was assumed to be stainless steel for heat capacity and the mass was assumed to 
be 0.5 that of the hydride [6]. Assuming a ∆Tlow of 30°C and a ∆Thigh of 20°C, the COP was 0.5, 
which is similar to others reported in literature [6]. In order to increase the performance of the 
system, it is necessary to research improved heat exchanger efficiency, smaller component sizes, and 
system integration with the vehicle waste heat.  
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3. Fuel Cell Vehicle Modeling 
To determine the amount of waste-heat potential in fuel cell vehicles, modeling was performed using 
the Advanced Vehicle Simulator (ADVISOR [2]) developed at NREL. Two typical vehicles were 
simulated: a small sedan (1043 kg, 50 kW fuel cell) and a Sport Utility Vehicle (SUV, 2285 kg, 150 
kW fuel cell). The waste thermal heat available varies with time, vehicle type (sedan, SUV) and 
drive cycle (Figure 6). 
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Figure 6: Sample Electrical and Thermal Power over the UDDS Drive Cycle 
 
The thermal waste power averaged over the heat pump cycle time (2 minutes) for various cycles is 
shown in Table 2. Using the COP of 0.5, the metal hydride heat pump can deliver 2.5-3 kW of 
cooling to the sedan and 5-10 kW cooling to the SUV. This amount of cooling is similar to the 
required cabin cooling, though cooling load reduction techniques may be necessary before 
commercial implementation of metal hydride heat pumps. 
 
Table 2: Two-minute Averages of Thermal Power vs. Cycle 

 Thermal Power (kW) 
 Sedan (50 kW) SUV (150 kW) 

Cycle Avg 2 min Avg 2 min 
UDDS 5 14 
FTP 3.8 11 
SC03 5 15 
US06 6 20 

HWFET 5.2 15 
Japan 1015 5 14 

NEDC 5 15 
NREL to Vail 7.5 20 

 
4.Summary and Future Work 
Initial design of a metal hydride heat pump for a fuel cell vehicle was completed, showing the 
potential to have waste-heat generated cooling (3-7 kW) and saving a significant amount of fuel 
energy. Addressing the cooling requirements of the cabin environment is critical to fuel cell vehicle 
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performance in terms of stack efficiency, fuel economy, and cost. The MHHP design shows a 
moderate COP, in line with those reported in the literature. The next steps are to evaluate more 
detailed models ([6] - [11]) and realize the design by creating a bench-top working prototype 
involving industry. By linking this work with other work at NREL (integrated modeling, passenger 
thermal comfort, cabin thermal load reduction, etc), advanced cooling systems could reduce the 
vehicle cooling load significantly, aiding implementation of a metal hydride heat pump. 
 
Future design will include addressing well-known issues of metal hydride heat pumps, including 
hydrides with large hydrogen storage capability, increasing the thermal conductivity of the beds, and 
enhancing heat transfer in the heat exchangers [12]. 
 
By eliminating the air-conditioning load in vehicles, waste-heat generated cooling has the potential 
to save significant energy across the world. 
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