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Copper is a ubiquitous contaminant in silicon-based device technology that can be easily introduced 
into the bulk of silicon wafers. According to the existing data on solubility and diffusivity of Cu in Si [1-3], 
at only 425°C the equilibrium solubility of Cu in Si is as high as 1013 cm-3, and the diff

4Dt ). According to 
usivity is such that 

Cu can traverse 220 µm of single crystalline p-type silicon in under 10 seconds ( λ ≅

the current understanding of the electrical properties and defect interactions of copper in silicon [4, 5], inter

stitial copper is a shallow donor with relatively benign electrical activity. On the other hand, copper-rich 

precipitates are known to severely reduce the minority carrier diffusion length by forming bands of states 

within the silicon bandgap, thereby providing very effective pathways for recombination [6-8]. It is thus of

interest to investigate the distribution and chemical state of copper-rich clusters in a variety of silicon mate-

rials, including model defect structures and mc-Si solar cell material. For this purpose, we employed a vari

ety of synchrotron-based analytical techniques: X-ray fluorescence microscopy (µ-XRF), X-ray absorption 

microspectroscopy (µ-XAS), and X-ray beam induced current (XBIC).


Four types of materials were utilized in this study: Sample 1: Float zone silicon intentionally con
taminated with (3-4)×1016 Cu/cm-3 during crystal growth. Float zone crystals were grown at the National 
Renewable Energy Laboratory (see Ref. 9 for details). The particular crystal growth conditions lead to a 
high density of structural defects. With no intentional n- or p-type doping, the actual conductivity of the 
sample was n-type, as evidenced by the rectifying behavior of a thin Pd diode evaporated on the polished 
and chemically cleaned surface. In µ-XRF mapping, irregularly distributed Cu clusters are observed at 
structural defects (Fig. 1b). This irregular Cu decoration is expected for slow-cooled samples, wherein su
persaturated Cu can diffuse to preferred precipitation sites [10]. The observed Cu-rich clusters are strongly 
recombination-active, as revealed by XBIC (Fig. 1a). Five Cu-rich clusters in this sample were analyzed by 
µ-XAS. 

Sample 2: Misfit dislocation heterostructure, consisting of a 2 µm thick n-type Si0.98Ge0.02 middle 
layer between a 2.5 µm n-type silicon bottom buffer layer on a (001) silicon substrate and a 2.5 µm thick n-
type silicon cap layer. At the two interfaces between the SiGe and Si layers, a network of 60° misfit disloca
tions forms parallel to the surface and propagates in the <110> directions, intersecting at 90° angles. Copper 
was intentionally diffused at 800°C. Samples were fabricated at North Carolina State University (U.S.A.) 
and copper-contaminated at King's College (U.K.); further details of sample preparation can be found in 
Ref. 11. In µ-XRF mapping, Cu-rich precipitates are observed along the misfit dislocations. From the Cu-
Kα fluorescence map (Fig. 2), one can clearly see the copper contamination along the network of misfit 
dislocations parallel to the surface, which intersect at 90° angles in agreement with literature observations 
[12]. The recombination-activity of these precipitates has been well-established by electron beam induced 
current (EBIC) and XBIC measurements, and is reported elsewhere [11-13]. Two Cu-rich clusters were ana
lyzed by µ-XAS in this sample. 

Sample 3: Czochralski silicon containing approximately 1.8×106 cm-3 oxygen precipitates and ap
proximately 1.5×1015 cm-3 boron was chosen because of the high density of precipitation sites for metals 
and high precipitated oxygen concentration. The sample was intentionally contaminated with Cu and an
nealed at 1200°C in forming gas (N2 + 5%H2) ambient for 30 minutes. The anneal was terminated by an air 
cool. In µ-XRF mapping, approximately ~1.1×106 cm-3 copper clusters are observed (assuming a Cu-Kα 
attenuation length of 70 µm and an angle of 45° between the sample surface normal and the detector). Al
though each Cu-rich cluster covers many pixels in the µ-XRF map (each pixel = 7×7 µm2) to form a disk- or 
point-like shape, as evidenced in Fig. 3, the average signal strength within the precipitate is low, evidence 
for the distribution of Cu in the form of many smaller precipitates. Cu nanoprecipitates have been observed 
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in infrared transmission microscopy [14], TEM [15], and etching experiments [16] to form elliptical, plate-
like, micron-sized colonies of along preferred crystallographic orientations. Interestingly, the elliptical Cu
rich microcolonies observed in µ-XRF also appear to be aligned to certain orientations within the crystal, as 
shown in Fig. 3. Although the spatial density of these colonies (~1.1×106 cm-3) corresponds well to the den
sity of oxygen precipitates (1×106 cm-3), the morphology of these Cu clusters appears not to be spherical, 
indicating that the Cu atoms in this sample preferred not to homogeneously coat the oxygen precipitates, but 
either used them or their punched out dislocation loops as nucleation sites for Cu microcolony formation. 
Three Cu-rich clusters were analyzed by µ-XAS in this sample. 

Sample 4: As-grown, cast mc-Si wafer extracted from near the bottom of the cast mc-Si ingot, 
where the interstitial oxygen concentration can be as high as 1018 cm-3. In µ-XRF mapping, Cu-rich clusters 
were located at a grain boundary in the material, together with similar amounts of Ni and less abundant Fe, 
although no intentional contamination was performed. The µ-XRF map in Fig. 4 shows the Cu distribution 
along a representative region of the grain boundary. Although the cluster sizes were smaller than the x-ray 
beam spot size of 200 nm, the number of Cu atoms per cluster was determined to fall within the range of 
(3±1.5)×107 by comparison with standard materials. Were all these Cu atoms contained within one large 
spherical Cu3Si particle, the diameters of these particles would be around 100±15 nm. However, it is also 
possible these Cu3Si molecules are distributed among a colony of nanoparticles as reported in TEM studies 
of intentionally-contaminated monocrystalline Si [15]. Seven Cu-rich clusters were analyzed by µ-XAS in 
this sample. 

Cu K-edge µ-XAS scans of the copper-rich clusters in all four samples yielded strikingly similar 
spectra to Cu3Si standard material (Fig. 5b, c). It is interesting to note that Fig. 5a reveals that the Cu K
edge absorption onset energy of Cu3Si matches that of the Cu2O standard, and not metallic Cu. The Cu K
edge absorption energy shift of Cu3Si relative to Cu metal is atypical for metal silicides. Iron metal and sili
cides, for example, have identical Fe K-edge x-ray absorption onset energies, unlike oxidized iron species 
that have K-edge onsets shifted to higher energies by amounts proportional to the Fe charge state [17]. For 
Cu, a quantified absorption edge shift is clearly not sufficient for determining a specific oxidation state; in-
stead, one has to match the whole near-edge absorption spectrum with that of a standard. 

The abnormal behavior of Cu stems from the unique electronic properties of Cu in Si. Copper dis
solved in p-type silicon is well-known to diffuse predominantly as Cui

+.1 Recent ab initio Hartree-Fock cal
culations published by S. K. Estreicher [5] indicate that Cui

+ will not diffuse as a compact [Ar]3d104s0 

sphere, but rather, it will promote some its electrons from the 3d to the 4sp orbitals to form weak covalent 
bonds with nearby silicon atoms. Similarly, copper atoms precipitated at certain internal voids are predicted 
to promote a small fraction of their electrons to 4sp orbitals for covalent overlap with neighboring silicon 
atoms [5]. Macroscopic studies on and models of the properties of copper silicides have also indicated a 
hybridization of the valence Cu and Si orbitals [18-21]. The increased delocalization of Cu valence elec
trons can qualitatively explain the Cu-K absorption edge shift to higher energies: as they are photo-excited 
out of the atom, Cu 1s core electrons experience a greater Coulombic attraction with the Cu nucleus due to 
reduced electron screening, and thus require higher x-ray energies for photoionization. The energy-shifted 
absorption edge of Cu3Si is thus concluded not to be indicative of copper oxide or silicate formation. 

In fact, it is unlikely that Cu forms an oxidized phase in Si, because of the strong binding energy 
between oxygen and silicon. In effect, Cu cannot “out-compete” silicon for the oxygen, and thus remains a 
silicide. This effect is confirmed by computer modeling of West et al. [22], wherein the local distortion 
around an interstitial oxygen atom may be sufficient to attract an interstitial copper ion, Cui

+, but no signifi
cant overlap of electronic orbitals (i.e. electronic binding) occurs between the Cui

+ and the Oi. 
Because of the relatively low binding energy of Cu to Cu3Si precipitates, clusters of this phase are 

easily dissolved during heat treatments. Experiments studying this effect are reported in “Aluminum Getter
ing and Dissolution of Cu3Si Preciptiates in Silicon” by Buonassisi et al. in these proceedings. 

To conclude, the chemical state and distribution of Cu-rich clusters were determined in four differ
ent silicon-based materials with varying contamination pathways and degrees of oxygen concentration, in
cluding as-grown multicrystalline silicon. In all four samples, Cu3Si was the only chemical state observed. 
Cu3Si clusters were observed at structural defects within all four materials; XBIC measurements revealed 
that the presence of Cu3Si corresponds to increased recombination activity. Oxidized Cu compounds are not 
likely to form in silicon. The +1 eV edge shift in the µ-XAS absorption spectrum of Cu3Si relative to Cu 
metal is believed to be an indication of a degree of covalent bonding between Cu atoms and their silicon 
neighbors. 
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Fig. 1. (a) x-ray beam induced current and (b) Cu-Ka x-ray fluores
cence microscopy maps of float zone silicon contaminated with 3-
4×1016 Cu cm-3 during crystal growth. Notice the strong correlation 
between the presence of copper-rich clusters (b) and the decrease of 
current collection efficiency (a). 
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Fig. 2. Cu-Ka x-ray fluorescence microscopy map of a Cu
contaminated Si0.98Ge0.02/Si heterostructure. The misfit dislocations 
parallel to the surface, intersecting at 90°, are heavily decorated with 
clusters of Cu, confirming the tendency of Cu to precipitate in the 
vicinity of structural defects. 

Fig. 3. Cu-Ka x-ray fluorescence microscopy map of Cu-contaminated 
Czochralski silicon with ~106 oxygen precipitates per cm3. Elliptical 
Cu-rich clusters can be observed, oriented along preferred crys
tallographic orientations. 

Fig. 4. Cu-Ka x-ray fluorescence microscopy map along a grain 
boundary of as-grown cast multicrystalline silicon. Despite no 
intentional contamination, Cu-rich clusters are present. 

(a) b) ( (c) 

Fig 5. µ-XAS showing the spectra of standard materials (a), and then the excellent match of Cu-rich 
clusters in a variety of silicon materials with the Cu3Si standard (b,c, taken at different beamlines). 
Sample descriptions are provided in Sections II and III. Notice in (a) that the edge onset energy of 
Cu3Si is not coincident with metallic Cu as would be expected from a metal-silicide, but is shifted by 
+1 eV. This can be understood as an effect of the delocalization of Cu-3d electrons in the presence of 
Si. 
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