
May 2003 • NREL/CP-520-33593 


Synergies Connecting the
Photovoltaics and Solid-State 
Lighting Industries 

Sarah Kurtz 

Presented at the National Center for Photovoltaics and 

Solar Program Review Meeting 

Denver, Colorado 

March 24-26, 2003


National Renewable Energy Laboratory 
1617 Cole Boulevard 
Golden, Colorado 80401-3393 
NREL is a U.S. Department of Energy Laboratory
Operated by Midwest Research Institute • Battelle • Bechtel 

Contract No. DE-AC36-99-GO10337 



NOTICE 
The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a 
contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US 
Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published 
form of this contribution, or allow others to do so, for US Government purposes. 

This report was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights.  Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States government or any 
agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States government or any agency thereof. 

Available electronically at http://www.osti.gov/bridge 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
phone: 865.576.8401 
fax: 865.576.5728 
email: reports@adonis.osti.gov 

Available for sale to the public, in paper, from: 
U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 
phone: 800.553.6847 
fax: 703.605.6900 
email: orders@ntis.fedworld.gov 
online ordering: http://www.ntis.gov/ordering.htm 

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste 

http://www.osti.gov/bridge
http://www.ntis.gov/ordering.htm


Synergies Connecting the Photovoltaic and Solid-State Lighting Industries 
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ABSTRACT 

Recent increases in the efficiencies of phosphide, 
nitride, and organic light-emitting diodes (LEDs) inspire 
a vision of a revolution in lighting. If high efficiencies, 
long lifetimes, and low cost can be achieved, solid-state 
lighting could save our country many quads of electricity 
in the coming years. The solid-state lighting (SSL) and 
photovoltaic (PV) industries share many of the same 
challenges. This paper explores the similarities between 
the two industries and how they might benefit by sharing 
information. 

1. A Shared Vision 
The SSL and PV industries share the vision of 

reducing our reliance on electricity. Even though both of 
these industries are growing at a healthy rate, neither 
technology has begun to reduce electricity demand in a 
meaningful way. Currently, for SSL, only colored-light 
(e.g., traffic lights) and low-wattage (e.g., flashlights) 
applications are more efficiently serviced by LEDs than 
by traditional lighting. For most lighting applications, 
fluorescent and high-intensity discharge lamps provide 
the most efficient options. However, LED efficiencies 
are increasing and, with more research, promise to equal 
or surpass those of fluorescent lights [1]. Currently, both 
SSL and PV products are too expensive to compete for 
mainstream applications. These industries are building 
manufacturing experience and market share by selling 
into niche applications. Both are growing at a healthy 
rate, even in a depressed economy (see Fig. 1) [2]. 

In general, industries make and sell products in order 
to make a profit, whereas society may benefit from 
products with improved energy efficiency. The United 
States reliance on foreign oil is often argued to be the 
single biggest threat to national security. Government 
programs that increase energy efficiency can be the 
foundation of any national security program. Yet, 
extrapolation of the current growth curves for SSL and 
PV imply that both are years away from providing 
significant energy savings. Thus, the role of the DOE 
Solar Program has been to accelerate the deployment of 
PV and the Building Technologies Program has recently 
begun a program to accelerate the deployment of SSL. 
In both cases, the programs must choose whether to 
support market development in order to increase the 
slopes of the curves shown in Fig 1, accelerate 
incremental improvements in the technology, and/or to 
investigate new technologies that could revolutionize the 
industry and provide a dramatically faster growth curve. 
As difficult choices are made for limited funding, the 
Solar Program and the Office of Building Technologies 
may benefit by leveraging their limited resources. The 

purpose of this paper is to explore the synergies between 
these two technologies so that this synergy may be 
effectively exploited by the Solar Program as well as the 
developing Solid-State Lighting Program to their mutual 
advantage. 
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Figure 1. Industry worldwide-growth data [2]. The 
extrapolation assumes a 40% annual growth rate. PV 
production is also shown on the right-hand axis in GW/yr. 
For comparison, the United States has typically installed 
~20 GW/yr new electricity generating capacity [3]. 

2. Shared Technical Issues 
Solar cells and LEDs have fairly similar structures in that 

both are diodes (usually p-n junctions) with the carriers 
confined to an active region. Both are designed to allow 
light to pass efficiently between the semiconductor and its 
surroundings. A solar cell generates electricity when light is 
absorbed and the resulting photocarriers are collected, and 
then are used as electricity in an external circuit. An LED 
works like a solar cell in reverse: carriers are injected, and 
then emit light when they recombine radiatively. It is 
common practice to forward bias direct-gap solar cells 
(causing the cell to act as an LED) to inspect for nonuniform 
illumination. Dark or bright spots usually indicate a defect 
in the solar cell and quickly isolate the origin of shunting of 
the solar cell. This is a specific example of how the 
similarities between LEDs and solar cells can be exploited. 

To further explore these similarities, we discuss here three 
key areas that show significant parallels between PV and 
SSL: (1) high-brightness LEDs and III-V concentrator cells, 
(2) organic LEDs (OLEDs) and thin-film solar cells, and (3) 
PV systems and SSL systems. 

2.1. High-brightness LEDs and III-V space and 
concentrator cells 

Today s highest-efficiency LEDs and solar cells are made 
from III-V materials. Ga0.5In0.5P/GaAs/Ge cells are currently 
in production for space applications [4] and are being 
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investigated for terrestrial concentrator applications [4]. 
High-brightness LEDs are currently fabricated from 
AlxGa0.5-xIn0.5P or from Ga1-xInxN. For both SSL and 
PV, the three critical elements of success are (1) high 
efficiency, (2) low cost, and (3) reliability. These are 
interrelated, but are discussed here separately. 

2.1.1 Perfect  materials for high efficiency 
Fundamentally, high-efficiency devices require 

materials of high crystalline quality. The best solar cells 
and LEDs are made from single-crystal materials that are 
relatively free from defects and have carefully passivated 
surfaces. In many material systems, defects (e.g., 
dislocations or free surfaces) are sites for nonradiative 
recombination. In a solar cell, photogenerated carriers 
that recombine nonradiatively at defects do not 
contribute to electricity generation. Similarly, in an 
LED, carriers that recombine nonradiatively at defects 
do not emit light. 

A key difference between solar cells and LEDs is that 
radiative recombination is the goal for LEDs, but is 
avoided in solar cells. For a direct-gap material, the 
radiative recombination is controlled mostly by the 
dopant concentration, but indirect-gap materials present 
a very different situation. Strictly speaking, radiative 
recombination is forbidden for indirect transitions. This 
effect is not a problem for solar cells, but decreases the 
efficiency of LEDs. Thus, some good solar cell 
materials do not make good LEDs. 

Regardless of the role of an indirect gap, both solar 
cell and LED efficiencies are improved by perfecting the 
material quality. Although there are many factors (e.g., 
device design) determining the device efficiency, for 
both solar cells and LEDs the most fundamental material 
property that affects efficiency is crystalline perfection 
(including the perfection of terminating the surfaces of 
the crystal). Once basic material studies provide a near-
perfect crystal, this material must be engineered into an 
efficient and low-cost device structure. 

2.1.2 Low cost 
Today s solar cells and LEDs are functional, useful 

devices. However, they do not provide the lowest cost 
sources of electricity and light, respectively. If lower 
cost options were not available, the functionality 
provided by solar cells and LEDs today would easily 
justify their current price and both would be sold to the 
larger market. If the price of electricity were much 
higher, the payback time for PV and energy-efficient 
LED products would be reduced and sales would 
increase. Unless the price of electricity increases, the 
success of these technologies toward significantly 
reducing our electricity usage requires a substantial cost 
reduction; this is a primary goal of supportive 
government programs. The importance of low cost also 
underscores the need to develop new materials and 
processes that are scaleable for large-volume 
manufacturing. 

As described above, the highest-efficiency solar cells 
and LEDs are made from single-crystal semiconductors. 
Associated with the high crystal quality is high cost. 

Reduction in cost can occur by identifying a low-cost 
substrate, reducing the cost of the epitaxial growth, reducing 
the cost of device processing, or improving the 
manufacturing yield. Cost breakdown for LED products is 
not readily available, but evaluations for III-V solar cells 
have shown that the substrate and epitaxial growth may be 
about $210 per 4-inch Ge wafer (assuming 90% yield and 
10 m/hr growth rate) [5]. This can also be used as a rough 
estimate for the cost of substrate and epitaxial growth of 
GaInP LEDs and translates to three cents per square mm. 

The costs of epitaxial growth, device processing, and low 
yield will fall as the manufacturing volume and experience 
are increased. In this way, parallel growth of the III-V PV 
and SSL industries may help to bring costs down for both 
industries. 

2.1.3 Reliability 
The reliability of III-V LEDs and solar cells is challenged 

when the operating conditions require very high currents 
(A/cm2) and elevated temperatures (~100¡C). Under these 
conditions, excellent heat sinking is required to prevent 
thermal runaway and catastrophic failure. For a III-V LED 
or solar cell operating at a fixed current, as the temperature 
is increased, the voltage drops by 2 mV/¡C. For the solar 
cell, this represents a decrease in output power. For the 
LED, the voltage shift affects the operation of the drive 
circuit and the temperature can also cause a shift in emission 
color as well as intensity (especially for the phosphide­
based LEDs). 

Within a system, the reliability of III-V LEDs and solar 
cells are often dependent on the device fabrication, 
particularly the details of the metallization and 
encapsulation. Although the details of the device mounting 
are different, the shared requirements (need for excellent 
heat sinking, conduction of current, and light transmission) 
imply that progress in this area is likely to be transferable 
between the SSL and PV industries. 

2.2 OLEDs and thin-film solar cells 
An alternative approach to reducing cost while still 

maintaining high performance is to find a material that is 
less sensitive to crystal perfection. Thin-film  solar cells 
are so called because their active layers are very thin 
(typically, a few micrometers total thickness) and can be 
grown on almost any substrate, including relatively low-cost 
substrates as glass or sheet metal. Although the efficiencies 
are expected to be somewhat lower than for single-crystal 
devices, high efficiencies have been obtained for both thin-
film solar cells [6,7] and for OLEDs [8]. Again, we will 
explore the similarities in three sections related to 
efficiency, cost, and reliability. We also add discussions of 
flexible substrates, large-area operation, and organic 
semiconductors. 

2.2.1 High efficiency 
The achievement of high crystal quality can be useful for 

OLEDs and thin-film solar cells, but it may not be the 
overriding concern because some of these materials are 
relatively insensitive to the presence of grain boundaries and 
other defects. There are many approaches to forming these 
devices, but all share the basic structure of TCO (transparent 
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conducting oxide)/active layer/metal, plus encapsulation 
front and back. The transparency and conductivity [9] of 
the TCO contribute to device performance, but the 
optimization of the TCO may be even more complex. 
The interface between the TCO and the active layer may 
be chemically or electrically reactive. The roughness of 
the TCO will affect the structure of the active layer 
deposited on top of it. 

The perfection and uniformity of the active layer(s) are 
of utmost importance, but can be very difficult to 
achieve over a large area. For most OLEDs and thin-
film cells, the nature of the junction is not as well 
understood as it is for the III-V, single-crystal devices. 
The movement of carriers within organic semiconductors 
and the natures of their interfaces are not yet fully 
understood. 

2.2.2 Low cost 
The active-layer materials costs for these thin-film 

devices are expected to be negligible. However, 
reducing the total cost can still be challenging. Because 
the potential for low cost is the key asset of a thin-film 
solar cell, the cost issues have been thoroughly 
investigated, concluding that a cost in the range of $40-
50/m2 should be achievable [10]. These analyses should 
be helpful to OLED researchers who have targeted a cost 
of $20/m2 [1]. A key selling point of OLEDs is that they 
are a uniform, low-glare source of light that may be 
highly valued by the consumer. Thus, for OLEDs, low 
cost may not be necessary for widespread use if 
reliability can be improved. 

2.2.3 Reliability 
In general, the thin-film approaches to PV and SSL are 

found to have more severe reliability problems compared 
with single-crystal devices. It is not surprising that the 
single-crystal devices are more stable, but, with 
appropriate understanding of the underlying science, it 
should be possible to create stable thin-film devices. 
The Solar Program’s experience has shown that the 
issues of high efficiency and reliability must be 
addressed together. 

2.2.4 Flexible substrates 
In addition to the possibility of very low-cost devices, 

a key appeal for the thin-film approaches to PV and SSL 
is that they may be made in novel configurations. 
Amorphous-silicon solar cells can be purchased in 
flexible products such as shingles (for roofing) or light-
weight, portable PV arrays (for backpacking trips, etc.) 
[11]. OLEDs have been demonstrated on flexible 
substrates, but products are not yet readily available. 
The manufacturing of both amorphous silicon and 
OLEDs on flexible substrates starts with a TCO-coated 
plastic and ends with a flexible encapsulation. 
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2.2.5 Large-area operation (low voltage/high current) 
Large-area solar panels or OLEDs can be envisioned, but 

just as no one is interested in a 100-watt solar panel that 
generates 1 V at 100 A, no one wants to run an OLED at 
low voltage, high current [12]. Manufacturers of thin-film 
PV modules use laser scribing to create panels that operate 
at convenient voltages. Laser scribing may also be 
satisfactory for OLEDs [13]. This is an example of the 
opportunities that may arise for PV and SSL companies to 
work together to use old equipment/methods for new 
products. 

2.2.6 Synergy between organic LEDs and organic solar cells 
Our understanding of organic semiconductors lags our 

understanding of inorganic semiconductors. Yet, in the last 
couple of years, organic-solar-cell and OLED efficiencies 
have been increasing rapidly [8,14]. Basic studies of 
organic semiconductor physics will speed the development 
of not only organic solar cells and OLEDs, but other devices 
as well. 

The fundamental differences between conventional and 
organic diodes are the role of excitons as the primary light-
absorbing/emitting species and charge hopping as the 
transport mechanism. In an organic solar cell, absorption of 
a photon produces an exciton. Charge carriers are produced 
when the excitons are dissociated at an interface between 
two materials, and the carriers must then hop through their 
respective layers to reach the electrodes. For a LED, the 
reverse process can yield emission of light. The great 
potential for these devices are threefold: they (1) can be 
made from highly processable (solution) materials (2) are 
amenable to being engineered on a molecular level, and (3) 
c a n  b e  c rea ted  f rom sus ta inable  (even  
biodegradable/recyclable) materials. 

2.3 PV systems and SSL systems 
Although basic materials research is key to achieving high 

device efficiencies, the ultimate success of PV and SSL will 
depend on the quality of the final consumer product. Key 
considerations that are shared for PV and SSL systems 
include (1) retaining efficiency so that the system efficiency 
approaches the efficiency of the diode, (2) well-designed 
power conditioning, and (3) system reliability. 

2.3.1 LEDs are enabling for some PV applications. 
PV systems are cost effective today for stand-alone, low-

wattage applications such as calculators and walklights. 
The replacement of an incandescent bulb with an LED can 
decrease the power needed for colored- and low-wattage 
lighting applications. In this way, LEDs are an enabling 
technology for PV: they can open new marketing 
opportunities. A number of PV-powered SSL systems are 
already available commercially [15]. 

2.3.2 Failures in low-tech components. 
The weakest link of today s PV systems is usually 

reported to be the inverter [16]. Anecdotal evidence 
suggests that SSL systems experience a similar difficulty 
with the drive circuits used to supply the LEDs with DC 
current [17]. Other commonly reported failure modes for 



both PV and SSL systems include encapsulant 
yellowing, moisture ingress, breakage of wires, and 
soiling. 

2.3.3. Customer acceptance of new products 
Customers are hesitant to adopt new products when 

the upfront cost is high, as is the case for both PV and 
SSL products. Municipal districts across the United 
States have been convinced that the reduced maintenance 
costs associated with LED traffic lights easily justifies 
the higher upfront cost, but this sort of acceptance 
requires customer education and experience. Ongoing 
PV and SSL education programs could benefit by 
working together. 

2.3.4 System benefits may open new markets 
The PV industry has found that PV-powered systems 

are more quickly accepted in the marketplace than plain 
solar panels. A PV system may be designed to be both a 
roof and a source of electricity [18]. Such products 
provide value that offsets the cost differential between 
PV and conventional electricity. Similarly, comparisons 
of LED costs relative to incandescent or fluorescent bulb 
costs imply that substantial cost reductions are needed 
before LED replacement bulbs can be generally 
accepted, but consumers regularly buy lighting systems 
that cost more than $100. For these purchases, the cost 
differential between a SSL and conventional lighting 
system may not be a deterrent. The entry of PV and SSL 
products into the marketplace will be accelerated by 
incorporation of these into creative consumer products. 

3. Conclusions 
The similarities between the R&D issues for solar cells 

and LEDs provide numerous opportunities by which the 
Solar Program and Solid-State Lighting Programs may 
learn from each other. Basic studies of materials, and 
the new physics associated with organic semiconductors 
can be shared. Existing experience in one technology 
may benefit the development of the other technology. A 
new breakthrough in either PV or SSL could be 
beneficial to the other industry as well. The use of LEDs 
and solar cells in systems together may open new 
applications, contributing to industry growth. The two 
industries share the challenge of competing with very 
low cost technologies, but both could reduce electricity 
consumption in a meaningful way if efficiencies are 
increased and costs lowered. This goal may be achieved 
sooner if the two industries take advantage of the 
synergies between them. 
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