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ABSTRACT

The measurement of the photovoltaic (PV) performance

with respect to reference conditions requires measuring the

performance with respect to a reference spectrum.

Procedures were developed in the mid 1980s to correct

measurements for errors relating to the spectral irradiance

of the light source being different from the standard and the

responsivity of the irradiance detector being different from

the device under test.  In principle, these procedures are

exact, but require the measurement of the spectral irradiance

of the light source and responsivity of the test device.  This

is problematic for most facilities that measure module

performance.  It has been suggested that a polynomial fit of

the short-circuit current (I
sc

) measured under natural sunlight

divided by the total broadband irradiance as a function of air

mass provides an accurate spectral correction factor.  The

polynomial correction factor is normalized to unity at an

absolute air mass of 1.5.  The polynomial correction factor is

compared with the spectral correction factor for a variety of

devices at two locations.

INTRODUCTION

Measurements of PV performance under natural sunlight

with respect to standard reference conditions require

translating the data to the reference irradiance, spectrum,

and temperature.  This paper compares two methods for

correcting the data to the reference spectral irradiance.  The

spectral correction factor provides a means to exactly correct

the measured current to an arbitrary tabular reference

spectral irradiance distribution.  Because all reference

spectral irradiance distributions are only a function of

wavelength, with angular information not included, the

spectral correction factor can be written as [1]

(1)

where E
tot

, is the total irradiance, E
R
(l) is the spectral

irradiance of the reference spectrum, E
S
(l) is the spectral

irradiance of the solar spectrum, S
R
(l) is the spectral

responsivity of the reference detector, and S
T
(l) is the

spectral responsivity of the test device whose measured

short-circuit current is I
sc

.  If the reference detector is a thermal

detector then S
R
(l) is constant and drops out.  The units of

spectral irradiance are Wm-2mm-1.  The units of spectral

responsivity are AW-1 for a semiconductor-based reference

detector and VW-1 for a thermal detector such as a

pyranometer.  If a pyranometer is used as the reference

detector to measure the total irradiance, then S
R
(l) is

constant and drops out.  Commercial spectroradiometers

cannot measure the spectral irradiance from 300 nm to 4000

nm, so an additional uncertainty in the spectral correction

factor is introduced by limiting the range of spectral correction

to a Si-based detector of 300 nm to 1100 nm [2].

It has been suggested that a fourth-order polynomial fit

of I
sc

 divided by the total broadband irradiance as a function

of air mass provides an accurate spectral correction factor

[3].  The polynomial correction factor is normalized to unity

at an absolute air mass of 1.5.  Corrections based on the

absolute air mass are most accurate when the reference

spectrum is close to the “AM1.5” spectrum at the test site.

The uncertainty in air-mass correction factor can be reduced

to zero if a matched reference cell is used instead of the

traditional broad-band pyranometer.  In principle, if a detector

calibrated for the reference spectrum has an identical relative

spectral responsivity, then the spectral correction factor is

unity and the air-mass correction factor is unity.  If an air-

mass correction factor used by one group is also used by

another group, then the same reference detector should be

used.   This is especially true for amorphous silicon or other

technologies whose spectral responsivity is over a narrow

range.  Spectral modeling allows an estimate of the sensitivity

of the spectrum at AM1.5 to water vapor and turbidity.  The

error in the air-mass correction procedure is less than ±2%

for Si when using a spectrally flat detector over a broad range

of turbidity and precipitable water vapor [4].  However,

amorphous silicon has a much higher sensitivity to water

vapor and turbidity than crystalline Si, CdTe, or CuInSe
2
 [4].

Figure 1 compares the calibration value for a mono-

crystalline-Si module with and without spectral corrections.

The air-mass-corrected value was 1.3% lower than the

spectrally corrected value using a linear fit and 3.8% lower

using a polynomial fit as suggested by King et al. [3].  The

data were collected at zero incidence angle.  For the curve

fit to be most accurate, the data should all be collected on

the same day and the calibration value over a wide range of

air masses must include data above and below air mass

1.5.  Figure 2 shows direct-normal data collected all day on

an encapsulated Si cell on four clear days at NREL.  The

Aspire reference cell is used as an irradiance detector for

measurements under natural and simulated sunlight [7].  The

air-mass correction factor varied by less than 0.4% for the 4

days, but predicted a calibration value that was almost 2%
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greater than the value predicted by rigorous spectral

corrections using Eq. 1.  These values are within expectations

for the sensitivity to the calibration value at air mass 1.5 as a

function of turbidity (0.02 - 0.42) and water vapor (1-2.5 cm)

based on spectral modeling [4].

Fig. 1.  Calibration value of a module under global sunlight

compared with spectral correction for the global reference

spectrum [5].

Fig. 2.  Calibration value of a cell under direct-normal light

with air-mass correction compared with spectral correction

to the ASTM E891 direct reference spectrum [6] for 4 days.

For many applications, this difference is insignificant,

and the cost and convenience of not calculating the spectral

correction factor is important.  The differences can be

unacceptably large for narrow-response-range devices such

as the filtered Si cell simulating the spectral responsivity of

amorphous silicon shown in Figure 3 or the GaAs filtered

GaInAsN cell with a 900-1200 nm response range shown in

Figure 4. Figure 5 shows the sensitivity of the air-mass

spectral correction factor to operator judgment and day

showing over a 1% spread in the AM1.5 calibration value.

The linear fit is quite different depending on whether all points

are included or points with an air-mass less than 5.  Applying

a fourth-order polynomial fit to the entire November 23 data

set in Figure 5, as suggested in reference 1, gives a

calibration value of 78.6, or 3% lower.  This is partly because

the data are being extrapolated to a pressure-corrected value

of AM1.5 because it could not be reached at this site elevation

at this time of year.

Fig. 3.  Calibration value of a Schott KG5 filtered Si refer-

ence cell under  direct sunlight (5∞ field of view) with air-

mass correction compared with spectral correction.  The

AM1.5 corrected value is 5.9% lower than the spectrally cor-

rected global value and 4.7% greater than the spectrally

corrected direct-normal value.

Fig. 4.  Calibration value of a narrow response range GaAs

filtered GaInAsN reference cell under direct-normal with air-

mass correction compared with spectral correction.  The

AM1.5 corrected value is 8.9% lower than the spectrally

corrected global value and 1.5% greater than the spectrally

corrected direct-normal value.
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Fig. 5.  Calibration value at AM1.5 is a function of the day

the data are taken, the range of air masses that the data are

collected over, and type of curve fit used.

Figures 6 and 7 show the seasonal and daily variation

in the temperature corrected calibration value for CIS and

CdTe modules respectively for several days near the solstices

and equinox’s.  The data was  filtered for clear sky conditions

and incidence angles less than 50∞.  The latitude tilt data

was collected at NREL over several years.  The symbols for

the data near the solstices are solid, while the symbols near

the equinox’s are open.

Fig. 6.  Calibration value as a function of air mass for a CdTe

module mounted at a fixed tilt.
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From a standards perspective, it is difficult to estimate

the uncertainty in the air-mass spectral correction procedure

because it does not correct the data to a tabular reference

spectrum.  Modeling the spectral sensitivity allows the

estimation of the uncertainty over a range of turbidities and

precipitable water vapor encountered [4].  Following the

modeling algorithms in reference 4, Figures 8 and 9 show

the percent deviation from the reference spectrum over a

range of precipitable water vapor and turbidity at air mass

1.5 that may be encountered in the field.
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The air-mass spectral correction procedure assumes

that the only factor influencing the spectral correction factor

is air mass.  This assumption has been shown to be

acceptable for certain sites and for PV technologies that have

a low sensitivity to spectral variations with water vapor and

turbidity such as mono-Si.

SUMMARY

Spectral corrections of data measured under natural

sunlight based on the air mass are only an approximation.

The error introduced by the assumption that the spectrum at

AM1.5 is the reference spectrum may be small enough to

be of use in correcting field data where measuring the

spectrum is not practical.  Using a matched reference cell to

measure the total irradiance further reduces the uncertainty

in the spectral correction but makes the correction equation

dependant on the detector used.  The air mass based spectral

correction factor is location and time dependant.
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