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ABSTRACT

Previously we reported on a two-layer electrodeposition process of thallium oxide
superconductors that showed transport critical current density above 10® A/em?” at 77 K in zero
field. In this article, we report our effort to convert an electrodeposited thick film of
(T1,B1,Pb),(Sr,Ba),Ca;Cu,0x to (Hg,B1,Pb),(Sr,Ba),Ca;Cu,0Ox by the cation-exchange process.
We are also reporting magneto-optical imaging data on Tl oxide superconductor films, which are
compared with YBCO. Magneto-optical imaging provides insight into the nature of current flow
in the T1 oxide superconductor, and thus, will help us to improve the critical current density in
bulk high-temperature superconductor wire or tape.

INTRODUCTION

The primary technical challenge that must be satisfied to permit high-temperature
superconductor (HTS) wire or tape in superconducting magnets or power-related applications is
the successful demonstration of a low-cost, high-field, high-current-carrying wire or tape with
acceptable mechanical properties. The thallium-based and mercury-based superconducting
oxides are excellent candidates because of their high transition temperature reaching to 130 K
and unique features in their growth morphology. Recently, Wu et al. developed a cation-
exchange technique where a Tl oxide superconductor was converted to a Hg oxide
superconductor [1]. In this process, Hg replaced T1 by reacting a TI oxide superconductor
(T1Ba,CaCu,0Oy) in the presence of Hg vapor. We attempted to perform similar experiments
using electrodeposited thick films of (T1,Bi,Pb)(Sr,Ba),CaCu,Ox.

In general, the electrodeposition of superconductor tapes for conductor applications has
considerable practical potential, particularly in the fabrication of large non-planar devices.
Electrodeposition is a potentially low-cost, non-vacuum process that has the ability to easily
deposit superconductor precursor films or tapes at thicknesses up to 15 um. Electrodeposited
films of all the oxide superconductors have been demonstrated, with the Tl system emerging as
most promising [2-4].

In this paper we also report recent studies on the magneto-optical imaging (MOI) of Tl
oxide superconductors. In low-T, superconductors [5,6], critical current density (J.) is almost
entirely determined by the pinning of vortices at microstructural defects or precipitate in the
material (flux pinning). In HTS, the J. measured by transport over macroscopic lengths is
determined not only by intragrain flux pinning at microstructural defects, but also, by grain-
boundary misalignment that influences the connectivity of the superconducting filaments.



Some defects in HTS such as cracks and large second-phase particles, act as permanent barriers
to current flow, whereas others (e.g., high-angle grain boundaries) exhibit a weak coupling
effect that markedly degrades the transport in moderate magnetic fields. This spatially variable
electromagnetic coupling produces percolative current flow, meaning that not all of the cross
section is useful for carrying transport current. This so-called granular behavior [7] has been
visualized by magneto-optical imaging (MOI) in YBCO superconductors. The MOI of Tl oxide
superconductor on rolling-assisted biaxially textured substrate (RABiTS) Ni suggest that the Ni
grain boundaries may in fact be less of a problem for Tl-oxide superconductor than for YBCO.

EXPERIMENTAL DETAILS

The electrodeposited [4] precursor films were obtained by coelectrodeposition of the
constituent metals using nitrate salts dissolved in dimethyl sulfoxide (DMSO) solvent. The
electrodeposition was performed in a closed-cell configuration at 24°C in the presence of
dissolved oxygen (oxygen gas was bubbled in the solution during the deposition). A number of
electrodeposition runs were performed with different electrolyte compositions, and the precursor
films were analyzed by inductively coupled plasma (ICP) spectrometry to establish the
stoichiometric ratios of the deposited elements. The films were electroplated by using a constant
potential of -3 V. All samples were electrodeposited in a “vertical cell,” in which the electrodes
(working, counter, and reference) were suspended vertically from the top of the cell. All
chemicals were of Analar or Puratronic-grade purity and were used as received. A conventional
three-electrode cell was employed, in which the reference electrode was Ag (pseudo-reference)
and the counter electrode was a Pt gauze. A Princeton Applied Research potentiostat/galvanostat
Model 273 A with an IBM PC AT computer interface was used to control the potential of
electrodeposition and to monitor the current and voltage profiles. At first, we tried to increase
the film thickness by increasing the deposition time. The film thickness did in fact increase with
longer deposition time, but the film morphology was poor. A two-layer technique was then tried
that used two layers of TBSBCCO films, with an intermediate layer of Ag to improve the film
uniformity. The deposition process is as follows: (a) single-crystal substrates are coated with
300-A Ag; (b) TBSBCCO films (0.8 to 1.3 um) are prepared by electrodeposition (ED) on
Ag/LAO; (c) 300-A Ag is deposited on ED-TBSBCCO/Ag/LAO; (d) second layer of TBSBCCO
is electrodeposited (0.8 to 1.3 um) on Ag/ED-TBSBCCO/Ag/LAOQO; and the complete two-layer
system is reacted.

The superconducting T1-2212 films studied by MOI were prepared by a dc-magnetron
sputtering process on textured Ni substrates [8,9]. The sputtering was carried out using a pair of
faced T1-2212 targets in a gaseous mixture of 80% Ar and 20% O,. The as-deposited precursor
films were amorphous with a composition of Tl:Ba:Ca:Cu=2:2:1:2. The precursor films were
placed in an Al,O; crucible together with a reacted TI-Ba-Ca-Cu-O pellet and annealed at a
temperature of about 760°C for 6 hours in pure argon of 1 atm pressure to obtain
superconducting T1-2212 film.

RESULTS AND DISCUSSION
An electrodeposited (TIBi);(SrBa),Ca;Cusz 505 {TBSBCCO} precursor film on 300-A

Ag/LAO, annealed in air at 870°C in the presence of a TBSBCCO pellet, shows T1-1223 phase
development [4]. The pole-figure measurement of the (103) HKL peak shows biaxial texture.



The omega scan and phi scans indicate the full width at half maximum (FWHM) of only 0.92°
and 0.6°, respectively, which indicate a very high-quality film.
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Figure 1. The SEM of a two-layer annealed ED-TBSBCCO/Ag/ED-TBSBCCO/Ag/LAO film.
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Figure 2. The magnetic field dependencies of transport J. at 77 K (H // ¢) for two-layer 0.8, 1.6, and 2.6 pm ED-TBSBCCO/Ag/ED-
TBSBCCO/Ag/LAO film.

The SEM analyses (Fig.1) of the presently annealed two-layer film show dense and melted
plate-like structure development without any voids. The thickness of the annealed two-
layer film varied from 0.8 to 2.6 um. The superconductive transition temperature of the films,
determined resistively, is about 110 K. Figure 2 shows the critical current density versus magnetic
field values at 77 K of 0.8-um, 1.6-pm, and 2.6-pm two-layer films. At 77 K and no magnetic
field, the critical current-density value of a two-layer, 0.8-pum-thick film is 1.1 x 10° A/em? (Fig.2)



using the field criterion of 1 uV/cm. The critical current density of the film is calculated using
the full cross-section of the sample (3.7 mm x 0.8 um). The two-layer, 2.6-um-thick (width = 3.2
mm) TBSBCCO film prepared by the electrodeposition process showed critical current (I;) of
28.24 A at 77 K (normalized I, = 88.25 A for 1-cm-wide samples).

We were not very successful of forming the 1223-TBSBCCO phase on Ag, Ag/Pd (10%
Pd), and also on textured Ni. The T1-2212 or T1-1212 phase mostly formed on these metal
substrates. The T1-2212 or 1212 phases lack good magnetic-field-dependent properties. A
recent study by Wu et al. [1] showed that cation exchange of Tl by Hg took place for both TI-
2212 and T1-1212 phases. The quality of the sample made in the cation-exchange process is
superior to Hg-1212 synthesized directly by the conventional sealed-tube annealing process.
Cation-exchanged Hg-1212 showed critical current densities nearly an order of magnitude higher
than the best value reported on conventionally processed Hg-1212 thin films [10]. The sputtered
deposition process limited the thickness of the Tl oxide films to only about 300 nm. We
attempted to convert the thick electrodeposited T1-2212 film (Pb,Bi1,Sr doped) into Hg-1212 by
the cation-exchange process. Figures 3a and 3b show the X-ray diffraction analysis of the TI-
2212 and partially cation-exchanged Hg-1212 films. It seems that some cation-exchange
reaction took place, but we need to further optimize the processing conditions to obtain fully
converted Hg-1212 films.
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Figure 3. X-ray diffraction analysis of (a) electrodeposited T1-2212 and (b) the films after processing in Hg vapor (cation exchanged).



The MOI data were collected from sputtered T1-2212 films on textured Ni substrates.
The MOI image of a T1-2212 film is compared in Fig. 4 with PLD YBCO deposited on RABiTS
Ni. The MOI image of T1-2212 (Fig. 4a) shows no indication of grain-boundary replication of
the Ni substrate for the T1 oxide superconductor. These MOI images suggest that the Ni grain
boundary may in fact be less of a problem for the Tl oxide superconductor than for YBCO. This
suggested behavior is a direct result of the unique microstructural morphology for Tl oxide films.
Even though high epitaxy can be observed following the partial-melt processing for Tl oxide
films, the substrate features (i.e., grain boundaries) are not observed. Therefore, grain-boundary
misalignment problems in the substrates may not be replicated for the T1 oxide superconductors,
which may ease the problem for developing long-length conductors. Further studies on TI oxide
films on RABITS are needed to fully resolve the advantages of the T oxide superconductor films.

(@) (b)

Figure 4. Magneto-optical imaging of (a) T1-2212 on RABiITS Ni (460 pm x 350 pm), (b) YBCO on RABITS Ni (460 um x 350pm).

CONCLUSIONS

Cathodically electrodeposited Tl-oxide precursor films can be rapidly synthesized with
controlled stoichiometry, and upon thallianation, they produce high-quality material with
promising critical current density. We demonstrated partial cation-exchange reaction for
electrodeposited, doped thick-films. The MOI images revealed that the TI oxide superconductor



does not copy the substrate’s grain boundaries, in contrast to YBCO. This leads us to believe
that grain-boundary misalignment in the substrates may not present any problem for the Tl-oxide
superconductor films on metallic substrates, which may ease the problem for developing very
long-length conductors.
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