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Application of a Dynamic Fuzzy Search Algorithm to Determine Optimal Wind Plant
Sizes and Locations in Iowa

Michael R. Milligan
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1617 Cole Boulevard
Golden, CO 80401

Tom Factor
Iowa Wind Energy Institute

1204 Lakeview Drive
Fairfield, IA 52556

Abstract:  This paper illustrates a method for choosing the
optimal mix of wind capacity at several geographically dispersed
locations.  The method is based on a dynamic fuzzy search
algorithm that can be applied to different optimization targets.
We illustrate the method using two objective functions for the
optimization: maximum economic benefit and maximum
reliability.  We also illustrate the sensitivity of the fuzzy
economic benefit solutions to small perturbations of the capacity
selections at each wind site.  We find that small changes in site
capacity and/or location have small effects on the economic
benefit provided by wind power plants.  We use electric load and
generator data from Iowa, along with high-quality wind-speed
data collected by the Iowa Wind Energy Institute.

I. INTRODUCTION

In the United States there has been a significant level of
wind power development.  In the 12 months ending in June
1999, 1,073 megawatts (MW) in new wind-generating
equipment was installed in the United States. This increase
occurred because of several factors.  The Federal
Production-Tax Credit, first enacted in 1992, provided an
inflation-adjusted $0.015/kilowatt-hour (kWh) credit for
wind-generated electricity, and several public opinion polls
supported the increased use of renewable energy sources.
Wind turbines in Iowa currently generate about 1.8% of
the state’s annual energy.  The Iowa Department of
Natural Resources is evaluating whether to submit
legislation requiring Iowa utilities to provide 10% of the
state’s energy requirement using renewable resources by
2015.  In this paper, we model Iowa’s electricity supply
system, and apply a dynamic fuzzy search procedure to
help evaluate the best way to choose wind capacity levels
at 12 possible locations.

II. IOWA WIND RESOURCE ASSESSMENT

Beginning in 1993, the Iowa Wind Energy Institute began
a wind resource assessment of Iowa. This included the
installation of twelve 50-meter wind-monitoring stations
around the state. The sites were chosen because of their
high potential for wind farm development. They are well
exposed, with a large developable area, near to
transmission lines, and geographically dispersed. Iowa has
significant wind energy resources, with substantial areas of

class 3 winds and above. The northwest corner of the state
is adjacent to the Buffalo Ridge area in Minnesota, a
location where significant wind power plant development
continues to take place.  Some of the sites monitored by
the Iowa Wind Energy Institute are in the proximity of
Buffalo Ridge.

The wind-speed data were compiled into a database and
checked to assure high quality. Sensor and logger failures,
tower wind shadowing effects, and lightning and icing
events were identified, and missing or otherwise invalid
data were replaced using either a shear correction to other
working anemometers on the tower, correlation to nearby
stations, or National Climatic Data Center archived data.
Cleaning of the data was performed jointly by Tom Factor
and consulting meteorologist Ron Nierenberg.

For this study we used wind data for the calendar year
1997. This year was chosen because it was very close to
the long-term norm, so that the wind data would be
consistent with the latest Iowa utility load data available at
the time of this study. The hourly wind data were scaled by
comparing the 1997 average to the four-year average that
was measured at the 12 sites. This was done to make the
wind data more representative of long-term norms. We
also considered the relationship of 1997 to the 20-year
norms provided by the National Weather Service.  The
wind-monitoring sites appear in Fig. 1.

We ran a large number of power production-cost
simulations for this study, using the Elfin model. (Elfin is a
product of the Environmental Defense Fund.) This
modeling process is described in greater detail below.
After an initial set of runs was completed, we examined
the sites that were selected by the model for significant
wind energy development. A wind speed, wind power
density, and turbine output map of each 20 x 20 kilometer
area surrounding each wind-monitoring site selected by the
Elfin model was made. We used the WindMap software
developed by Michael Brower. The maps used United
States Geological Service (USGS) digital elevation models
to a 100-m grid cell, surface roughness data, and wind rose
data for each ground measurement station. The area was
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then modeled for relative exposure, elevation, and terrain
roughness to create a graphical map of wind speeds and
turbine power outputs. This map was used to determine the
average wind speed and output for an array size suggested
by initial runs of the Elfin model. The maps were used to
determine the average wind speed for the size of terrain
required to meet the recommendation of the Elfin model at
a density of 10 MW per square mile. This allowed us to
account for declining average wind speed as sites are more
fully developed.  The wind speed used originally by the
model was then adjusted up or down, and the Elfin model
was re-run to yield more accurate results. In the case of the
Estherville site, which was initially selected by Elfin as the
largest generation facility, two monitoring stations a half-
mile apart at 50-foot different elevations were used to
further refine the modeling of this area.

The adjustments to wind speed we made were as follows:
Sibley + 2.3%, Estherville - 2.4%, and Algona  -.04%. Alta
was not adjusted because nearly 200 MW is already
installed at that site. Radcliffe, Sutherland, and Forest City
were unchanged because sufficient similar terrain was
found in the area to support increased development
(pending landowner acceptance and transmission access).

III. LOAD AND GENERATOR DATA

Additional data were required to run the production-cost
model.  We combined the electric load and generator data
from the Iowa utilities so that our study would come closer
to a statewide or regional dispatch, as might occur under
restructuring.  The load and generator data are publicly
available for all of the investor-owned utilities,
cooperatives, and municipals in the state of Iowa. This data
includes hourly electric load data and data for each
generator in the state. In some cases we combined small
generating units with similar characteristics, such as fuel
type and heat rate. We also modeled energy inflows and

outflows in Iowa. These data were adjusted to reflect
recent and projected interchanges as accurately as possible.
These exchanges include base economy energy,
intermediate economy energy, peaking capacity and
energy, and emergency capacity purchases from other
utilities in the control region. These purchases are
projected to decline at about 1,000 gigawatt-hours (GWh)
per year from a current level of about 9,000 GWh. We also
incorporated projected gas-fired simple-cycle and
combined-cycle capacity into the future resource mix.

Wind energy is becoming cost competitive with fossil fuel
alternatives for new energy production in Iowa. Although
wind energy is considered non-dispatchable because it is
intermittent, areas outside the United States that have
reached the 10% level report no disruption in their ability
to meet load requirements. There is also a very favorable
public climate towards wind energy. Taking these facts
together, we decided to analyze the ten- percent target for
renewable energy applications in the next 15 years.  We
used the utility projections for load growth through 2015
and calculated the wind capacity that would be required to
meet 90% of the 10% mandate for renewable energy. This
yields a 1,600-MW target. Although wind energy is the
most cost-effective renewable energy technology in Iowa,
there may also be significant contributions by biomass,
small hydro, and other renewable resources.

IV. POTENTIAL BENEFITS OF GEOGRAPHICALLY
DISPERSED WIND GENERATORS

Several studies have examined the issue of geographically
disperse wind sites.  Kahn’s [1] analysis is based on data
collected in California.  Grubb [2] analyzes the effects of
smoothing from wind generating units in Britain.  Milligan
and Artig [3] examined a reliability optimization for the
state of Minnesota, but did not address economic benefits.
Ernst [4] provides an analysis of short-term data in
Germany.  All of these studies find that the geographic
spread of wind generators provides a smoothing benefit.
The principle behind this benefit is that lulls in the wind
tend to be more pronounced locally than over a wide
geographic area.  Building wind capacity at different
locations may help reduce the problems caused by the
intermittency of the wind resource.  The hourly wind-
speed data from the 12 Iowa sites allow us to examine this
question in some detail.  If 1,600 MW of wind capacity
were to be built in Iowa, how much capacity should be put
at each of the sites?  Should all, or some sites be used?
One approach might be based on an optimization target of
smoothing the hour-to-hour variations in wind output.
Fig. 2 provides an example of how this might work.  In the
figure, we calculated the hourly wind output for a
hypothetical 25 MW wind power plant at each of the 12
sites in Iowa.  The graph shows the first differences of this
data, calculated by finding the difference in the wind

Fig. 1. Iowa wind monitoring sites.  Circles represent Iowa Wind
Energy Institute sites, squares are National Weather Service sites.
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output for successive hours.  We then calculated the
maximum and minimum changes in wind power output,
which are represented by the I-beams for each of the 12
sites.  We then combined each of the 12 sites into a
composite site, choosing approximately 2.08 MW per site,
for a total of 25 MW.  The I-beam for this composite site
appears on the right side of the figure, and shows that the
maximum and minimum hourly power swings are
significantly reduced by spreading the wind capacity to
several geographically dispersed sites.

There are several possible optimization targets that could
be chosen.  Using Fig. 2, for example, we could select the
combinations of wind sites that provide the smoothest
aggregate output over some suitably defined peak period.
But the generation mix of most utilities or generating
companies includes some regulating capacity that can be
adjusted to adequately cover fluctuations in demand.  The
optimal generation mix can be found by solving the
traditional least-cost dispatch problem, which can account
for hourly load-swings and how to best meet those changes
in demand.  We chose to perform optimizations based on
two targets.  The first target is based on maximizing the
economic benefit from the selected wind sites.  The wind
sites and capacities are chosen so that power production
cost savings from conventional generators is maximized.
The second target is to choose the combination of locations
and capacities that maximizes a reliability index.  Our
preference for the reliability index is expected energy not
served (ENS).

V. MODELING METHODS

We ran our model for two different optimization targets.
The first target is economic benefit, and is defined as the
cost reduction in conventional generation that results from
installing wind capacity in the generation mix.  The second
target is a reliability target.  We use ENS for our reliability
measure, and calculate the increase in reliability that the
combined wind sites contribute to the system reliability
based on the no-wind case.  Both optimization processes

utilize the same basic algorithm.  We describe the
economic benefit optimization first.

Since we do not have specific price information on wind
development and production at these sites, we assume that
the installed cost in $/kW is the same at all sites.  Our
procedure could be adapted to cases in which costs are
known, and differ between sites.  There is a difference in
efficiency and reliability between sites because of the
different winds at each of the 12 different locations, and
our optimization does take this into account.

Our economic optimization algorithm searches for the
combination of installed wind capacity, totaling 1,600
MW, at the 12 sites that maximizes reduction in costs of
running conventional generators.  The most significant
component of this benefit is the reduction in conventional
fuel costs.  However, we have also specified a reliability
penalty for unserved energy of $4.00/kWh. Equation (1) is
the benefit function,

   )(Wb δΖ      (1)

where W is a vector populated with the rated wind plant
capacity at each of the 12 locations consisting of rows wi at
each wind site, i is the index of the wind site, 1  i  12,
and δ maps the installed capacity vector W, to the benefits
b, calculated as a reduction in production cost.  Finding the
optimal mix of resources assuming the same price/kW at
each site implies that we choose the quantity of wind
resources up to the point at which the marginal products of
each site are equivalent [5].  Written in terms of partial
derivatives, we have

jjiii wwww ⌡δ⌡Ζ⌡δ⌡ /)(/)(     (2)

Equation (2) says that, for the optimal mix of wind sites
and locations, the marginal contribution to economic
benefits at each chosen site must be equal to the marginal
benefit of all other chosen sites. Classical optimization
methods that can be used to solve Equation (1) subject to
Equation (2) include the method of Lagrangians, linear
programming, or Kuhn-Tucker methods if the problem is
nonlinear.  However, these techniques assume that the
solution set is convex.  As indicated in Fig. 3, our problem
is not so simple.  The figure shows the marginal economic
benefit of each of the wind sites.  This graph shows the
restricted case in which output at each of the other 11 sites
is 0.  Compounding this problem is the chronological
nature of unit commitment and economic dispatch.  Given
various constraints of the individual generators, these
additional binding constraints add another level of
complexity to the problem.  Because of these factors, the
interaction between wind sites, and our desire to select a
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Fig. 2. Hour-to-hour differences in wind power output, July 1997.
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combination of wind sites, we are quickly left with the
curse of dimensionality that is so often associated with
complicated optimizations over non-convex surfaces.  Our
solution must satisfy Equation (2); however, the process of
finding this solution involves a search process over a non-
convex surface.

We employ a dynamic search algorithm that proceeds in a
stepwise fashion.  Procedurally, our problem is similar to
the standard microeconomics problem of a consumer who
maximizes utility subject to a budget constraint.  The
process is described in [6]. We selected a step size, or
cluster, of 50 MW of wind capacity.  The choice of a
50-MW cluster was a compromise between greater
accuracy and increased computer run time with small
cluster sizes.  Our optimization process simulates building
one cluster at each of the 12 sites.  The model then selects
the cluster that contributes most to the economic benefit
target.  That site is then chosen for the first cluster.  At the
next step, an additional cluster is checked at each site,
given the previously built cluster.  The best site is chosen,
and the process is repeated until the desired capacity is
reached.  This modeling method does not rule out the
possibility that the highest benefit may be met from a
single wind site.  If that were the case, this algorithm
would find a single-site solution.

The process that has been described to this point is based
on a deterministic, or crisp, selection logic.  At each step
of the way, a deterministic selection procedure ranks each
site and chooses the best.  However, in many cases a very
good site may be consistently passed over in favor of a site
that was only slightly better. The use of a fuzzy selection
procedure allows us to consider several very good or good
solutions, for which ranking differences may not be
significant. The justification for such a fuzzy selection
procedure is based on a number of issues.  First, there is
the possibility of errors in the data.  In spite of the
adjustment procedure we carried out on the wind-speed
data, it is possible that the single anemometer reading for

each site is slightly above or below actual average for the
site.  Any measurement errors are further magnified by the
wind turbine power curve, which is a cubic function of
wind speed.  Other data errors may occur.  Over time, load
forecasts may not correctly predict annual or daily changes
in load shape.  Both marginal cost and system reliability
measures are functions of the hourly load, so modeling that
is based on load data is subject to some small errors.
Second, although we would not expect large variations in
relative wind site performance from year to year, there
could be enough small variation, perhaps caused by
changes in the annual average latitude of the jet stream,
that could cause a different ranking of sites that are closely
competitive.  Third, smoothing effects from multiple
locations may provide benefits that are not easily captured
by the model.  There is local smoothing that occurs within
a cluster of wind turbines that we are unable to capture in
our modeling [4]. Fourth, because of the important role
that wind forecasting plays in optimizing unit commitment
from conventional units, forecast errors will tend to be
smaller across larger geographic areas.  Therefore,
choosing a combination of sites that provide a slightly
lower measured benefit may make it easier for accurate
wind forecasting [7]. Fifth, modeling a complex process
such as power generation must, by necessity, simplify
reality.  Even chronological or shorter-tem unit-
commitment models cannot fully capture this complexity.
This introduces the possibility of modeling errors that are
distinct from data measurement errors.  And finally, given
the large number of combinations of 50-MW clusters
among 12 sites, it may not be possible to find a global
optimum.  Many other complex factors can influence the
siting of a large cluster of wind turbines, such as land-use
constraints, transmission constraints, and local voltage and
volt ampere reactive (VAR) support.  Rather than finding a
single solution from our optimization process, we are more
interested in finding a set of solutions that offer significant
economic or reliability benefits to the system.  Given this
discussion, we alter our selection logic as

   )1()1( ≤≤ Ηϑ pip bbb    (3)

where bp is the economic benefit of the best site, ≤ is the
fuzzy parameter expressed as a decimal, and bi represents
the benefit of plant i, 1  i  12, 1  p  12and p  i.  This
modified selection procedure means that we will select all
sites for which the optimization target falls in the range
specified by the fuzzy parameter, ≤.

We also investigated the optimal combination of sites
based on a reliability target.  The formulation of this
companion optimization problem is similar to the benefit-
maximization problem described above. We can describe
the reliability level as a function of installed MW at each
site:
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)( Xe χΖ    (4)

where e = a reliability benefit index, as measured by the
increase of ENS over the no-wind case, and X is a vector
populated with the rated wind plant capacity at each of the
12 locations. The function χ maps the installed capacity of
wind at the various sites to reliability benefit.  Written in
terms of partial derivatives, we have the optimization
condition that must be satisfied

jjiii xxxx ⌡χ⌡Ζ⌡χ⌡ /)(/)(    (5)

where xi is one of the rows of X, i and j index the wind site
locations, and ? i, j such that 1  i  12 and 1  j  12 and
i   j. The fuzzy selection criterion is

)1()1( •• Ηϑ pip eee    (6)

where ep is the reliability of the most recently added
cluster at the best site, • is the fuzzy parameter expressed
as a decimal, and ei represents the reliability of the most
recently added cluster of plant i, 1  i  12, 1  p  12 and
p  i.  This modified selection procedure means that we
will select all sites for which the optimization target falls
in the range specified by the fuzzy parameter, •.  The
dynamic search process based on Equations (4)-(6) follows
the same stepwise algorithm as the economic-benefit
maximization problem, adjusted for the reliability target.

VI. RESULTS

The results from the fuzzy economic benefit-maximization
appear in Fig. 4 and Fig. 5.  The first of these figures
shows the range of installed capacity at each of the six
selected sites.  The remaining six sites were not chosen by
the optimization process.  Fig. 4 shows that there is

substantial variation in the ranges of cluster sizes that can
be chosen at each site.  The middle tick-mark in the graph

is the mean value of the number of clusters chosen by the
optimization process for the respective site. The wide
range of capacity chosen for Estherville illustrates that
even though Estherville is often chosen as the best site, it
faces close competition from other sites.  This can be
confirmed by the graph in Fig. 5.  This graph shows the 12
solutions from the dynamic fuzzy process. (The numbers at

the top of the graph are described below.)  Each of the bars
shows the capacity mix chosen.  The bar on the far left
represents the narrowest fuzzy band ≤ = 0.01, with
progressively wider bands as we move to the right (up to
≤ = 0.026 in increments of 0.01). In some cases we found
that duplicate solutions were found by different values of
≤.  These duplicate solutions were dropped, resulting in the
12 solutions in Fig. 5. The capacity level selected for
Estherville is initially high (16 clusters), dropping to 9
clusters in the rightmost bar.  We can trace the closest
competitors of Estherville in each widening of the fuzzy
band.  As we can see from the transition from bar 1 to bar
2, Alta is the closest competitor to Estherville.  Capacity at
Alta is further expanded in solution 3, which also shows
competition from Forest City and Sibley.  The complexity
of the non-convex solution set and the interdependence of
wind site contributions to economic benefit can be seen by
the somewhat irregular appearances by Forest City.  This
site is chosen in solution 3 and solutions 5-8. The sites that
were selected for significant development all have an
average annual wind speed of at least 7.2 m/s, resulting in
estimated capacity factors of at least 35%.  Forest City has
an estimated annual capacity factor of approximately 32%;
the sites that were not selected all have capacity factors
significantly less than 35%.

We ran a similar set of optimizations based on reliability.
Fig. 6 and Fig. 7 contain the results of those simulations.
Fig. 6 shows the variation in cluster sizes and locations for
fuzzy parameters 0.02  •  0.45. The range of cluster
choices for the reliability optimization is significantly
wider than the range we found for the economic-benefit
optimizations.  Forest City, the marginal site from the
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economic-benefit simulations, was not chosen by the
reliability search.  Conversely, Inwood, Red Oak, and
Sutherland were selected in the reliability optimization,
although the latter 2 sites were selected only at a very low
capacity.  In several cases, the fuzzy search algorithm
found the same solution for different values of •.  After
eliminating these duplicate solutions, we are left with 10
simulations from this process.  Each of the bars in the
graph of Fig. 7 shows the number of clusters that were
selected for each site.  Consistent with Fig. 6, Fig. 7 shows
substantial variation in sites chosen for the reliability
target.

A decision maker faced with the choices presented in this
paper has considerable flexibility from the combinations of
sites and capacity levels we have presented so far.  We
have a set of over 20 very good ways in which to distribute
wind capacity, chosen from over 5 x 109 combinations of
50-MW clusters that satisfy the build-out of 1,600 MW.
Solutions based on highest economic benefit would likely
be the best choices, but reliability may also be a
consideration.  Compromises between the most economic
and most reliable sites can be calculated by weighting
solutions in a way that captures preferences and trade-offs
between these two optimization targets.

As an example of how these choices can be analyzed, we
used a pattern-matching technique to find similarities
between economic-benefit solutions and reliability
solutions [8].  The pattern-matching algorithm we used is
the nearest-neighbor technique, which calculates the
geometric distance in n-space between two points.  The
distance function can be defined as

2
12

1
,,, )(

Ζ

ϑΖ

k
kjkiji ccd    (7)

where i indexes the economic-benefit solution and j
indexes the reliability solutions, and each ci,k is the
capacity at the site indexed by k.  We calculated this

distance metric for all possible pairs of solutions.
Although the distance measure allows us to rank the
“closeness” of solution pairs, it is an ordinal value only, so
absolute differences between distance measures cannot be
clearly interpreted.  After performing this pattern-matching
exercise, we can find the economic-benefit capacity mix
that most closely matches a reliability capacity mix.

Applying this algorithm to the solution sets, we found that
one of the reliability cases was the solution that matched
all of the economic-benefit cases.  This reliability case is
identified as solution 7 in Fig. 7 below.  So that we can
compare the economic solutions with the reliability
solution, we return to Fig. 5.  The numbers at the top of the
bars in Fig. 5 represent the nearest-neighbor distance of
each of the economic benefit cases to reliability case 7.
The closest economic solution is shown in bar 12, which
represents the case with the widest fuzzy band.

VII. SENSITIVITY TO SMALL CHANGES IN WIND
CAPACITY AND LOCATIONS

Our solution set is not exclusivethere may be other
solutions that are close to those selected by our search
process.  To investigate how economic benefits vary with
small changes in cluster sizes and locations, we applied a
linear stepwise probe.  This probe begins with a selection
of clusters from the dynamic search process.  It then adds a
single cluster, one at a time, to each of the 12 sites.  So that
our maximum 1,600 MW of wind capacity is not violated,
the probe decrements the number of clusters at each of the
remaining 11 sites, one at a time.  Clearly, sites that were
not selected by the dynamic search cannot be decremented;
however the probe investigates the impact of adding a
cluster at each of these sites, trading off a cluster at each of
the other locations, as appropriate.

This initial probe gives us another set of solutions.  Given
the non-convex solution set, we applied the probe again,
this time using the solution set from the first probe as the
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input to the second probe.  Applying this two-stage probe
to the economic-benefit solutions from our dynamic search
process gives us approximately 3,000 alternative solutions,
all of which are within �2 clusters/site of the original
solution.  The question we are interested in answering with
this process is how sensitive are the initial solutions to
small variations in cluster selections at the 12 sites?  Our
results indicate that there are 2,080 possible combinations
of clusters that provide economic benefits within 1% of the
best cluster combination.

The existence of these alternative solutions with similar
economic benefits confirms that our use of fuzzy selection
criteria is appropriate.  Furthermore, these multiple
solutions provide significant latitude to take other
constraints into account that our modeling process does not
recognize.  Some of these constraints include transmission
constraints, land-use constraints, or other operational
issues such as local voltage or VAR support.  Several wind
sites were not selected by our dynamic search process.  By
running a 2-stage probe or other sensitivity analysis, we
can investigate the merit of building a small amount of
capacity at one of the less-than-optimal sites, given that we
make small changes in the capacity recommendations at
the remaining 11 sites.  We think this provides decision
makers with extraordinary latitude in selecting the
locations and sizing of geographically dispersed wind
power plants.

VIII. CONCLUSIONS

Because there are so many ways of distributing 1,600 MW
of wind capacity at 12 sites, planning a large system of
geographically dispersed wind energy systems is a
complicated exercise. At each site, additional development
may come at the expense of lower energy yields from the
site because the best locations tend to be built up first.
There is also the question of interannual variability, and
how that might affect the potential mix among sites.  The
potential for data and modeling inaccuracies implies that a
nondeterministic procedure, such as our fuzzy search
algorithm, should be used.

According to our analysis, it is advantageous to distribute
wind capacity in Iowa at several sites. We have shown that
there are abundant sites on exposed cropland with wind
speeds in excess of 7.2 m/s, access to transmission lines,
low population density, and with low environmental
impact that are viable for wind energy development. We
further conclude that the geographic distribution provides
the greatest economic benefit when it is kept within the 7.2
m/s and above wind regions, rather than simply the widest
geographic distribution occupied by lower-wind areas. We
ran well over 10,000 different simulations in an attempt to
find plausible ways in which to distribute wind capacity at
multiple sites. Based on initial simulation results, we

modified the site average wind speed based on site-specific
data to account for the expected changes in energy yield
that are caused by extensive development. We can’t
guarantee that our modeling process has identified the
global optimum solution for this highly non-convex
problem.  However, we have identified a large number of
possible solutions that offer similar economic benefits. Our
approach provides several options that can be further
explored and refined in the context of other goals or
constraints that are related either to the electrical system or
to other social or institutional issues.  We have also
provided a way to help match solutions from multiple
optimization targets.

The wind sites and capacity levels chosen by our analysis
should be consistent with actual development in Iowa.
Because wind energy sites are most likely to be chosen
based on economics and transmission access, limited
transmission capacity in any one area naturally leads
developers to locate new areas for wind development. But
the first choice will always be the highest-benefit wind site
that does not infringe upon higher population densities, or
environmentally sensitive areas such as wetlands. These
two natural constraints will likely lead wind energy
developers to choose a similar mix of wind resource sites,
such as those indicated in this study. And, as our study
concludes, this will lead to a combination of wind sites that
maximizes some mix of the economic and reliability
contributions of the wind power plants.

IX. ACKNOWLEDGMENTS

This report was made possible by the high-quality wind
data provided through the Iowa Energy Center’s support of
Iowa’s wind resource assessment program, and utility data
provided by Thomas Wind.

X. REFERENCES

[1] E. Kahn, “The Reliability of Distributed Wind Generators,”
Electric Power Systems Research.  Vol 2.  1979.  Elsevier
Sequoia.  Lausanne.

[2] M.J. Grubb, “The Integration of Renewable Electricity
Sources,” Energy Policy, September, 1991, pp. 670-688.

[3] M. Milligan and R. Artig, “Optimal Site Selection and
Sizing of Distributed Utility-Scale Wind Power Plants,”
Proceedings of the 1998 International Conference of the
International Association for Energy Economics, pp. 313-
322.

[4] B. Ernst, Y. Wan, and B. Kirby, “Short-Term Power
Fluctuation of Wind Turbines: Looking at Data From the
German 250 MW Measurement Program From the Ancillary
Services Viewpoint,” Proceedings of the WindPower ’99
conference.  To appear.



8

[5] H. Varian, Microeconomic Analysis,  New York: Norton,
1978, pp. 27-34.

[6] C. McConnell and S. Brue, Economics, 14th ed., Boston:
Irwin/McGraw Hill, 1999, page 429.

[7] M. Milligan, A. Miller, and F. Chapman, “Estimating the
Economic Value of Wind Forecasting to Utilities,”
Proceedings of WindPower ’95 conference.  NREL/TP-
441-7803.

[8] K. Fukunaga, Introduction to Statistical Pattern
Recognition., 2nd ed.  New York: Academic Press, 1990.

XI. BIOGRAPHIES

Michael Milligan is a consultant to the National Wind Technology Center
at the National Renewable Energy Laboratory. His research focuses on
utility modeling and analysis of large-scale wind power plants. He
received a B.A. in mathematics and philosophy from Albion College, and
an M.A. and Ph.D. in economics from the University of Colorado.  He
was formerly associated with Tri-State Generation and Transmission
Association, Inc., where he performed resource analysis, rate studies, and
load forecasting.  He is a member of IEEE, the International Association
for Energy Economics, and the American Economics Association.

Tom Factor has been the director of the Iowa Wind Energy Institute since
1993. Under grant to the Iowa Energy Center, he has created Iowa’s state
wind resource assessment and wind power estimations for 2,400 cities in
Iowa. He is a consultant to numerous utilities and wind energy
developers, and is an academic member of the American Wind Energy
Association. Born in 1949, Tom is a graduate of the California Institute of
the Arts.  He was previously the president of Global Video Productions,
and is currently the director of the Division of Energy and Environment
of the Institute of Science, Technology and Public Policy. Tom Factor
lives in Fairfield, Iowa, with his wife, Roxanne.



REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Conference paper

4. TITLE AND SUBTITLE
Application of a Dynamic Fuzzy Search Algorithm to Determine Optimal Wind Plant
Sizes and Locations in Iowa

6. AUTHOR(S)

Michael R. Milligan, Tom Factor

5. FUNDING NUMBERS

WER13210

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NREL/CP-500-27713

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This paper illustrates a method for choosing the optimal mix of wind capacity at several geographically dispersed locations.  The method is based on a
dynamic fuzzy search algorithm that can be applied to different optimization targets.  We illustrate the method using two objective functions for the
optimization: maximum economic benefit and maximum reliability.  We also illustrate the sensitivity of the fuzzy economic benefit solutions to small
perturbations of the capacity selections at each wind site.  We find that small changes in site capacity and/or location have small effects on the economic
benefit provided by wind power plants.  We use electric load and generator data from Iowa, along with high-quality wind-speed data collected by the
Iowa Wind Energy Institute.

15. NUMBER OF PAGES
14. SUBJECT TERMS

wind energy; electric power; capacity 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

UL

  NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102


