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Mounting Evidence
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Latest IPCC Report

« “Warming of the climate is unequivocal.”

« “.very likely due to
anthropogenic greenhouse
gas concentrations.”




Scope of Global Challenge
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What is the Scientific Evidence?

» Paleoclimatic data (ice cores and other evidence)

* Agreement between much improved climate models
from around the world

« Today’s field measurements




Global Temperature Land-Ocean Index
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Ice Core Data
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Global and Continental Temperature

Change
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Climate Model Capability
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IPCC Scenarios vs. Actual

Emissions
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Consequences of Global Warming

« Sea level rise, storm surge, flooding of coastlines
« Early runoff, summer droughts/famine, wildfires

* More frequent weather extremes, €e.g., heat waves
and heavy precipitation events

* Increased hurricane intensity
« Loss of mountain glaciers and drinking water

« Spread of tropical diseases, increased plant and crop
disease

« Extinction of plants, corals, and other animal species
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Arctic Meltdown

__ _24 Years Later
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Arctic September Sea Ice —
Observations and Model Runs
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Sea Level Indicators

West Antarctica:

5 to 6 m sea level rise

Greenland:

6 to 7 meter
sea level rise

East Antarctica :
55 to 60 m sea level rise

Courtesy of Robert Bindschadler, NASA
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Greenland Takes Out FL, NJ, NYC



http://www.solar2006.org/presentations/plenaries/p02-hansen.pdf

What If We Stop Increasing Our
Greenhouse Emissions Today?

Additional temperature rise “in the pipeline”
accounting for....

“Fast” feedbacks (water vapor, sea ice, desert dust):

+ 0.5°C

“Slow” feedbacks (ice sheet loss, vegetation migration,
gas release from melting permafrost):

+ 2°C



What We Have to Do

To limit sea level rise to 1 m and species loss
to 20% this century

 Limit additional warming to 1°C beyond 2000

« Reduce U.S. CO, emissions 60%—80% (?) by 2050

Total savings needed by 2030: ~1,200 MtC/yr



Key Options

Energy Efficiency

Renewable Energy

Coal with carbon capture and storage
Nuclear power




Socolow’s Wedges — Carbon Reduction
Strategies

Industrial energy efficiency
“Upstream” investment
Other renewables
Methane mitigation

Population
Capture of CO2 from air (?)

POWER GENERATIO

Source; Socolow and Pacala, Scientific American, September 2006, p.54




Energy Efficiency Offers Low or No-
Cost Carbon Reduction Options

Global cost curve for greenhouse gas abatement measures beyond ‘business as usual’; greenhouse gases measured in GtCO.e!

@ Approximate abatement required
beyond ‘business as usual,” 2030

Biodiesel
Carbon capture and storage (CCS); new coal Waste | Industrial CCS
A . - . Coal-to-gas shift
Building Efficiency (in red) _ s T e

represent largest No-Cost option e - - Higher-cost

100 Wind: low penetration motor systems abatement

Industrial feedstock substitution
) Avoided
CCS, enhanced oil recovery, new coal BTt 11
50 Low-cost forestation | e ememmpmt
Livestock " Further potential®
Muclear

| Industrial non-CO;

Standby losses ' \ .
Sugarcane biofuel 550 ppm 450 ppm 400 ppm

| Fuel efficiency in vehicles ~25 ~40 ~50
| Water heating Marginal cost,5 € per tC0.e?

Cost of ahatement, € per t00,8

—100 Air-conditioning
| Lighting systems Component by component analysis (e.g., “insulation”)
Fuel efficiency in commercial vehicles understates value of “whole-building” systems approach

—150

I
Building insulation

Ahatement heyond "business as usual,” GtCO.e' per year in 2020

IGtCO, e = gigaton of carbon dioxide equivalent; “business as usual™ based on emissions growth driven mainly by increasing
demand for energy and transport arcund the world and by tropical deforestation.
20O, e = ton of carbon dioxide equivalent.
IMeasures costing more than €40 a ton were not the focus of this study. . .
4 Armospheric concentration of all greenhouse gases recalculated into CO, equivalents; ppm = parts pePWiggIMCcKinsey Global Institute, 2007
Sharginal cost of avoiding emissions of 1 ron of CO, equivalents in each abarement demand scenario.
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Energy Efficiency

« Buildings (40%) — envelope design, daylighting, better lights,
building and appliance efficiency standards

» Transportation (30%) — lighter weight vehicles, public
transportation, better propulsion, PHEVs

* Industry (30%) — heat recovery, better motors, CHP




Renewable Energy
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Technology Options Are Evolving
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential U.S. Carbon Reductions
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Setting the Bar Higher — Gigawatt-Scale
Renewables

Solar Vision Wind Vision Energy Independence &

10% U.S. electricity 20% U.S. electricity ~Security Act 2007
by 2025 by 2030 36 billion gallons of renewable
fuels by 2022

Requires investment in new infrastructure:
« Overall in U.S. = 32 trillion
« Worldwide = $22 ftrillion

» Biofuels
« Wind :||> $2 trillion (est.)
« Solar

National Renewable Energy Laboratory Innovation for Our Energy Future



Getting to “Speed and Scale” —
Key Challenges

Implementing Renewable Gigawatts at Scale

» Cost of renewable electricity

* Performance and reliability

* Infrastructure robustness and capacity
» Dispatchability of renewables

VAM=2323>0

» Cellulosic ethanol cost

« Life cycle sustainability of biofuels

* Fuels infrastructure, including Codes/Standards
 Demand and utilization, including intermediate blends

VAM=323>0

NREL 139-1

Reducmg Energy Demand of Buildings, Vehicles, and Industry

» Coordinated implementation of model building codes
* Market does not value efficiency

» Cost of energy efficient technologies

» Performance and reliability of new technologies

VCAmMm=223>0

NREL 196-1

National Renewable Energy Laboratory

Innovation for Our Energy Future



Making Transformational Change
Requires an integrated approach

<t CHNOLOG/re

FILL technology
pipeline

MOBILIZING @
CAPITAL __

INFORM decision
makers about choices

ENSURE appropriate
market price signals
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