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Global Warming:

A Personal Perspective
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March 31, 2006 Headline:
Caribbean coral suffers record die-off

World's coral reef loss 'an underwater holocaust'
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Impact of CO, on Coral
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Proof of Human-Induced
Climate Change

e Paleoclimatic data (ice cores and other
evidence)

 Agreement between rapidly improved
climate models from around the world

e Measurement evidence
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Improved Model Resolution
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Timeline of Climate Model Development
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Anthropogenic

Natural

Radiative Forcing Components
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2005 Warmest Year on Record

{a) Global-Mean Surface Temperature Anomaly (*C) 2001-2005 Mean Surface Temperature Anomaly ("C)
Base Period = 1951-1980 Global Mean = 0.53
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Source: J. Hansen, Goddard

Warming of 0.2°C/decade over last 30 years




Global and Continental Temperature Change

Temperature anomaly (°C)
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Muir Glacier, SE Alaska

August 1941 (photo by William Field




Glacier National Park, Grinnel Glacier
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Source: BioScience, Vol. 53 No. 2, Feb 2003




Perennial Sea Ice Cover

S . 2005
« Significant reduction In

perennial sea ice cover
over the last 25 years
(10% per decade)

Submarine data
Indicate 40% thinner
ice than In the several
decades before the
mid-1990s

Yellow Line is the 1979-2004 average

Source: GSFC Scientific Visualization Studio and J. Comiso




Arctic Sea Ice Decline Intensifies
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Consequences of Global
Warming

Sea level rise, storm surge, flooding of
coastlines

Early runoff, summer droughts/famine, wildfires
More frequent weather extremes, e.g., heat

waves and heavy precipitation events
Increased hurricane intensity
Loss of mountain glaciers and drinking water

Spread of tropical diseases, increased plant and
crop disease

Extinction of plants, corals, and other animal
species




Latest IPCC Report

“Warming of the climate Iis unequivocal.”

“Most of the observed increase...since the
mid-20™ century is very likely due to the
observed increase in anthropogenic
greenhouse gas concentrations.”

“Warmth of the last half-century Iis unusual
In at least the previous 1300 years.”




Latest IPCC Report
Temperature and Sea Level
Projections

e Best estimate for temperature increase
this century is 1.8°C to 4.0°C

 Range of sea level rise this century is
0.18 mto 0.59 m




Fig. 4. Past sea level and sea-level projections from 1990 to 2100 based on global mean temperature
projections of the IPCC TAR
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What the Latest IPCC Study
Does NOT Include:
“Dynamical Processes Related

to Ice Flow”
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Glacial Earthquakes on Greenland

Earthquake Locations Annual Mumber of Quakes®
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Year
* 2005 bars capture only first 10 months of 2005

Location and frequency of glacial earthquakes on Greenland.

Seismic magnitudes are in range 4.6 to 35.1.
Source: Ekstrom, Mettles and Tsai, Science, 311, 1756, 2006.
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Rapid Retreat
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kilometers

Jacobshavns Isbrae

Iceberg-choked fjord created by rapid retreat
Courtesy of Robert Bindschadler



lce Shelf Buttressing
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Formerly buttressed glaciers accelerate




Warm Water Access:

Cold, fresh

Glacier = /\ : Warm

Moraine . &
Rapid melting
-

I
Grounding line

Melting basal ice: =»reduces basal friction

=>reduces buttressing
Courtesy of Robert Bindschadler @ffect of ﬂoating Ice shelf




Sea level is currently rising 2-3 mm a year.

Antarctica Greenland

6 to 7 meter
sea level rise

West Antarcfi'c'a |

& East Antarctica
5 to 6 meter et 55 to 60 meter
sea level rise sea level rise

Courtesy of Robert Bindschadler




James Hansen: “The last time a large ice sheet melted,
sea level went up at a rate of five meters per century.
That's one meter every 20 years.”

Hansen believes a sea level rise of several meters
by 2100 is likely under business-as-usual.




Global Warming Summary

t's bad

t's caused primarily
oy burning fossil fuels

t's getting worse—fast

t's cheaper to address it
than to pay for consequences

v We’'re running out of time
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What We Have to Do

To limit sea level rise to 1 m and
species loss to 20% this century:

Limit additional warming to 1°C relative to 2000
(~0.5°C Is already built in)

Stabilize atmospheric CO, at 450-500 ppm

Reduce U.S. carbon emissions 60%—80% by mid-
century

Note: With 60% reduction, our per capita emissions go
from 5.5x world average to 2x world average.




U.S. Carbon Reduction Triangles
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*“Houston, we have a
problem.”




Key Options

Energy Efficiency

Renewable Energy

|GCC with carbon capture and storage
Nuclear power




How Much Can Energy Efficiency and
Renewables Provide in the U.S.?

An Aggressive
Climate-Driven Scenario
for 2030




Approach

Series of nine papers by volunteer experts

Bottom-up engineer’s approach (with systems
analysis support)

Non-funded; built upon existing studies
Presented at SOLAR 2006

Reviewed and revised




Areas Studied

Energy Efficiency (Buildings, Transportation,
Industry)

Concentrating Solar Power (CSP)
Photovoltaics (PV)

Wind Power
Biomass
Biofuels
Geothermal

Not covered: active solar space and process heat, offshore wind,
ocean power, electric storage for wind or PV




Summary of Carbon Savings




Energy Efficiency

Buildings (40%) — envelope design, daylighting, better
lights, building and appliance efficiency standards

Transportation (30%) - lighter weight vehicles, public
transportation, better propulsion

Industry (30%) — heat recovery, better motors, CHP




Energy Efficiency Savings

» Electricity: 20% savings off 2030 projection
165 - 270 MtClyr, 0 — 4 ¢/KWh

e Oil and gas:
470 MtClyr, $0 - $5/MBtu

Total: 635 - 740 MtC/yr

Electricity-to-carbon conversions
National average: 160 tons C/GWh
Coal: 260 tons C/GWh







Southwest CSP Resource

Pacific Ocean

Direct Normal Solar Radiation
KWh/m?/day
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Southwest Solar Resources (With all Filters)
Result: 7,000 GW (7X U.S. capacity)!
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CSP Savings

Dispatchable power with 6 hr of storage, 43% capacity
factor, 5 acres per MW

Optimal sites near transmission: 200 GW
With 30% ITC and CO, valued at $35/ton: 80 GW

50 - 80 MtC/yr, 6 to 16 ¢/kWh
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Deployment of 80 GW of CSP
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PV Solar Radiation Annual
(Flat Plate, Facing South, Latitude Tilt) |isinacsoni sme s e

asrosol optical depth, precipitable wiater wapor, albedo atmospheric

L pressure and ozone resampled to a 40km resolution. See
http: M nrel . gowdgisdil_solar_py html documentation for maore details.
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PV Savings

* Based on lower estimate of practical roof area—6 billion m?

* Limiting to 10% grid penetration yields 275 GW,

« Manufacturability limit: 200 GW,, 17% capacity factor,
50 - 80 MtClyr, 6 to 28 ¢/kWh (retail)
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U.S. Wind Resource
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Wind Savings

 Market simulation model,
PTC w/ gradual phase-out

e Limiting to 20% grid energy
yields 245 GW, 40% capacity
factor

e 140 — 225 MtC/yr, 3 to 7 ¢/kWh







Biomass Resources Available in the United States
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September 2005




Biofuels & Biomass Savings

« Biofuels
- ethanol from crop residues & energy crops
- saves 28 billion gallons of gas in 2030 or 20% of
today’s consumption
- 58 MtCl/yr, $0.90 to $3.75/gal gas. equiv.

e Biomass

- Remaining USDA billion ton estimate
- electricity production: 45 GW,
90% capacity factor




Geothermal




Temperatures at 6 km Depth

200°C

150°C

100°C




Geothermal Savings

Assumes binary-cycle plants, continued DOE R&D

25% existing resources, 25% expanded,
50% from oil & gas wells

National Energy Modeling System: 50 GW,
90% capacity factor

65 — 100 MtClyr, 5to 10 ¢/kWh




Putting It All Together

Renewable Energy ¥ Key to Climate Rec

So\ar2006




Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Potential Reduction in U.S. Carbon Emissions
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Biofuels - 58
Biomass - 75
CSP-63
PV -63
Wind - 181
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Geothermal - 83
Biofuels - 58
Biomass - 75
CSP -63
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U.S. Carbon Emissions Displacement Potential from
Energy Efficiency and Renewable Energy by 2030

2,500 -

h+]
(=]
(=1
(=1

1,500 -

1,000 -

Path for 60% reduction

Path for 80% reduction mEE

@ Wind
500 - @ Bicfuels
@ Biomass

U.S. Carbon Emissions (MtC/yr)

aPrPv
mCSP
8 Geothermal

o & & U I IR S R R T W S S S S W - G
FFLFTES S S S S S S F P
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Renewable Contributions to Carbon Reduction

Geothermal
16%

Wind
35%

Biomass 14%

11%
Biofuels

12% PV
CSP



U.S. Renewable Electricity
Generation in 2030

Percent of Grid
Technoloqy Energy in 2030
Concentrating Solar Power* 7

Photovoltaics 7
Wind 20
Biomass* 8
Geothermal* 9

Total 51

*Can provide baseload or near-baseload power




Conclusions

Energy efficiency can negate U.S. emissions growth
Renewables can provide deep cuts in emissions

The U.S. Is blessed with abundant renewable resources
spread throughout the country

Wind can provide ~1/3 of renewable energy; remaining
split about evenly among other resources

EE and RE can begin today to tackle global warming

Continued R&D and policy support will help these
technologies achieve their large future potential




*Houston, we have a solution!”
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“energy roadmap”



