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Coal and the Electricity Price

Per cent Electricity from Coal
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Air Emission Trends From Cod
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Historical data (1970-2000): Coal consumption and electricity generation per DOE EIA, AER 2003
NO, and SO, per EPA Air Trends Report: http://www.epa.goviair/airtrendalecon-emissions htmi
Projected data (2003-2020): Coal consumption and electricity generation per DOE EIA, AEO 2005
NO, and SO, per EPA projections under CAIR: http: //w.epa.goviinter stateairquality/chartshtmi
Mercury per EPA Clean Air Mercury Rule
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Coal from the Climate Change
Perspective

Coal is the cheapest and dirtiest source of energy around. If we
cannot get a handle on the coal problem, nothing else matters.

PPOWER SOURCE: Coal
plant in Jilin, China
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MIT Coal Study
Overview

» Follow-on to The Future of Nuclear Power
= On web at mit.edu/nucl earpower
» Full report released March 14
= On web at mit.edu/coal
» Authors
John Deutch, Ernie Moniz (Pls)
Jim Katzer (Executive Director)
Stephen Ansolabehere, Janos Beer, Denny Ellerman, Julio
Friedmann, Howard Herzog, Jake Jacoby, Paul Joskow, Lester
Richard, Greg McRae, Edward Steinfeld
Key question:

What actionsregarding technology do we take now to impact
GHG emissions on a Gigaton scalein 2050?
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Global Primary Energy Consumption under High CO, Prices
Limited Nuclear Generation Case
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MIT Coal Study

» We conclude that CO, capture and
sequestration (CCYS) is the critical enabling
technology that would reduce CO,
emissions significantly while also allowing

coal to meet the world’ s pressing energy
needs.
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Have you heard of or read about any of the following in the past year?
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Intergovernmental Panel on Climate Change (IPCC)
Specia Report on Carbon Dioxide Capture and Storage

CARBON DIOXIDE
CAPTURE
AND STORAGE

Accepted September 26, 2005 -- www.ipce.ch
Simple guide -- www.unep.org/dec/docs/CCS_guide.pdf
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Approaches to CO, Capture from
Coal-Fired Power Plants

» Post-combustion
* Pre-combustion
o Oxyfuel Combustion
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Schematic of Amine Process for
CO, Capture
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Parasitic Energy Regquirements for
PC Plant with Amine Capture

Efficiency Loss: Supercritical Capture
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Change Power Generation Process to
Facilitate CO, Capture

Chemical Physical

Two approaches:
(1) Improved capture processes
(2) Modify power plant to facilitate capture
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| GCC Power Plant
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|GCC with Capture
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Parasitic Energy Regquirements for
| GCC with Capture

Efficiency Loss: IGCC Capture
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Oxyfuel Combustion Power Plant
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Parasitic Energy Regquirements for
Oxyfuel Capture

Efficiency Loss: Supercritical Oxyfired
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Capture and Compression Costs

 Output — high purity supercritical CO,
» The numbers that follow are representative
and are used to simply compare approaches

» Thereis much variability in the cost
= Process Variability — plant location, coa type,
criteriaemission levels, process integration, etc.
= Economic Variahility — fuel costs, cost of
capital, material and labor costs, capacity
factor, etc.
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Capture and Compression
Capital Costs

Power | Capture | Capital | Power kW
Plant | Technology |Investment| Output
Post-
SCPC _ +23% -24% +62%
Combustion
Oxyfuel-
SCPC i : +14% -20% +42%
Combustion
Pre-
|GCC : +7% -19% +32%
Combustion
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Relative Cost of Electricity
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Relative Costs

Relative Cost of Electricity
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MIT Coal Study
Finding #6

* |tispremature to select one coal conversion
technology as the preferred route for cost-
effective electricity generation combined
with CCS.

= Variability in location, coal type, etc.
= Uncertainty in technological progress
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Geologic Carbon Sequestration
Uncertainties

» Subsurface issues:
I's there enough capacity to store CO, where needed?
Do we understand storage mechanisms well enough?
Could we establish a process to certify injection sites with our
current level of understanding?
Once injected, can we monitor and verify the movement of
subsurface CO,?

* Near surface issues:
How might the siting of new coal plants be influenced by the
distribution of storage sites?
What is the probability of CO, escaping from injection sites? What
are the attendant risks? Can we detect leakage if it occurs?
Will surface |eakage negate or reduce the benefits of CCS?
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US Storage Capacity is Potentially
Large

Formation Type DOE
P Regional Partner ships

Oil & Gas Reservoirs ~25 GtC

Unmineable Coa Seams ~50 GtC

Deep Brine Formations 250-1000 GtC

Total Global carbon emissions = ~7 GtClyear
Total US power plant carbon emissions = >~.6 GtC/year
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Matching Coal Plantsto Potential
Geologic Storage Sites

US Coal-Fired Power Plants (2000)

By Capacity (MW)

* 0-250 Ol & Gas Fakds
® 251- 1000 Saline Aquilars

@ 1001 - 4000 B Conmods Tatal Coal-Fired Capacity = 330 GW
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Trapping Mechanisms and Increasing

Storage Security with Time

Stru;tura\&
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Courtesy Sally Benson, LBNL
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We Transport and Inject CO, Today

» Acid Gas Injection

» Enhanced Oil Recovery (EOR)
» Natural Gas Storage

* CO, Transport

Howard Herzog / MIT Laboratory for Energy and the Environment

National CO, Network

OO Proposed Pipelines

2 Fields
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CO, Injection Projects in Operation
1 Mt/yr Scale

Sleipner Statoil North Sea Gas Deep Brine

(1996) Norway Processing | Formation

Weyburn |  Pan | Saskatchewan| Codl —

(2000) Canadian Canada Gasification

In Salah : Gas Depleted Gas
Algeria , )

(2004) Processing Reservoir

In pipeline:
Snovit (Norway), Gorgon (Australia), Otway Basin (Australia)
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National Regulations

» Underground Injection Control Program
= Created under Safe Drinking Water Act
= Creates five injection well classes

= Generally regulated by states (as authorized by
EPA)

= Not clear how carbon dioxide injection will be
Interpreted

Howard Herzog / MIT Laboratory for Energy and the Environment
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Sequestration
Institutional and Regulatory |ssues

 Industrial Organization
|mpurities with CO,
Pipeline transport — issues at scale (e.g., common carriers)
Ownership of storage reservoir

L ong-term stewardship
= Accounting for CO,
= Monitoring and verification program
= Ownership and liability
Although there are some gapsin the current regulatory system as
applied to CCS, many of the currently identifiable issues have been
successfully resolved in other contexts.
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MIT Coal Study
Finding #5

» Current evidence indicatesthat it is scientifically feasible
to store large quantities of CO, in saline aquifers

o |norder to:

= Address outstanding technical issues that need to be resolved to
confirm CCS as a major mitigation option

= Establish public confidence that large scale sequestration is
practical and safe
it is urgent to undertake a number of large scale (on the
order of 1 Mt/yr injection) experimental projectsin
reservoirs that are instrumented, monitored, and analyzed
to verify the practical reliability and implementation of
sequestration.

None of the current sequestration projects wor ldwide meets
all of these criteria
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Costs

e CCS (all components) will add $20-30 per MWh
to cost of electricity. This cost assumes:
2005%
nth plant

Today’ s technology (i.e., no technological
breakthroughs required)

Regul atory issues resol ved without imposing significant
new burdens

Operations at scale (i.e., transition costs not included)
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MIT Coal Study
Key Takeaways

» Technology readinessis critical — there are myriad
of options to pursue

Don’t preclude options by anointing technology
winners prematurely

We need to drastically increase R&D to bring CO,
capture technologies to fruition. Thereis urgency

to move ahead now if we are to reach gigaton (Gt)
scale by 2050. L arge scale demonstration projects
are key

No showstoppers, but moving from the megaton
(Mt) scaleto the Gt scale is a major challenge

Howard Herzog / MIT Laboratory for Energy and the Environment
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Contact |nformation

Howard Herzog

M assachusetts I nstitute of Technology (MIT)

L aboratory for Energy and the Environment (L FEE)
Room E40-447

Cambridge, MA 02139

Phone; 617-253-0688

E-mail: hjherzog@mit.edu

Web Site: seguestration.mit.edu
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