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Executive Summary
This report describes the aerodynamic modeling of the yaw behavior of tail fins for small wind turbines (SWTs). The 

analysis is based on unsteady slender body theory (USBT) and is intended to inform a new tail fin module for Open- 

FAST. Linearized USBT, which has been applied in the past to SWT tail fins, is developed in three main ways. First, 

it is extended to high yaw angles and aspect ratios by modeling the associated nonlinear vortex dynamics and the 

chordwise load distribution, respectively. Second, we consider the effect of time-varying wind speed. The extended 

theory is compared to recent unpublished measurements at the University of Perugia, Italy, for the yaw behavior of 

delta, elliptical, and rectangular tail fins without a rotor and nacelle. The fins were released from initial yaw angles 

of -40◦ and -80◦; the latter is of sufficient magnitude to show the importance of the nonlinear yaw dynamics. Further, 

the friction in the model tail fin bearings was measured and modeled. Some coefficients of the extended moment 

equations were determined from previous computational simulations and experiments. The report provides equations 

for many of the coefficients describing geometric features that modify a delta planform. These include sweep angle, 

taper ratio, and notch ratio as well as the aspect ratio. Significant improvement in accuracy was achieved by using 

system identification techniques to optimize some of the model constants that are the least certain. We conclude that 

extended USBT is accurate for all generic tail fin shapes that we considered and is, therefore, very suitable for inclu- 

sion in aeroelastic codes for SWTs. The final development is of a general nonlinear equation for yaw response that is 

simpler than the extended USBT and is also suitable for inclusion in OpenFAST. The two nonlinear models are used 

to highlight the geometric requirements for good tail fin design.
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1 Introduction
Small wind turbines (SWTs) with a power output less than about 20 kW often use a tail fin to align the rotor with 

the wind, whereas all large turbines have a motorized yaw drive. The “passive” system on SWTs is much cheaper 

but comes with a price: it may not be easy to limit the yaw rate about the tower, which can lead to high gyroscopic 

loads. Further, tail fins are intrinsically unable to completely track wind direction changes, which can lead to reduced 

power output. Despite the importance of a well-designed tail fin for efficient and safe SWT operation, the aeroelastic 

modeling of tail fins is not well developed. For example, the well-known aeroelastic software OpenFAST v3.4 1 has 

just been augmented by the tail fin module from FAST v7, which was released in 2002. The module uses a simple 

lookup table of tail fin lift and drag to determine the forces and moments. A major aim of this work is to provide the 

theoretical background for a new tail fin module for OpenFAST. 

There are several rules-of-thumb for tail fin design, but very little data on their behavior, (Bradney, Evans, and 

Clausen 2018). The yaw response of generic tail fin shapes in the absence of a rotor was measured in a wind tunnel 

by (Singh, Hemmati, and Wood 2012) for a single wind speed and low release angle. By characterizing the response 

in terms of the damping ratio and natural frequency, they found that a delta wing is a representative shape for tail 

fins. Since a delta wing is also the generic shape used to develop unsteady slender body theory (USBT), which is 

the basis for the analysis in this report, we will take the delta to be the baseline shape for tail fins. The other generic 

shapes we consider are ellipses and rectangles. Apart from being simple shapes, they share the importance of flow 

separation from the edges in determining the aerodynamic forces and moments. This makes it is reasonable to ignore 

Reynolds number effects in modeling them. 

A tail fin is most needed for turbine starting. When subjected to a wind gust, an initially stationary rotor may have 

its axis at a large yaw angle, γ , to the wind, (Wood 2011). One scenario for large γ is the following: If the turbine 

center of mass is not aligned with the tower axis and the tower is not exactly vertical, then the stationary turbine will 

have a preferred orientation, which can be at any γ . Tail fins also help to reduce γ during power production, which 

is important because a yaw error reduces the output power by a factor between cos2 γ and cos3 γ , (Wood 2011). Yaw 

alignment also relates to the gyroscopic bending moments on the blades and main shaft. Their magnitude depends 

on the product of blade inertia, blade angular velocity, and yaw rate relative to a fixed observer. They can be the 

major ultimate loads on an SWT, (Wood 2011), and can also contribute significantly to the fatigue loads. (Evans 

et al. 2021). 

The linearized analysis of tail fin dynamics based on USBT (Wood 2011; Singh, Hemmati, and Wood 2012; Brad- 

ney, Evans, and Clausen 2018) assumes that γ is small and the angle of attack of the tail fin, α , is the same as γ . 

Then the yaw moment of the tail fin is due entirely to the lift force acting somewhere on the tail fin chord. We extend 

USBT to high γ by including the nonlinear dependence on γ and separating the representation of α from that of γ . 

This leads to both lift and drag causing yaw moments on the tail fin. A general expression for the yaw moment when 

wind direction varies is then developed. 

The next section describes the basic USBT for low-aspect-ratio delta wings. The theory is extended to high angles 

for steady and unsteady flow in Section 2.1.1 and to high aspect ratios in Section 4. The short Section 5 gives the 

general force and moment equations for a tail fin of any planform prior to considering elliptic fins in Section 6 and 

rectangular ones in Section 7. The following section compares the models to wind tunnel experiments on tail fin 

response in the absence of a rotor and nacelle for all three planforms. Section 9 analyzes the effect of yaw bearing 

friction, which is important at low wind speed, U . All the parameters used in the USBT model to this point were 

determined from prior analytic, computational, and experimental studies. Section 10 describes the use of system 

identification techniques to show that (usually) small changes to these parameters can significantly improve the 

accuracy of the modeled response and can help to identify the most important components of the model. Section 

11 describes the extension of the model to more complex versions of the delta planform. Different planforms are 

assessed in Section 12 partly in terms of their response at very high angles where the flow direction is reversed. The 

desirable features of planforms to give good low and high angle behavior are noted. Section 13 describes a reduced 

form of the nonlinear moment equation, which is also suitable for OpenFAST. This model is assessed for the case 

where the maximum tail fin chord, c0, is comparable to the tail boom length, xp, and a reduced model is derived 

assuming c0 ≪ xp for application to a wide range of planforms using system identification. Section 14 compares the 

present yaw response model to the polar model in v3.4 of OpenFAST. The final section contains a summary of the

1https://www.nrel.gov/wind/nwtc/fast.html
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report, recommendations for including the full and reduced models in OpenFAST, and the conclusions. The appendix 

documents one of the MATLAB systems identification codes used in Section 10. This is intended to be a guide for 

the future analysis of wind tunnel tests to determine the model parameters to be used in OpenFAST.
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2 Mathematical Model
2.1 Potential Flow Modeling
We start by considering the potential flow over a delta tail fin with aspect ratio (AR) less than one. For a wing of 

any geometry, AR = b2
0/S where b0 is the span, and S the planform area. The restriction to slender, low-AR delta 

wings allows the application of USBT, which is relatively simple. An extension of the model to high-AR tail fins 

is described in Section 4. In contrast to existing tail fin analyses, we separate the angle of attack, α from the yaw 

angle, γ . The resultant force acting on the tail fin then has both lift and drag components which contribute to the yaw 

moment around the yaw axis. The analysis is limited to vertical tail fins with no camber. 

The non-inertial coordinate system is fixed to the tail fin; x is aligned with the chord of the tail fin, and the motion 

of the tail fin is in the inertial (xi,yi) plane. The vertical z-direction is parallel to the yaw axis, as shown in Figure 1. 

The wind velocity, U(t), makes an angle γw with the inertial xi direction and is a function of time. The coordinate 

system of the vertical fin rotates around the z-axis with the angle γ + γw relative to the inertial coordinates (xi,yi,z). 

Angles γ and γw are shown in Figure 1. This coordinate system simplifies the consideration of the angular velocity of 

the tail fin, Ω(t), where Ω(t) = γ̇ + γ̇w, and the dots denote time derivatives. For later use, we define a characteristic 

moment arm r, which is approximately xp, the tail boom length from the tower axis to the apex of the delta wing, 

in this case, or the start of the tail fin in general. The origin N lies on the top of the tower axis for both coordinate 

systems. The structural velocity of the tail fin at the apex is Vel . This velocity includes the contribution from the 

rotational speed and additional translational velocities caused by the tower motion. 

In addition, the energy lost to the rotor will cause an induced velocity on the tail fin, Vin, whose determination is
not considered here. The velocity polygon of these and the resultant velocity V is shown in Figure 1 along with its 

angle of attack, α . Figure 2a shows a straight-edged delta tail fin with chord c0 and span b0, and AR = 2b0/c0. The 

tail fin moment of inertia combined with that of the tail boom around the z-axis is Ia at the tail fin apex. Finally, it is 

assumed that the tail boom does not experience any aerodynamic force or moment. 

The analysis is based on USBT as described in detail in (Katz and Weihs 1979) and Section 13.9 of (Katz and 

Plotkin 2001); only a brief introduction is given here. Slenderness implies that the cross flow (in the (y,z) plane) 

is dominant and locally two-dimensional. Since a slender tail fin has c0 ≫ b0, then x ≫ y,z in general, and

∂

∂x
≪ ∂

∂y
,

∂

∂ z
(2.1) 

Ignoring the streamwise flow in the continuity equation leads to

∇
2
φ ≈ ∂ 2φ

∂y2 +
∂ 2φ

∂ z2 = 0 (2.2) 

for the velocity potential φ . Eqn. (2.2) is subject to the velocity boundary conditions for an impermeable surface 

transformed to the non-inertial coordinates as
(∇φ +V ).n = 0 (2.3) 

where n is the unit vector normal to the tail fin surface, with coordinates n = [0,−1,0] in the tail fin system (we note 

that the choice of direction along the y-axis does not change this definition). The resultant velocity, V , as shown in 

Figure 1, is given by
V =U −Vel +Vin (2.4) 

Defining the resultant velocity components, [Vx,Vy,Vz], in the tail fin coordinate system (x,y,z) as

Vx =Ux −Vx,el +Vx,in, (2.5)
Vy =Uy −Vy,el +Vy,in, and (2.6)
Vz =Uz −Vz,el +Vz,in (2.7) 

where U = [Ux,Uy,Uz] in the (x,y,z) coordinates is shown in Figure 1. Ω is the angular velocity of the tail fin with 

respect to the inertial frame of reference (xi,yi,z); Ω = [Ωx,Ωy,Ωz]. Vel = [Vx,el ,Vy,el ,Vz,el ] is the structural velocity of 

the tail fin apex, and Vin = [Vx,in,Vy,in,Vz,in] is the induced velocity from the turbine wake, both defined in the (x,y,z)
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Figure 1. Schematic plan view of tail fin motion and coordinate systems. The tail fin of exaggerated thickness is shaded.
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Figure 2. Geometry of generic tail fin planforms.

coordinates. In the absence of tower motion Vel = Ω× r,where Ω = β̇ , β = γ + γw, and r = [xp,0,0]. Substituting 

these relations in Eqn. (2.3) results in

[
∂ φ

∂x
+Vx,

∂ φ

∂y
+Vy,

∂ φ

∂ z
+Vz

]
·
[
0,−1,0

]
= 0 (2.8) 

The equation reduces to
∂ φ

∂y
=−Vy ≡W (x, t) (2.9) 

where W (x, t) is the spanwise induced downwash, which is independent of z. The pressure difference, ∆p, is deter- 

mined from (Katz and Plotkin 2001; Katz and Weihs 1979) as

∆p = 2ρ

[
∂∆φ

∂ t
+Vx

∂∆φ

∂x

]
(2.10)
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The reduced form of Eqn. (2.2) results in a lifting line problem with the circulation distribution at any x having an 

elliptic form as function of z, (Katz and Plotkin 2001):

Γ(z) =−W (x, t) b(x)

√
1−
[

2z
b(x)

]2

(2.11)

φ can be written in terms of the circulation distribution in Eqn. (2.11) as Eqn. (13.88) in (Katz and Plotkin 2001):

φ(x,±0,z, t) =±Γ(z)/2 =∓W (x, t) b(x)
2 

sinθ (2.12) 

Note that negative W leads to positive circulation on the top surface of the tail fin and the reverse on the bottom 

surface. cosθ = 2z/b(x) is the spanwise coordinate of the tail fin, where b(x) is shown in Figure 2 for two of the 

generic planforms. The contribution to the normal force, N, acting on the tail fin at any x is given by

dN
dx

=
∫ b(x)/2

−b(x)/2
∆pdz (2.13) 

and substituting Eqn. (2.12) into Eqn. (2.10), leads to

dN
dx

=−ρ

[
∂W (x, t) b(x)

∂ t
+Vx

∂W (x, t) b(x)
∂x

]∫ b(x)/2

−b(x)/2

√
1−
[

2z
b(x)

]2

dz (2.14) 

The integral in Eqn. (2.14) is easily evaluated to give

dN
dx

=−π ρ

4

[
b2(x)

∂W (x, t)
∂ t

+Vx
∂W (x, t)b2(x)

∂x

]
≈ −π ρ

4

[
b2(x)

∂W (t)
∂ t

+VxW (t)
db2(x)

dx

]
(2.15) 

where the approximate equation can be used if W does not vary significantly over the tail. This is likely to be the 

case when c0/xp ≪ 1. The appearance of b(x) shows the influence of tail fin planform. In the proposed OpenFAST 

module, the tail fin apex (x = xp) will be the reference point, so we determine Ma, the yaw moment due to N(x)
around the apex as

Ma =
∫ xp+c0

xp

dN
dx

(x− xp) dx (2.16) 

where b(x) = b0(x− xp)/c0 = (x− xp)AR/2 for x ≥ xp for a straight-edged delta wing. Using this in the full form of 

Eqn. (2.15) and substituting into Eqn. (2.16), gives the moment as

Ma =−π ρ

16
AR2

∫ xp+c0

xp

[
(x− xp)

∂W (x, t)
∂ t

+(x− xp)Vx
∂W (x, t)

∂x
+2VxW (x, t)

]
(x− xp)

2 dx (2.17) 

Performing the integrals in Eqns. (2.15) and (2.17) by assuming W is constant with x for xp ≫ c0 gives

N =−0.5ρAt f Kp

[
c0

3
∂W
∂ t

+VxW
]

(2.18) 

and

Ma =−0.5ρAt f Kp

[
c2

0
4

∂W
∂ t

+
2c0

3
VxW

]
(2.19) 

were Kp = πAR/2 is the potential flow coefficient and At f = b0c0/2 is the area of the delta tail fin. Note that the first 

term in the square brackets for force and moment is the unsteady term and would be zero for steady yaw. The second 

terms express the steady state force and moments. It follows that the center of pressure on a delta tail fin is at 2c0/3 

from xp. If only aerodynamic forces act on the tail fin, the equation of its unsteady motion around the tail fin apex is 

simply
Iaβ̈ = Ma (2.20) 

where Ia is the tail fin moment of inertia around the apex, and the analysis can be extended to any planform.
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2.1.1 Vortex Flow Modeling

Steady State Modeling

The mathematical model developed in the previous section assumes potential flow. Sharp, thin leading-edges, how- 

ever, generate vortices which, in turn, cause extra forces on the fin and make its motion nonlinear. The first contribu- 

tion of this analysis is the extension of the potential model to include vortex effects based on the theory of (Polhamus 

1966). For a stationary delta tail fin without a rotor, the normal force is determined from integrating Eqn. (2.15) over
x to give

N =
π

4
ρ b2

0 U2 cosγ sinγ, (2.21) 

and the potential normal force coefficient is

CN,p =
4N

ρU2b0c0
=

πAR
2 

cosγ sinγ (2.22) 

The angle of attack α is related to γ through the sine rule of the velocity polygon shown in Figure 1. Using the 

trigonometric identities in (Kershner 1971): 

tanα =−Vy/Vx (2.23) 

For a stationary tail fin without a rotor, α = γ , and Eqn. (2.22) recovers the potential nonlinear normal force co- 

efficient of a steady, stationary delta wing, (Polhamus 1966). His delta wing theory uses the leading-edge suction 

analogy to modify the steady normal force coefficient in Eqn. (2.22) to have two components:

CN =CN,p +CN,v (2.24) 

where the potential normal force coefficient is

CN,p = Kp cosγ sinγ (2.25) 

The vortex component is

CN,v =
Kv

Kp
CN,p| tanγ|= Kv |sinγ|sinγ (2.26) 

The potential flow coefficient, Kp, depends only on the planform as given by Eqn. (2.22). The vortex lift coefficient,
Kv, is bounded by 3.14 ≤ Kv ≤ 3.45 for 0 ≤ AR ≤ 4 for a straight-edged delta wing, (Polhamus 1966). Kv can 

be determined from the “suction force” perpendicular to the leading-edge as in the thin airfoil analysis of (Brown 

1946). It is assumed that the pressure distribution in the neighborhood of the leading-edge, where the vortex forms, 

is identical with that for a two-dimensional flat plate. The suction force, Fs, normal to the edge of the plate per unit 

length of edge is given by
dFs

dR
= 2ρ πG2 (2.27) 

where R is measured along the leading-edge and G is a factor which is found by requiring the suction force to gener- 

ate a thrust component that cancels the drag of a flat plate. Kv is considered further in Section 11.1.

Total Leading-Edge Vortex Force

Vortex flow over the tail fin causes a considerable load that affects the damping of the motion. For a yawing tail fin, 

the total normal force acting on the tail fin from the vortex flow is

Fs = ρKv
AR
4

∫ xp+c0

xp

W 2(x− xp)dx = ρKv
AR
4

∫ xp+c0

xp

Vy
2(x− xp)dx (2.28) 

When W =−Vy is constant with x, the vortex force is simply

Fs = 0.5ρAt f KvW 2 (2.29) 

while the yaw moment at the apex is given by

Ma =
2c0

3 

0.5ρAt f KvW 2 =
2c0

3
Fs (2.30) 

and it is important that the sign of the different terms in W are preserved. The leading-edge vortex (LEV) does not 

contribute to ∂ φ/∂ t, (Amiet 1995; Wu 1961), so its unsteady effect comes from the change in strength and location 

as α changes, (LeMay, Batill, and Nelson 1990; Lan 1982). This issue will be dealt with in Section 2.1.1.
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Separation at High Angle of Attack

At very high α , depending on AR, full flow separation occurs over the tail fin as it does over a normal flat plate where 

the normal force is determined completely by the drag coefficient CDc. The normal force coefficient for separated 

flow, CN,s, can be approximated as
CN,s =CDc sinγ (2.31)

CDc for any flat planform is that for a normal flat plate which can be approximated as (Larson 2012)

CDc =C2D

[
1− 5Ra

1−3.2
√

Ra +15.15Ra −0.75R2
a

]
(2.32) 

where C2D = 2 is the drag coefficient of a flat plate when it is normal to the flow, and Ra = b0/c0 = AR/2. From 

Eqn. (2.32), CDc = 1.18 for AR = 2. This value is lies between 1.1 and 1.4 for delta wings of different AR in (Jarrah 

1989). So, a value of CDc = 1.3 should be reasonable for most tail fins. This value is used throughout the analysis.

Vortex Breakdown

In following the wind, the tail fin α changes almost at the same rate as the yaw rate as can be seen from Eqn. (2.23). 

In these dynamic conditions, LEVs will burst at a certain angle, (Jouannet and Krus 2002). When the vortex detaches 

from the wing at the apex, the fully separated flow is modeled as in Section 2.1.1. The normal forces can be scaled to 

give the contribution of the three force components: the potential flow, vortex flow and break down, vortex burst, and 

full separation. The total normal force is then the sum of the potential and vortex force components, with the vortex 

force dependent on the location of vortex bursting. The normal force for a stationary tail fin can be modeled as

CN = x1Kpcosγ sinγ + x2Kv|sinγ|sinγ +(1− x3)CDc sinγ (2.33) 

where x1,x2, and x3 are the “separation functions” for the contribution of each force component on a tail fin pitching 

at the rate of γ̇ at the corresponding α . All three functions can be modeled by a first-order differential equation, 

(Goman and Khrabrov 1994):

τ1
∂xi

∂ t
+ xi = xi,0(α − τ2α̇) (2.34) 

where τ1 ≃ 8c0/U,τ2 ≃ 0.5c0/U are time constants, and i = {1,2,3}. α̇ ≃ γ̇ is the pitch rate, and x0(α − τ2α̇) is a 

forcing function that decays exponentially as in (Fan and Lutze 1996):

xi,0(α − τ2α̇) = (1+ exp[σ(α − τ2α̇ −α
∗
i )])

−1 (2.35) 

where σ is an empirical constant that expresses the rate of decay of the forcing function. The characteristic time
c0/U is very small for a tail fin so the term τ2α̇ can be neglected. Thus

xi,0(α − τ2α̇) =
(
1+ exp[σ(α −α

∗
i )]
)−1 (2.36) 

where α∗
i can have different values for each flow component. For potential flow, it is the stall angle of the tail fin, 

and for vortex flow, the angle of attack at which the vortex from the tail fin apex bursts. At this angle, the separation 

function xi = 0.5, as can be seen from Eqns. (2.34) and (2.35). The resulting force and moments equations for the 

case xp ≫ c0 of potential flow equations, (2.18) and (2.19), are modified to include the effect of vortex flow from 

Eqns. (2.29) and (2.30), and the separation functions as

N =−0.5ρAt f Kp

[
c0

3
∂W
∂ t

+ x1VxW

]
−0.5ρAt f

[
x2Kv +(1− x3)CDc

]
W 2 (2.37) 

and

Ma =−0.5ρAt f Kp

[
c2

0
4

∂W
∂ t

+
2c0

3
x1VxW

]
− 2c0

3 

0.5ρAt f

[
x2Kv +(1− x3)CDc

]
W 2 (2.38)
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Figure 3. Suction analogy concept. Cs, suction force coefficient and its thrust coefficient component, Ct , (Luckring 2016).

,

2.1.2 Tangential Force Component

The tangential force, T , in the x-direction, acting on an uncambered tail fin cannot contribute to the yaw moment.
T , however, can contribute to the structural loads on the yaw assembly and tower and so is needed for a com- 

plete dynamic analysis. The LEV force cancels the chordwise force resulting from the potential flow, (Pedersen 

and Żbikowski 2006). Unsteady forces resulting from the potential flow can be estimated by replacing ∂W/∂ t in 

Eqn. (2.15) by −β̇W , (Pedersen and Żbikowski 2006):

dT
dx

=
π ρ

4
b2(x)β̇W (2.39) 

so the total tangential force for a constant W with x is

T =
c0

3 

0.5ρAt f Kpβ̇W (2.40) 

In fully separated steady flow over a sharp leading-edge, there is no tangential force acting on the surface, as can be 

seen in Figure 3, (Luckring 2016). Cross sections normal to the leading-edge are shown on the right for three flows. 

The top and middle parts show the suction force generated due to leading-edge singularity for attached flow at the 

leading-edge of sharp and round edge wings. The bottom part shows full separation over a highly swept sharp delta 

wing where the LEV forms, separates, and reattaches to the surface, generating a normal force equal to the suction 

force in the top figure of normal attached flow. This makes the normal force the resultant force acting on delta wings.
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3 Synthesizing the Normal Force Coefficient for Delta Tail Fins
CN can be determined from Eqn. (2.33) up to α = 90◦. The model contains the separating functions x1,x2, and x3 that 

appear in Eqn. (2.36). This model, however, contains unknown coefficients that depend on the AR. In this section 

these coefficients are estimated from experimental data up to high α . In some of the references used in this section, 

the delta wings are identified by the sweep angle, Λ, defined in Figure 2a, and related to AR by AR = 4/ tan(Λ). 

The procedure followed to calibrate the different parameters in the model is taken from (Jouannet and Krus 2007).
τ1 expresses the strength of the LEV as α changes. It was found from the unsteady LEV model in (Dore 1966) that 

the strength reaches its steady value in time τ1 = c0/U , which is typically small for tail fins. Assuming that the full 

strength develops instantaneously makes the separation function for a tail fin equal to its forcing function given by 

Eqn. (2.36). 

The functions x1,x2, and x3 express the relative importance of potential flow, vortex flow, and cross flow, respec- 

tively. (Jouannet and Krus 2007) recommended that α∗
1 be the angle at which the vortex breaks down at the trailing 

edge and α∗
2 = α∗

3 be the α at which the vortex breaks down at the wing apex. (Jouannet and Krus 2007) give the 

transition constants σ to be between 0.2 and 0.4. It was found, however, that σ1 = 0.3 and σ2 = 0.1 are good choices 

for most delta wings with σ3 ≤ σ2. To get α∗
1 and α∗

2 , Figure 4 from (Lowson and Riley 1995) could be used. Setting
α∗

1 to be the stall angle at each Λ, however, was found to give better results. A simple procedure is that α∗
1 = 35◦

for Λ = 70◦ and changes by half the change in Λ. To validate the model, (Jarrah 1989) measured CN for delta wings 

of AR = 1,1.5, and 2. As recommended above: σ1 = 0.3,σ2 = 0.1, and σ3 = 0.05 were chosen for all cases. α∗
1

was chosen to be the stall angle and CDc = 1.3. α∗
2 was chosen to be the angle of attack of breakdown at the apex, as 

found from Figure 4 for the corresponding Λ. 

For AR = 1, α∗
1 = 38◦ and α∗

2 = 55◦ for tanΛ = 4. α∗
3 = α∗

2 + 5 = 60◦. Comparison between measurements 

and the model for AR = 1 is shown in Figure 5(a). For AR = 1.5, α∗
1 = 40◦ and α∗

2 = 48◦ for tanΛ = 2.7. α∗
3 =

α∗
2 + 5 = 53◦. The stall angle is found to be higher than the recommended value for Λ = 70◦ of α∗

1 = 35◦. Theory 

and measurements for AR = 1.5 are shown in Figure 5(b). For AR = 2, α∗
1 = 40◦ and α∗

2 = 40◦. α∗
3 = α∗

2 +5 = 45◦. 

The stall angle is higher than that recommended for Λ = 63◦ of α∗
1 = 32.5◦. Measurements and the model for AR = 2 

are compared in Figure 6(a). For this case the stall is deeper than at lower AR. So, a value of σ3 = σ2 = 0.1 was 

chosen instead of the default of σ3 = 0.05, and the results for this case are shown in Figure 6(b). 

These results show the stall angle does not change much with AR, and α∗
1 = 39◦ should be representative of delta tail 

fins. The angle of vortex breakdown at the apex α2, however, decreases by about 20◦ for an increase of 1 in AR and 

approaches the stall angle as AR increases. This leads to sharper stall of delta wing at higher AR and an increase in 

the value of the transition parameter σ3 of flow separation for high AR. 

The above conclusions are preliminary only but sufficient for comparing the theoretical model to the wind tunnel 

tests in Section 8. A more systematic identification of the parameters will be done in Section 10.

3.1 Aerodynamic Coefficients of Tail Fins in Reverse Flow
For the reasons given in the Introduction, a tail fin can experience reverse flow, particularly during the starting of a 

SWT. Extending the aerodynamic model to cover α over the range of ±180◦ is likely to be important for accurate 

prediction of the yaw response for operating turbines. 

Experiments on reverse delta wings (RDW) show lower maximum lift and drag with stall at higher α compared to 

a “normal” delta wing (DW), (Lee and Ko 2016; Mahgoub and Cortelezzi 2020; Gibson and Gerhardt 1993). This 

behavior is also considered in the NREL Aerodyn code for modeling the flow over wind turbine blades in reverse 

flow, (Jonkman et al. 2015). They reflect and scale the lift coefficient by a factor of 0.7, but the drag coefficient is not 

changed. The stalling mechanism for RDWs is different from a normal DWs vortex breakdown, (Lee and Ko 2016). 

This reduction in aerodynamic forces for an RDW should be taken into account when choosing a suitable planform 

as it could reduce the turbine yaw response and increase its starting time. There is no reduction for tail fins with 

planforms symmetric in x, such as rectangular, elliptical, and diamond shapes. These planforms, however, may give 

poorer response in normal flow characterized by small distance to the center of pressure and shorter moment arm 

length.
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Figure 4. Flow regimes over a delta wing, (Lowson and Riley 1995).The figure is used to determine 

the angle of attack at which the vortex detaches at the apex (x/c=0), which is equal to α∗
2 ≈ α∗

3 .

(a) AR = 1.0 (b) AR = 1.5.
Figure 5. Predicted normal force (solid line) compared to the experimental data of (Jarrah 1989) (blue dots) for delta wings.
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(b) σ3 = 0.1
Figure 6. Predicted normal force (solid line) compared to the experi- 

mental data of (Jarrah 1989) (blue dots) for a delta wing of AR = 2.
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Figure 7. Variation of Kp, Kv,le, and Kv,tot with aspect ratio for rectangular wings, 

(Lamar 1974). β =
√

1−M2 = 1, where M is the Mach number taken here to be zero.

For an RDW, the loss of lift is most likely due to the small strength of the LEV. It can be modeled as a rectangular 

tail fin with a LEV generated over its base without the side edge vortices that exist on a rectangular plate. It can be 

seen from (Lamar 1974) that LEV coefficient Kv,le for a rectangular plate is much less than the side edge coefficient
Kvse. This is shown in Figure 7 where the total coefficient Kv,tot = Kv,le +Kv,se. 

To model the aerodynamic coefficients for an RDW, we take the potential flow coefficient Kp to be the same as for a 

DW, as argued by (Lee and Ko 2017). Kv, however, is reduced. Kv,le for a rectangular tail fin AR is determined from 

Figure 7 by setting the Mach number, M to zero. Also, the transition angles α∗ are higher for an RDW compared 

to a DW. Both these effects will scale down and shift the lift coefficient to higher α . This stall delay is governed 

by choosing α∗
1 for an RDW to be higher than for a DW. This model is used to predict the lift coefficient of a DW 

and an RDW of Λ = 65◦ from (Lee and Ko 2017) for which Kp = 2.1 for both DW and RDW. In contrast, the DW
Kv = π whereas Kv = 1.4 for an RDW from Figure 7 for AR = 1.86. For a DW: α∗

1 = 35◦, α∗
2 = 38◦, and α∗

3 = 45◦.
σ1 = 0.3, and σ2 = σ3 = 0.1 to capture the deep stall. For an RDW: α∗

1 = α∗
2 = 40◦, and σ1,σ2 and σ3 were chosen 

to be the same as for a DW. It should be noted that α∗
2 for a DW is chosen from Figure 4 for the corresponding Λ and

α∗
3 = α∗

2 +5◦. The predictions using these settings are shown in Figure 8(a). 

Figure 8 shows a change in slope of the potential lift between the DW and RDW. This decrease in slope could be 

modeled by reducing the value of σ1 or increasing the rate of decay of the potential lift with α . The behavior of the 

aerodynamic coefficient model as σ changes is shown in Figure 9. These changes in slope could be reproduced by 

decreasing σ1 to allow the potential lift to develop slowly. σ1 = 0.1 was chosen for the DW and σ1 = 0.03 for the 

RDW. The values of σ2 = σ3 = 0.1 were kept the same. The predictions for this case are shown in Figure 8(b). A 

significant improvement is achieved by changing the values of the potential flow transition constant σ1 to capture 

the change in lift coefficient slope, as seen in Figure 8(b). This demonstrates sensitivity of the lift coefficient to 

the model parameters, which will change the yaw response. This issue is addressed in conjunction with the system 

identification study in Section 10.
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(a) σ1 = 0.3.
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(b) σ1 = 0.1 for DW and 0.03 for RDW.
Figure 8. Predicted (solid lines) and measured lift coefficient (dots) for a delta wing (DW, 

red) and for a reversed delta wing (RDW, blue) with AR = 1.86. σ2 = σ3 = 0.1.

Figure 9. Change in the separation functions x as σ changes for a separation angle α∗ = 20◦, (Fan and Lutze 1996).
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If the results for the delta wing are general, the aerodynamic coefficients of tail fins in reverse flow are characterized 

by lower Kv and maximum lift, and a delay in stall as shown in Figure 8(b). These changes to Kv and other parame- 

ters are easily incorporated in the present model. There are, however, no data on RDW tail fin response with which to 

compare the model.
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4 Mathematical Modeling of Tail Fins of High Aspect Ratio
Restricting the analysis to low AR delta wings restricts its applicability. As AR increases, however, the assumption 

of constant chordwise loading assumed in USBT is likely to become incorrect. At high AR, the load is high at the 

apex and decreases continuously to reach zero at the trailing edge where it satisfies the Kutta condition, (Lomax and 

Sluder 1951). 

Different modifications have been suggested for USBT to account for the chordwise load variation, (Levin and 

Seginer 1982). One obvious method is to solve the Laplace equation for the three-dimensional potential function, 

rather than the two-dimensional form for USBT, Eqn. (2.2). The solution of the former, however, is very lengthy and 

will complicate the tail fin model developed here. A simpler model based on the method of R.T. Jones (see Chapter 

13 of (Katz and Plotkin 2001)) as developed by (Traub 2003) is applied instead. 

With larger AR, it is possible that the “added mass” becomes important. The model of (Traub 2003) assumes the 

apparent mass, mc, of a high-AR delta wing to change as

dmc

dx
= 2ρ πc tan2

ε

(
1−

x− xp

c0
sinε

)
(4.1) 

where tanε = b0/(2c0) = AR/4: ε is related to the sweep angle by ε = π/2−Λ, as shown in Figure 2a. The normal 

force derivative given by Eqn. (2.15) is scaled to high AR using the apparent mass:

dNh

dx
=

dN
dx

(
1−

x− xp

c0
sinε

)
(4.2) 

where the subscript “h” refers to high aspect ratio. The force and yaw moment for a high-AR tail fin is obtained from 

Eqns. (2.37) and (2.38) for the case of xp ≫ c0 as

Nh =−0.5ρAt f

[ (
1
3
− 1

4 

sinε

)
c0Kp

∂W
∂ t

+ x1KpVxW

]
−0.5ρAt f

[
x2Kv +(1− x3)CDc

]
W 2 (4.3) 

and the yaw moment at the apex is

Ma,h = −0.5ρAt f

[ (
1
4
− 1

5 

sinε

)
c0

2Kp
∂W
∂ t

+ x1Kpxcpc0VxW

]
− 2c0

3 

0.5ρAt f

[
x2Kv + (1 − x3)CDc

]
W 2 (4.4) 

where sinε = AR/4/
√

1+(AR/4)2. The closed-form steady force coefficients from (Traub 2003) become

Kp =
πAR

2

(
1− 2

3 

sinε

)
and Kv =

πAR
2sinε

(
1− 2

3 

sinε

) (
1
2
+

1
3 

sinε

)
(4.5) 

which is substituted in Eqns. (4.3) and (4.4). The authors assume that Eqn (4.5) holds for any delta fin. The center of 

pressure of potential flow moves toward the apex for a delta tail fin according to

xcp = 1− 1− sinε/2
3−2sinε

(4.6) 

while the center of pressure of the vortex lift remains constant with AR. 

The loss of lift for high AR (low Λ) is thought to be due to the vortex breakdown occurring at lower α as Λ de- 

creases, (Traub 2003), as shown in Figure 4, and as found in modeling the flow over reverse delta wing in Section 

3.1. (Traub 2003), however, modeled the loss in lift with increase AR as a reduction in Kv = π/exp(0.23(60−Λ)). 

As an alternative, we model the loss in lift as the AR increases in terms of a reduction in the transition angle of the 

vortex lift term α∗
2 and a reduction in σ2.
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5 General Tail Fin Dynamic Equations
In this Section, the full aerodynamic equations for the normal force, N, and moment at the apex, Ma, of tail fins of 

any planform and aspect ratio are given. We will relax the assumption of W constant with respect to x and quantify 

its variation. Eqns. (2.15) and (2.16) are used for potential flow, and the effect of vortex and separated flow is added 

from Eqns. (2.37) and (2.38). The effect of vortex dynamics and high-AR scaling are added:

N =−π ρ

4

∫ xp+c0

xp

[
b2 ∂W

∂ t
+Vxx1

∂W (x, t)b2(x)
∂x

] (
1−

x− xp

c0
sinε

)
dx−

ρ

2

[
x2Kv +(1− x3)CDc

]∫ xp+c0

xp

b(x)W 2dx (5.1) 

and the yaw moment at the tail fin apex as

Ma =−π ρ

4

∫ xp+c0

xp

[
b2 ∂W

∂ t
+Vxx1

∂W (x, t)b2(x)
∂x

] (
1−

x− xp

c0
sinε

)
(x− xp)dx−

ρ

2

[
x2Kv +(1− x3)CDc

]∫ xp+c0

xp

b(x)(x− xp)W 2dx (5.2) 

These integral equations can have an analytic form, as will be shown in Section 13.3.
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6 Elliptic Tail Fin Modeling
The analysis so far has considered only a delta planform. In this section the yaw moment equation is derived for 

the elliptic tail fin shown in Figure 2b. An elliptical planform, or indeed any planform where b(x) goes smoothly to 

zero at the trailing edge, is surprisingly difficult to accommodate in USBT. The reason is that the approximate right 

side of Eqn (2.15) when db(x)/dx < 0 will give no contribution to the force or moment. Only the half-section of 

the ellipse closest to the rotor generates force and moment in the linear model. The effects of the nonlinear LEV, 

however, extend beyond the maximum b(x), generating what (Lamar 1976b) called “augmented vortex lift” on the 

aft section, as shown in Figure 10 for a cropped delta wing, (Lamar 1976b). 

It will be assumed that the potential force distribution over the ellipse surface is linear with the chord, c(x). Further, 

the high aspect ratio correction has the form used for the triangular tail fin in Eqn. (4.2). The integrated form of the 

Eqns. (5.1) and (5.2) will be derived in Section 8.1.1. Only the basic features of elliptical tail fin will be stated in this 

section. 

The width of the elliptical tail fin is given by

b(x) = 2b0

√
c(x)
c0

− c2(x)
c2

0
(6.1) 

For an elliptical tail fin, the apex angle is sinε = πAR/4/
√

1+(πAR/4)2, and AR = 4b0/(πc0).Kp = πAR/2 for low
AR and

Kp = πAR(1− sinε/3)/2 (6.2) 

for high aspect ratio. The change of Kp for an elliptic planform with AR using three-dimensional calculations due to 

(Krienes 1941) and taken from (Cohen and Jones 2015) is shown in Figure 11. The variation in Kp of the equation 

given above agrees very well with those of (Krienes 1941) in Figure 11. 

The variation in the center of pressure assuming linear chordwise potential load distribution as in Section 4, gives

xcp =

(
1
2
− 1− sinε/4

3− sinε

)
c0 (6.3) 

so that xcp moves rearward as AR increases. Contrarily, for an elliptical wing, xcp moves forward as AR increases as 

shown using three-dimensional potential flow calculations in (Krienes 1941). 

An exact solution for aerodynamic loads on an elliptical wing is derived in (Hauptman and Miloh 1986). A simpler 

fitting to the xcp data for potential flow over an elliptical wing in (Krienes 1941) and shown in Figure 12 is:

xcp = 0.12(2.35− exp(−0.94AR)) (6.4) 

while the center of pressure of the vortex load is assumed to be at the center of the ellipse, c0/2, and is independent 

of AR.
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Figure 10. Vortex lift CLv,le and augmented vortex lift, ∆CL for a cropped delta wing, (Lamar 1976b).

Figure 11. Comparison of lift curve slope for wings of low aspect ratio, Kp =CL, with Eqn. (6.2) (solid line), (Cohen and Jones 2015).

Figure 12. Comparison of center of pressure given by theory for wings of low as- 

pect ratio with results given by Krienes (Krienes 1941) for an elliptical wing.
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7 Rectangular Tail Fin Modeling
The problem of using USBT for a rectangular tail fin is an extension of that discussed above for an ellipse: USBT 

concentrates the load at the leading-edge, whereas it has been shown that the loading is distributed (Lomax and 

Sluder 1951). Another issue with rectangular planforms is the generation of side edge vortices in addition to those 

on the leading-edge. Both of these issues are demonstrated in Figure 13. USBT can still can be used to predict the 

apparent inertia and aerodynamic damping terms if the loading distribution is estimated accurately. 

(Lomax and Sluder 1951) derived a correction function for chordwise loads over triangular and rectangular wings 

of low AR. This function, however, can only be integrated numerically. As an alternative, we reuse the assumption 

made for the delta and elliptical planforms: the loading is linear with chord, as in Eqn. (4.2). This linear distribution 

is scaled with an AR term that vanishes as AR ↓ 0. For the steady state term, a relation for Kp that fits the analysis 

in (Lomax and Sluder 1951) was derived by (Helmbold 1942) and restated in many references, for instance, (Lamar 

1974), as

Kp =
2πAR

2+
√

AR2 +4 

(7.1) 

where, AR = b0/c0. On a rectangular tail fin, the center of pressure of moves forward with increasing AR as shown in 

Figure 14, which is the same direction as for swept wings, (Hopkins 1951), but the opposite direction for a delta fin. 

From (Lomax and Sluder 1951), the change in xcp is given by

xcp = 0.25
(

1− exp(−AR)
)

(7.2) 

A curve fitting of xcp as a function of AR for unswept wings is given in (Barnes and Barnes 1997), but Eqn. (7.2) 

should be more accurate for rectangular wings based on the results of (Lomax and Sluder 1951) and (Lawrence 

1951). 

The other issue of side edge vortices and their effect on the value of Kv has been investigated thoroughly in (Lamar 

1974) for rectangular and swept wings with sharp side edges and different ARs. Kv from the LEV and side edge 

vortices was found to be Kv = π ± 0.1 for all AR, as shown in Figure 7 for a rectangular wing. The LEV coefficient
Kv,le and the side edge vortex coefficient Kv,se can be determined from the following relations for a rectangular wing, 

(Larson 1981):

Kv,le =
πAR

2
(

1+
√

1+AR2/16
) (7.3)

Kv,se = 2π/(AR+2) (7.4) 

and Kv = Kv,le +Kv,se. 

Applying the above modifications to the USBT yields the relations for the force and yaw moment of a rectangular 

tail fin as will be shown in Section 8.1.1.
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Figure 13. Chordwise load variation over a rectangular wing and the nor- 

mal forces due to the LEV and side edges vortices, (Lamar 1974).

Figure 14. Variation of the enter of pressure with AR of rectangular and delta (labelled “triangular”) planforms from (Lawrence 1951).
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8 Mathematical Model Validation
This section describes the validation of the different forms of the tail fin model using data obtained in the large 

wind tunnel of the University of Perugia, under the direction of Professor Francesco Castellini. The results have yet 

to be published and are used here with his permission. The experiments were done at nominal wind speeds of 5, 

10, and 17 m/s. Tail fins of the three planforms analyzed here, and varying AR, were investigated. To simplify the 

comparison, the wind tunnel models did not have a nacelle and rotor. The geometry of the tail fins is given in Table 

1. The first three rows show the low−AR tail fins and the second three the higher AR ones. Table 2 documents the 

model constants used in the simulations. All the fins were released at two initial yaw angles: γ0 = −40◦ and −80◦, 

and their subsequent motion recorded. The sign of the angle is not significant – so “high” will refer to magnitude 

– but is included for consistency with the experiments. High release angles, for which nonlinear effects should be 

important, have not been measured previously nor has the response at different wind speeds.

Table 1. Geometry of the tail fins. xp = 0.443 m for all fins, and Iz is with respect to the yaw axis.

Planform AR c0 (m) b0 (m) Iz (kgm2)
delta 0.58 0.27 0.078 0.06 

elliptical 0.37 0.27 0.078 0.044 

rectangular 0.5 0.143 0.072 0.038 

delta 1.97 0.143 0.141 0.04 

elliptical 1.25 0.143 0.141 0.04 

rectangular 2.03 0.07 0.142 0.034

Because the tail fins in these experiments rotated about the yaw axis, we now consider moments about this axis, Mz, 

which is the origin for x in Figure 1. 

In view of the complexity of the nonlinear yaw equations, we now establish the importance of the nonlinearity, which 

should be most apparent at large yaw and high aspect ratios. Figure 15(a) compares the response of the delta fin with 

the highest AR = 1.97 for the two release angles, in terms of γ(t)/γ0 against time, t. Only 200 data points out of 4000 

for the 4 s time interval, for γ0 =−40◦ are plotted to allow for easy comparison. If the two responses were governed 

by the same linear equation, this scaling would collapse the two responses, which is obviously not the case in part 

(a). What is most noticeable is that the first zero crossing is reached considerably more quickly for γ0 = −40◦, after 

which the frequency of the response is approximately independent of γ0. This is made clearer in part (b) where the 

responses are rescaled by γmax, the first maxima in γ(t); γmax = 46.82◦ at tmax = 0.493 s and 17.30◦ at tmax = 0.389 s 

for γ0 =−80◦ and −40◦, respectively, and the x-axis shows t − tmax. The results now collapse, showing the nonlinear 

terms in the moment equations are needed only for γ(t) higher than about 45◦. We do not show any further results in 

the interest of brevity, but resetting γmax to subsequent local maxima for each γ0 gives a collapse in γ/γmax similar to 

that shown in part (b). Thus, the ability of the nonlinear models to predict the initial yaw response for γ0 =−80◦ is a 

particularly important test of their accuracy. 

A further development is noted, but not described, as is not directly relevant to the aim of this report. The authors 

have derived an approximate analytical solution for yaw response. This solution is based on approximating the 

nonlinear terms by a fifth-degree polynomial in γ using the Chebyshev series. The series, however, is accurate only 

for 90◦ ≥ γ ≥ 45◦. To get an accurate solution for γ0 ≤ 45◦, the solution is considered to be a function of the range of
γ by scaling γ by γ0 to place it within the best range for approximation by the Chebyshev series.

Table 2. Model constants. CDc = 1.3,σ1 = 0.3, and σ2 = σ3 = 0.1 for all fins. Note that xcp is given as a fraction of c0.

Planform AR Kp Kv xcp α∗
1 (

◦) α∗
2 (

◦) α∗
3 (

◦)
delta 0.58 0.911 π 0.667 39 60 60 

elliptical 0.37 0.581 π 0.167 38 55 60 

rectangular 0.5 0.785 2.9 0.098 39 55 60 

delta 1.97 2.078 π 0.625 33 38 38 

elliptical 1.25 1.505 π 0.245 15 20 25 

rectangular 2.03 2.630 π 0.217 20 20 25
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(a) Full response for γ0 = −40◦ (□) and −80◦ (solid 

line). Only a selection of the −40◦ results are shown.
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(b) Response rescaled by γmax, the first maxima in γ(t) =
46.82◦ and 17.3◦ for γ0 = −40◦ and −80◦ respectively.

Figure 15. Comparison of the yaw response of a delta tail fin of AR = 1.97 for the two release angles. U = 17 m/s.

The final tests were made for an unsteady U of sinusoidal form, which also has not been done previously. The final 

novelty of the experiment was the determination of the frictional torque in the yaw bearings, so its effects on the 

present model could be quantified. This is postponed to Section 9 because bearing friction was only important for
U = 5 m/s, as demonstrated by the one presentation of these results in this section. The remaining results, for U = 10 

and 17 m/s, were simulated by ignoring friction.

8.1 Validation of the Model for Low-Aspect-Ratio Tail Fins
In this section the modeled response of the delta, elliptical, and rectangular tail fins of low aspect ratios are compared 

with the measurements.

8.1.1 Delta Tail Fins

The simplest test of the tail fin is a comparison with the steady wind tunnel experiments for the low-aspect-ratio tail 

fin of AR = 0.58 whose geometry is listed in Table 1. The test conditions were U = 17 m/s, and γ0 = −40◦. The 

delta tail fin moment of inertia around the yaw axis, Iz, was determined from (Singh, Hemmati, and Wood 2012) as

Iz = m
(

x2
p +

1
2

c2
0 +

4
3

xpc0

)
(8.1) 

where m is the mass. This equation is valid for a sheet-metal fin of constant thickness. For all the wind tunnel tests,
Vin = Vx,el = 0 and Vy,el = −γ̇ (xp + c(x)). Note that c0 ≈ xp, which holds for all three planforms considered in this 

section, so the variation in W must be considered: dW/dx = γ̇ . Also, β = γ and U̇ = 0, except in Section 8.3 where 

varying wind speed is considered. By changing the integration for the moment equation to be from x = 0 to xp + c0, 

we determine Mz as

Mz = Izγ̈ =−0.5ρAt f

[ ((
1
5
− 1

6 

sinε

)
c3 

0 +

(
1
2
− 2

5 

sinε

)
xpc2

0 +

(
1
3
− 1

4 

sinε

)
x2

pc0

)
Kpγ̈+

Ux1cosγ

( (
1− 4

5 

sinε

)
c2

0 +

(
2− 3

2 

sinε

)
xpc0 +

(
1− 2

3 

sinε

)
x2

p

)
Kpγ̇+

U2x1 cosγ (xp + xcp)Kp sinγ +

((
1
4
− 1

5 

sinε

)
c0

2 +

(
1
3
− 1

4 

sinε

)
xpc0

)
KpU̇sinγ

]
−

0.5ρAt f

[
2U
(

1
2

c2
0 +

4
3

xpc0 + x2
p

)
(x2Kv +(1− x3)CDc)|sinγ|γ̇+(

2
5

c3 

0 +
3
2

xpc2
0 +2x2

pc0 + x3
p

)
(x2Kv +(1− x3)CDc)|γ̇|γ̇+(
xp +

2c0

3

) (
x2Kv|sinγ|+(1− x3)CDc

)
U2 sinγ

]
(8.2)
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(a) Yaw angle predictions (black line) compared 

to the measurements (red □). U = 17 m/s.
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(b) Measured responses against Ut/xp for 17 m/s 

(black dots), 10 m/s (in red) and 5 m/s (in blue).
Figure 16. Yaw response of a delta tail fin of AR = 0.58, and γ0 = −40◦.

where Kp = πAR/2, and At f = b0c0/2. Kp, Kv were determined from Eqn. (4.5), and xcp from Eqn. (4.6). For this 

low AR < 1, the high-AR corrections were neglected and sinε ≈ 0 was assumed in Eqn. (8.2). The model constants 

are collected in Table 2, and the results are shown in Figure 16(a). Eqn. (8.2) is formatted to show the linear terms, 

containing Kp but not Kv, in the first three lines. The fist term on the third line is the steady term due to potential 

flow, which is linearized when sinγ ≈ γ , and the second is the unsteady wind speed term considered in Section 8.3. 

The nonlinear vortex terms involving Kv are in the last three lines. This formatting is also used below for the other 

planforms. 

On purely dimensional grounds, the frequency of the yaw response for any planform is directly proportional to U , 

as seen in the measured responses at wind speeds of U = 17,10, and 5 m/s in Figure 16(b). Damping, however, 

increases slightly for U = 5 m/s as a result of the increasing effect of bearing friction as U decreases. Friction is 

considered in detail in Section 9, where we analyze the steady state error (γ at γ̇ = 0) at large t. 

The predictions for the higher γ0 = −80◦ and the experimental results are compared in Figure 17. There is some 

discrepancy in the frequency throughout the response, even as α decreases to values where vortex lift is not likely to 

be important. In Section 10, system identification of the x-function parameters will be shown to give to better fit to 

the measurements.

Elliptical Tail Fins

An elliptical tail fin of low aspect ratio AR = 0.37 is compared to the measurements for γ0 = −40◦ and −80◦ in 

Figure 18. The tail fin geometry is documented in Table 1. The tail fin moment of inertia around the yaw axis is 

calculated as in (Singh, Hemmati, and Wood 2012) as

Iz = m
(

x2
p +

5
16

c2
0 + xpc0

)
(8.3) 

The tail fin boom combined moment of inertia around the yaw axis is listed in Table 1. The vortex force of an ellip- 

tical tail fin is assumed to act over the entire fin, as discussed in Section 6. Using Eqn. (5.2), with the potential flow 

integral limits being x = 0 and x = xp + c0/2, and the vortex flow ones x = 0 and x = xp + c0, the moment equation
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Figure 17. Yaw angle predictions (black line) compared to the experimental re- 

sults (red □) for a delta wing tail fin of AR = 0.58,U = 17 m/s and γ0 = −80◦.

for an elliptical tail fin is

Izγ̈ =−0.5ρAt f

[ ((
3

80
− 7

480 

sinε

)
c3 

0 +

(
5

24
− 3

40 

sinε

)
xpc2

0 +

(
1
3
− 5

48 

sinε

)
x2

pc0

)
Kpγ̈+

Ux1cosγ

( (
1
4
− 7

80 

sinε

)
c2

0 +

(
1− 7

24 

sinε

)
xpc0 +

(
1− 5

6 

sinε

)
x2

p

)
Kpγ̇+

U2x1 cosγ (xp + xcpc0)Kp sinγ +

((
5

48
− 3

80 

sinε

)
c0

2 +

(
1
3
− 5

48 

sinε

)
xpc0

)
KpU̇sinγ

]
−

0.5ρAt f

[
2U
(

5
16

c2
0 + xpc0 + x2

p

)
(x2Kv +(1− x3)CDc)|sinγ|γ̇+(

7
32

c3 

0 +
15
16

xpc2
0 +

3
2

x2
pc0 + x3

p

)
(x2Kv +(1− x3)CDc)|γ̇|γ̇+(
xp +

c0

2

) 

(
x2Kv|sinγ|+(1− x3)CDc

)
U2 sinγ

]
(8.4) 

where Kp, Kp, and xcp are given in Table 2, and At f = πb0c0/4. 

The separation angles α∗ for the elliptic tail fins are based on those of a delta wing that is circumscribed by the front 

half of the ellipse. For the current ellipse, this is equivalent to Λ = 75◦. α∗
1 = 38◦ while α∗

2 = 55◦ and α∗
3 = 60◦. 

The small AR tail was tested at γ0 =−40◦ and U = 10 m/s, Figure 18(a). For U = 17 m/s and γ0 =−80◦, the results 

are shown in Figure 18(b). The accuracy of the model at high γ0, which increases the nonlinearity of the response, is 

comparable to that at γ0 =−40◦.

Rectangular Tail Fins

The yaw moment of inertia of the rectangular tail fin from (Singh, Hemmati, and Wood 2012) is

Iz = m
(

x2
p +

1
3

c2
0 + xpc0

)
(8.5) 

The rectangular tail fin dimensions are listed in Table 1. The test conditions were U = 17 m/s, and γ0 =−80◦.
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(a) U = 10 m/s and γ0 = −40◦.
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(b) U = 17 m/s and γ0 = −80◦.

Figure 18. Yaw angle predictions of an elliptical tail fin using nonlinear analyses 

Eqn. (8.4) (black line) compared to the experimental results (red □). AR = 0.37.

The moment equation for a rectangular tail fin from Eqn. (5.2) is

Izγ̈ =−0.5ρAt f

[ ((
1
3
− 1

4 

sinε

)
c3 

0 +

(
1− 2

3 

sinε

)
xpc2

0 +

(
1− 1

2 

sinε

)
x2

pc0

)
Kpγ̈+

Ux1cosγ

( (
1− 2

3 

sinε

)
c2

0 +(2− sinε)xpc0 + x2
p

)
Kpγ̇+

U2x1 cosγ (xp + xcpc0)Kp sinγ +

((
1
2
− 1

3 

sinε

)
c0

2 +

(
1− 1

2 

sinε

)
xpc0

)
KpU̇sinγ

]
−

0.5ρAt f

[
2U
(

1
3

c2
0 + xpc0 + x2

p

)
(x2Kv +(1− x3)CDc)|sinγ|γ̇+(

1
4

c3 

0 + xpc2
0 +

3
2

x2
pc0 + x3

p

)
(x2Kv +(1− x3)CDc)|γ̇|γ̇+(

xp +
c0

2

) 

(
x2Kv|sinγ|+(1− x3)CDc

)
U2 sinγ

]
(8.6) 

where Kp, Kv, and xcp are defined in Section 7 and Table 2, and At f = b0c0. A delta wing of the same dimensions has
AR = 1, α∗

1 = 39◦ from (Okamoto and Azuma 2011) while α∗
2 = 55◦, α∗

3 = 60◦ from Figure 4. These values were 

used to obtain the results shown in Figure 19. The model reproduces the experimental damping but underpredicts 

the frequency of the response, probably because of the inappropriate use of the separation angles for a delta wing. 

We could not find independent values for rectangular planforms. Section 13.2 shows that improved fitting of data is 

possible using system identification.

8.2 Validation of the Model for High-Aspect-Ratio Tail Fins
In this section, the model for AR > 1 is validated against experiments. The three cases are listed in the last three 

rows of Table 1. For the model, the tail fin parameters in Table 2 were chosen as described above with σ1,σ2, and σ3
retaining their low-AR values. For the delta tail fin: α∗

1 = 33◦, and α∗
2 = α∗

3 = 38◦. Results for the delta tail fin of
AR = 1.97 at U = 17 m/s, and γ0 = −40◦ are shown in Figure 20(a), and for the higher γ0 = −80◦ in Figure 20(b). 

The theory is, surprisingly, more accurate than for γ0 = −40◦, which implies that the modeling of the nonlinear 

effects at high α is accurate. 

Figure 21 shows the results for elliptic tail fin of AR = 1.25 compared to the experiments for U = 17 m/s. The 

separation angles for this equivalent delta wing of Λ = 45◦ are α∗
1 = 15◦, which was taken to be the stall angle for a 

delta wing of AR = 4 from (Okamoto and Azuma 2011), and α∗
2 = 20◦ and α∗

3 = 25◦ from extrapolating the curves 

in Figure 4. The good agreement is particularly important it implies the validity of the USBT requirement that the 

rear half of the tail fin with decreasing c(x) does not contribute to the yaw dynamics of potential flow. If this result is 

general, then it has significant implications for the design of tail fins. The response at high release angle of −80◦ is 

shown in Figure 21(b) to be as good as for the lower γ0.
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Figure 19. Yaw angle predictions Eqn. (8.6) (black line) compared to the experimental 

results (red □) of a rectangular tail fin of AR = 0.5,U = 17 m/s and γ0 = −80◦.
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(a) γ0 = −40◦.
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(b) γ0 = −80◦.

Figure 20. Yaw angle predictions for a delta tail fin using nonlinear analyses Eqn. (8.2) (black 

line) compared to the experimental results (red □) for a delta fin. AR = 1.97,U = 17 m/s.
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(a) γ0 = −40◦.
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(b) γ0 = −80◦.

Figure 21. Yaw angle predictions for an elliptic tail fin using nonlinear Eqn. (8.4) 

(black line) compared to the experimental results (red □). AR = 1.25,U = 17 m/s.
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(a) γ0 = −40◦.
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(b) γ0 = −80◦.

Figure 22. Yaw angle predictions for a rectangular tail fin using nonlinear Eqn. (8.6) 

(black line) compared to the experimental results (red □). AR = 2.03,U = 17 m/s.

The high-AR rectangular tail fin results are shown in Figure 22(a). for this case AR = 2, and the equivalent delta 

wing AR = 4. From (Okamoto and Azuma 2011), α∗
1 = 20◦, whereas α∗

2 = 20◦ and α∗
3 = 25◦ from Figure 4, and

Kvse = 1.57, and Kvle = 1.5. The model overpredicts the damping and the frequency, with the latter being more 

apparent in Figure 22(b) for the higher γ0. This especially severe case is investigated further in Section 13 where the 

response is recalculated with the α∗ and σ model parameters determined from system identification.

8.3 Unsteady Wind Speed
The full dynamic equations for all planforms have a term in dU/dt, but, as far as the authors are aware, no unsteady 

wind speed yaw response experiments have been undertaken. The reason may well be that it is difficult to produce a 

consistent unsteady flow in a wind tunnel, but fortunately the tunnel at the University of Perugia does allow limited, 

low-frequency variations. The experimental responses considered in this section were made at the highest available 

frequency and amplitude of the (sinusoidal) variations. Tail fins of the three planforms shapes were tested at different 

mean wind speed of different amplitudes to cover high and low U . The frequency of wind speed for all the tests was
ω = 0.63 rad/s, so the wind speed is given by

U(t) =Um +Ua sin(ωt +φ) (8.7) 

where Um = 9.86, Ua = 1.5 m/s, and the phase angle φ = 120◦. The response of the AR = 1.97 delta fin is shown 

in Figure 23, together with that from neglecting the U̇ term in Eqn. (8.2). The origin for t in Eqn. (8.7) is also the 

origin in Figure 23. The figure shows that the unsteady wind speed effect is negligible. Given that the frequency 

and amplitude of wind speed changes in practice can greatly exceed the changes available in the wind tunnel, it is 

important to include the unsteady-U terms to maximize the accuracy of the predictions. It is likely that assessing the 

accuracy of modeling tail fin response to unsteady winds will require field measurements of SWT yaw behavior.
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Figure 23. Yaw angle predictions of the delta wing fin using nonlinear Eqn. (8.2) for unsteady wind 

speed given by Eqn. (8.7) (black dashed line) and for steady U (blue line), and the experimental results 

(red □). AR = 1.97, Um = 9.86 m/s, Ua = 1.5 m/s, ω = 0.63 rad/s, φ = 120◦ and γ0 = −40◦.
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9 The Effects of Yaw Bearing Friction
The theory developed so far has ignored the effects of yaw bearing friction, which may be important for SWTs and 

tail fin models tested in wind tunnels. To date, no tail fin experiment has considered the frictional resistance, and 

there is little information in the literature about the effects of bearing friction on SWT performance in general. The 

only studies known to the authors, (Vaz et al. 2018; Moreira et al. 2020), focused on the effects of drivetrain friction 

on the starting performance of a model SWT that did not yaw. 

Equation (27) of the simplified loads model in the standard for SWTs, (IEC 2013), gives the maximum yaw rate 

as 3 rad/s, which corresponds to around 30 rpm. This is a low angular velocity for a bearing. Friction modeling 

for bearings is complex in general, e.g., (SKF 2023) and so the present analysis will consider only low angular 

velocities and will ignore any differences between γ as defined here, and the corresponding value in the inertial xi,yi
coordinates attached to the tower. The low-velocity assumption could not be made by (Vaz et al. 2018), and the 

reader is referred to that paper for more general details of bearing modeling. 

The restriction to low angular speeds means the difference between static and dynamic friction must be considered 

because the former is usually significantly larger than the latter. The difference is due to the “Stribeck” effect, the 

lack of lubricant penetration between the rolling elements and the race of stationary bearings; a lubricant film is 

established only after the bearing has rotated for some time or has reached some minimum γ . It is to be expected, 

therefore, that a SWT that has not been yawing or rotating due to low wind speeds will experience significant static 

resistive torque in the drivetrain and yaw bearings as the wind picks up, but the subsequent yaw motion will be free 

of the Stribeck effect, even if the yaw rate goes through zero. The authors have not found any information on the 

time it takes a lubricant film to retreat from the contact zone between the rolling elements and race once a bearing 

has stopped rotating. In the wind tunnel tests used to assess the dynamic equations derived here, no special care was 

taken to either ensure that the tail fin bearings were “cold" or “warm" before the yaw tests were done. Static friction 

may well have influenced the initial motion of the fins but is unlikely to be important subsequently until it produces 

a steady-state yaw error. This introduction to bearing friction is provided to record the importance of the difference 

between static and dynamic friction, and to note the potential need to assess the assumed initial conditions for the 

modeling of the tail fin yaw behavior. 

Static bearing friction was observed as a steady yaw error (at large time) at the lowest U = 5 m/s, as shown in Figure 

16(b). The error does not occur at higher U , presumably because the aerodynamic loads, which scale as U2, quickly 

overcome the static friction. The error is likely to show during starting and stopping of the tail fin at low U but then 

disappear when the tail fin responds dynamically. This simplifies the modeling because the hysteresis in the moment 

as tail fin reverses its direction of motion, see (Bonsignore, Ferretti, and Magnani 1999), need not be considered. At
U = 5 m/s, the steady yaw error was γs = 1.35◦. The steady aerodynamic moment, Ms, calculated at this angle is

Ms = kstsign(γs) =
π ρb0

2

4
(xp +

2
3

c0)

(
cosγs +

Kv

Kp
|sinγs|

)
U2 sinγs = 0.0023 N.m (9.1) 

which gives the static friction kst , which we assume to be independent of U . 

The dynamic bearing friction for the wind tunnel tests was measured by removing the tail boom, turning the bearing 

shaft to the horizontal direction, and winding a thin cord supporting a known mass around the shaft. The mass was 

released and its subsequent motion recorded. 

The low-speed bearing frictional torque, Q f , is dominated by the “rolling frictional moment", (SKF 2023). For 

application to the tail fin experiments, it is modeled as

Q f ≈ sign(γ)k f |γ|0.6 (9.2) 

where the positive “constant" k f depends on the bearing type, the viscosity of the lubricant, and the axial and radial 

forces on the bearing. The bearing loads in the friction test differ from those in the wind tunnel experiments, so k f
may well be different, but at least the test results should be compatible with Eqn. (9.2) as demonstrated in Figure 

24. To combine the static and dynamic results, the friction is modeled using the exponential model in (Na, Chen, 

and Ren 2018). The static friction, kst , has two components: the Coulomb friction, ks, and a “stiction” due to the 

Stribeck effect as the tail fin accelerates from rest to an angular velocity, ns, called the Stribeck velocity, with a
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Figure 24. Comparison between the dynamic friction measurements (dots) and Eqn. (9.3) with
k f = 0.001 (solid line). The angular velocity on the x−axis is treated as the equivalent yaw rate.

friction coefficient, kd . The frictional torque, Q, acting on the yaw bearing is (Na, Chen, and Ren 2018)

Q =

(
ks + kd exp

[
−
(

γ̇

ns

)2
]
+ k f |γ|0.6

)
sign(γ) (9.3) 

where kd = kst − ks, and ks is the stiction. The “NonlinearModelFit” function of Mathematica was used to fit the 

equation to the measured γ after Q was inferred from the steady angular velocity following the release of the masses. 

This procedure gave the dots shown in Figure 24, with k f = 0.001 N.m/(rad/s)0.6, and ks = 0.0011. ns = 0.00006 

rad/s was used by (Vaz et al. 2018) and this value was applied in fitting the equation. The combined friction model is 

shown in Figure 25 for angular velocities more typical of SWT yaw bearings than in Figure 24, which demonstrates 

the importance of the Stribeck effect. Bearing friction was found to be important only at the lowest U = 5 m/s and so 

was not included in any predictions of the yaw response at U = 10 or 17 m/s. 

The friction model was included in the aerodynamic model to calculate the response in Figure 16(b) for U = 5 

m/s, and the results are shown in Figure 26. In principle, the Stribeck effect applies whenever the angular velocity 

approaches zero as, for example, on approach to the first peak of the response. Whether the static friction model is 

used in that case or not depends on the value of γ . kst was calculated as described above, based on the angle γs =
1.35◦, which is very low. The steady aerodynamic torque will be higher at the higher γ of the first peak. In other 

words, the friction model is only important when both γ and γ̇ are small.
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Figure 25. The combined friction model, Eqn. (9.3), demonstrating the importance of the Stribeck 

effect for yaw rates typical of yawing SWTs. The Stribeck angular velocity ns = 0.00006 rad/s.
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Figure 26. Yaw angle predictions (black line) compared to the experimental results (red □) for a delta wing tail fin of AR = 0.58,U =
5.0 m/s and γ0 = −40◦. The friction model, Eqn. (9.3), is included. Note that γs = 1.35◦ was determined from γ at t = 10 s.
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10 Tail Fin System Identification
The tail fin models developed above contain many parameters. For the generic planforms we have considered, some 

parameters were extracted from the literature with reasonable certainty, such as the potential flow coefficient, Kp, 

and vortex lift coefficient, Kv. These coefficients were determined mostly from lifting surface codes for many com- 

mon planforms as described in Section 11 and represented by simple equations. On the other hand, the parameters 

involving the separation angles, α∗, and the transition factors, σ , are the least certain considering the range of ARs 

and planforms. They were simply taken to be the well documented values from delta wing experiments. For that 

reason, we concentrate on delta fins in this section, but all the important conclusions we draw apply also to elliptical 

and rectangular fins. System Identification (SI) for the latter is considered in Section 12 in the context of simpler 

aerodynamic model than the one used here. 

It is also possible that a planform selected for a tail fin is not sufficiently close to a documented generic shape to 

allow easy extrapolation of known parameters. In that case, we recommend simple wind tunnel tests similar to 

those used here to establish the yaw response. We therefore explored the use of system identification methods to 

determine the parameters for arbitrary planforms by optimizing the fit of the yaw response equations to the wind 

tunnel measurements. 

Gray box SI was selected to estimate the parameters for any planform by assuming the initial values are those given 

in Table 2. This should lead to fast convergence and stability in the iterative process of the estimation. This section 

describes the use of the MATLAB tool box “Nonlinear Grey-Box Models”, (Ljung 1995) to estimate the parameters 

for the planforms tested above. The solution of the model with the initial parameters from Table 2 was compared 

to the estimated solution using the gray box SI for delta fins at the three wind speeds. In the Matlab code, which 

is listed in the Appendix, the initial values of all the parameters and their allowable final range are fixed. For all 

cases, the scaling functions, x1,x2, and x3, are assumed to be given by the static solutions in Eqns. (2.35) and (2.36), 

because their dynamics would increase the model order significantly without a certain gain in accuracy. Because of 

the large number of parameters in the present model, several were held fixed during the SI, in particular Kp, Kv, and
CDc. 

SI was used first to estimate the parameters at the highest wind speed U = 17 m/s and highest γ0 = −80◦. Then, the 

process was repeated for the lowest wind speed U = 5m/s to show the effect of the friction model on the change of 

estimated parameters. The estimated parameters at 17 m/s were checked against those at 10 m/s to see the effect of 

wind speed change on the parameters. Finally, to see the effect of release angle on the parameters, the same process 

was repeated at γ0 =−40◦ while keeping the parameters fixed to those at high release angle and U = 17 m/s. 

The first case is the low AR = 0.58 delta tail fin from Section 8.1.1 at 17 m/s and released at −80◦, see Figure 17. 

The parameters CDc = 1.3, Kp = πAR/2, and Kv = π were fixed. The initial values of the other parameters were
α∗

1 = 39◦, α∗
2 = α∗

3 = 60◦, σ1 = 0.3, and σ2 = σ3 = 0.1. These were allowed to vary: α∗
1 between 30 and 40◦. 

Similarly, 40◦ ≤ α∗
2 ≤ 60◦, 60◦ ≤ α∗

3 ≤ 80◦, 0 ≤ σ1 ≤ 2, 0 ≤ σ2 ≤ 2, and 0 ≤ σ3 ≤ 2. Also, the friction model 

was not included for this high wind speed. The predicted yaw angle using the initial parameters is shown in Figure 

27(a).2. The results are slightly different to those in Figure 17 for which the dynamic equations were used for the
x-functions whereas the static approximations were used here. The estimated parameters were α∗

1 = 40◦, α∗
2 = 60◦,

α∗
3 = 60◦, σ1 = 2, σ2 = 0.0363, and σ3 = 0.0161. These give an accuracy of the estimated fit of 91%, as shown in 

Figure 27(b), compared to the calculations using the initial parameters shown in Figure 27(a) with a fit of 70%. The 

small changes to the α∗ values and the larger changes to σ1,σ2, and σ3, which can be seen by comparing Tables 2 

and 3, have substantially improved the fit to the data. 

For U = 5 m/s with the same tail fin released at −80◦, the same initial parameters were used together with the 

friction model from Section 9 with fixed values of ks = 0.0011 N.m, kst = 0.0023 N.m, k f = 0.001 N.m/(rad/s)0.6, 

and an initial value of ns = 0.00006 rad/s. The calculated response is shown in Figure 28, for which the estimated 

parameters were α∗
1 = 40◦, α∗

2 = 60◦, α∗
3 = 60◦, σ1 = 0.4708, σ2 = 0.0381, and σ3 = 0.0327. A value of Stribeck 

velocity ns = 0.4745 rad/s was estimated. The calculations using the initial parameters in Table 2 gave 86% fit with 

the data while the estimated parameters, in Table 3, gave 94% as shown in Figure 28 (a) and (b).

2As shown in the code listing in the Appendix, the SI outputs were plotted using the Matlab function compare.m which is part of the SI 

toolbox The function does not allow any variation in the plotting, and it was not possible to edit the figure files it produces to make them more 

consistent with the style of the previous figures.
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(a) Initial parameter values.
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(b) Estimated parameter values.

Figure 27. Calculated (blue line) and measured response (gray line) for the delta tail fin with AR = 0.58. U = 17 m/s, γ0 = −80◦.

0 1 2 3 4 5 6 7 8 9 10
-100

-80

-60

-40

-20

0

20

40

Y
a
w

 A
n
g
le

, 
°

data (Yaw Angle, 
°
)

nonlinear_model: 85.59%

Time (seconds)

(a) Initial parameter values.
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(b) Estimated parameter values.

Figure 28. Calculated (blue line) and measured response (gray line) for the delta tail fin with AR = 0.58. U = 5 m/s, γ0 = −80◦.

Table 3. Estimated model parameters of a delta tail fin at γ0 = −80◦.

Wind Speed (m/s) σ1 σ2 σ3 α∗
1 (

◦) α∗
2 (

◦) α∗
3 (

◦)
17 2 0.0363 0.0161 40 60 60 

5 0.4708 0.0381 0.0327 40 60 60

32

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



0 1 2 3 4 5 6 7 8 9 10
-100

-80

-60

-40

-20

0

20

40
Y

a
w

 A
n
g
le

, 
°

data (Yaw Angle, 
°
)

nonlinear_model: 89.43%

Time (seconds)

(a) U = 5 m/s using parameters estimated for 17 m/s.
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(b) U = 10 m/s using parameters estimated for 17 m/s.

Figure 29. Calculated (blue line) and measured response (gray line) for the delta tail fin with AR = 0.58 and γ0 = −80◦.

With six parameters to adjust, it is possible that the SI finds local optimal values for each U . On the other hand, the 

theory developed above has no Reynolds number dependence, so the parameters optimized at any wind speed should 

apply to any other speed. To test this, the estimated parameters for U = 17 m/s were assumed to hold at U = 5 m/s, 

and the response was recalculated as shown in Figure 29(a). The calculated fit is 90%, showing improvement over 

the initial parameters in Figure 28(a) but not over the estimated response shown in Figure 28(b). 

In order to check the effect of U in the absence of friction on the parameters, the values for U = 17 m/s were used to 

calculate the response at 10 m/s where friction can also be disregarded. The response for this case is shown in Figure 

29(b). The estimation has a 90% fit which is close to the value in Figure 27(b) for 17 m/s. 

Using the estimated parameters from U = 17 m/s when the friction model is omitted gives an accuracy of more than 

80% at the other wind speeds. What is particularly encouraging is that the initial response, say to the first maximum 

in γ(t), is very accurately identified at all wind speeds. From Figure 15, this is the region where the nonlinear effects 

are most important. Thus, we recommend that the model parameters be determined by SI at the highest reasonable 

wind speed where friction is negligible, and high initial yaw angle. 

SI has been used to this point only for the γ0 = −80◦ data. A further check of the generality of the estimated con- 

stants was made for γ0 = −40◦ using the estimated parameters for 17 m/s and γ0 = −80◦. The fit in Figure 30(a) for 

17 m/s was 87% and 84% for 5 m/s in Figure 30(b). 

The results of Section 8.3 imply that wind tunnel tests are unlikely to allow meaningful SI for rapidly varying wind 

speeds. This may not be a major problem, however, as the parameters determining yaw response in unsteady wind 

are the same as for steady wind.
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(a) U = 17 m/s using parameters es- 

timated for 17 m/s of Figure 28(b).
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(b) U = 5 m/s using parameters es- 

timated for 17 m/s of Figure 28(b).

Figure 30. Calculated (blue line) and measured response (gray line) for the delta tail fin 

with AR = 0.58 and γ0 = −40◦ using the estimated parameters for γ0 = −80◦.
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11 Characterizing the Yaw Response of a General Planform
We have so far derived the yaw response equations for a limited number of planforms but considered a model for 

a general tail fin in Section 5. For most tail fins, c0/xp ≪ 1, and W can be assumed constant with x. It is also rea- 

sonable to neglect the apparent inertia of the tail fin, which involves ∂W/∂ t, compared to the structural moment of 

inertia, Iz. This assumption was verified by the authors in (Hammam and Wood 2022) and, for example, (Wright 

2005) and (Wood 2011). Further, the term containing γ̇2 will be significant only at high U and/or high γ . However, 

even at these conditions, it is likely to be negligible compared to the vortex damping term containing Kv|sinγ|γ̇ . 

All these considerations mean that the complicated response equations that we have derived may be considerably 

simplified in many practical cases. 

Applying these assumptions and neglecting the effect of vortex breakdown or, equivalently, the three x-functions, the 

general tail fin dynamic equation, Eqn. (5.2), can be expressed as

Iz,∗γ̈ ≈ Kp cosγ

(
γ̇r
U

+ sinγ

)
+Kv|sinγ|

(
2γ̇r
U

+ sinγ

)
(11.1) 

where Iz,∗ = 2Iz/(ρAt fU2r) is the “reduced” inertia and r is the effective length of the tail boom. U is assumed 

steady, and the rotor effect is neglected, so W = U sinγ + rβ̇ . It can be seen from (11.1) that two regimes apply at 

the two yaw angle limits: potential flow represented by Kp dominates at low γ while vortex flow represented by Kv
dominates at high γ . For low γ , Eqn. (11.1) can be approximated as

Iz,∗γ̈ ≈ Kp(
γ̇r
U

+ γ) (11.2) 

This linear equation is equivalent to that used in prior studies of tail fins, (Bradney, Evans, and Clausen 2018; Singh, 

Hemmati, and Wood 2012; Wood 2011), and wind vanes, e.g., (Kerhascoët et al. 2016). It also shows that the damp- 

ing and natural frequency of tail fin motion is mainly a function of Kp and U as demonstrated for the latter by Figure 

16(b) even for |γ| approaching 40◦. Similarly, for high γ the equation reduces to

Iz,∗γ̈ ≈ Kv(
2γ̇r
U

+1) (11.3) 

For the linear (11.3), the time to reach the first peak of the response is called the “peak time” given by

Tp =
π

ωn
√

1−ζ 2
(11.4) 

where ωn =
√

Kv/Iz,∗ and ζ =
√

Kv/Iz,∗r/(U). For ζ << 1, tp ≈ π
√

Iz,∗/Kv which means that increasing Kv
decreases Tp and increases maximum yaw rate of the tail fin. Thus, Kv dictates the value of maximum yaw and has a 

major effect on the gyroscopic loads on the turbine. 

Based on the above discussion, tail fins should have a high Kp in order to respond rapidly at low γ while a reasonable 

value of Kv to restrain the frequency and the gyroscopic loads on the turbine at very high γ , (Wright and Wood 

2007). 

The potential flow coefficient Kp or the lift coefficient slope of a slender wings, can be determined based on the 

planform using the correlation method in (Diederich 1951). Kp for any planform was found to depend only on a 

function in planform factor F , defined as F = AR/cosΛc/2. This factor is called “equivalent aspect ratio” in (Barnes 

2020) that takes the wing sweep into consideration: Λc/2 is the sweep of half the chord line. Kp is determined from 

(Diederich 1951), (Barnes 2020), and (Lowry and Polhamus 1957) as

Kp =
2πAR√

4+F2 +2
. (11.5) 

It can be shown that for low-AR delta wing the relation reduces to Kp = πAR/2. The half chord sweep for a wing 

with taper ratio λ = ct/c0 is 

tanΛc/2 = tanΛ− 2(1−λ )

AR(1+λ )
(11.6)
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Figure 31. Variation of Kp/(2π cosΛ) with F for any planform, (Diederich 1951), clα = 2π , CLα = Kp .

where ct is the tip chord of a tapered wing, (Lowry and Polhamus 1957). Using Eqns. (11.5) condenses the calcula- 

tion of Kp for any planform as shown in Figure 31. 

An example application of the above relations for a delta wing of Λ = 80◦ can be checked against the value of Kp in 

Eqn. (4.5). For this planform, AR = 4/ tanΛ = 0.71. This gives Kp = 0.98 from Eqn. (4.5). For the application of the 

current method, Λc/2 = 70.7◦ from Eqn. (11.6). This gives F = 2.15; hence, from Eqn. (11.5), Kp = 0.91, which is 

within 10% of the value calculated from Eqn. (4.5). 

The second important parameter is the vortex force coefficient, Kv, which dominates the tail fin response at high
γ . As Kv results from flow separation from all the sharp edges of a tail fin except the trailing edge, it has multiple 

contributions as noted above for rectangular fins, and as discussed in (Lamar 1974). For example, a cropped wing 

with swept leading-edges gives rise to Kv,le and side edges to Kv,se. In addition, it was shown in Section 6 that an 

augmented vortex force arises due to the sustained effect of the LEV aft of maximum width as shown in Figure 10. 

According to (Lamar 1974), Kv for a general tail fin is given from

Kv = Kv,le +Kv,se +Kv,a (11.7) 

where Kv,a is the augmented vortex lift coefficient introduced in Section 6. As Kv is responsible for the frequency of 

tail fin motion at high γ , it should be controlled to minimize the gyroscopic loads as mentioned above. This could be 

taken into account by controlling the three vortex force components through the choice of planform. 

Another important case of tail fin operation as stated in Section 3.1 is in reverse flow when ]γ| > 90◦. For asym- 

metric (in the x-direction) tail fins such as a delta wing, this causes a loss in Kv,le because the leading-edge becomes 

unswept in reverse flow, which could reduce the ability to orient the turbine to the wind at high γ . It was shown in 

Section 3.1 that the potential flow for a reverse tail fin is close to that for the regular one; however, the large decrease 

in Kv,le could reduce the important contribution of the vortex flow on the tail fin dynamics in reverse flow. At the 

same time, Kv,se will act in forward and reverse flow in the same way, so having a tail fin with a reasonable value of
Kv,se is likely to be crucial for effective operation of the tail fin in reverse flow. 

A tail fin, therefore, should have a high Kp, reasonable Kv, and high Kv,se. It will be shown in the following that 

increasing Kp increases Kv,le, so a way of increasing Kp without having very high Kv is to have a negative Kv,a. 

Another important aspect is that to increase Kp requires a large AR. One main method of increasing AR is through 

reduction in tail fin sweep Λ, but this will cause the LEV to break down at a small angle of attack (Figure 4). This 

reduces the performance of the tail fin significantly at high γ . To increase AR for constant Λ, the trailing edge can 

be positively notched; the notch length is the streamwise distance measured from the tip to the trailing edge at y =
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0. Notching the trailing edge results in an arrow planform. Before expanding on these arguments, a method of 

calculating the different components of the vortex force is explained in the next section.

11.1 Determining the Vortex Force Coefficients
We now consider the determination of the three components of Kv in Eqn. (11.7) for planforms that are modifications 

of the generic delta wing. The LEV coefficient can be determined directly from the Kp and Λ of a tail fin. (Polhamus 

1966) shows the suction analogy gives the relation between Kv,le and Kp as

Kv,le = Kp(1−KpKi)/cosΛ (11.8) 

where Ki = ∂CD,i/∂C2
L. CL is the tail fin lift coefficient and CD,i = C2

L/(πAR) is the induced drag coefficient, (Traub 

1997). So, Ki = 1/(πAR). For the delta wing example above Λ = 80◦, Kp = 0.98, and AR = 0.71, so Kv = Kv,le =
3.16 ≈ π . 

The augmented Kv,a is due to the LEV traversing the surface aft of the maximum b. From (Lamar 1976b)

Kv,a = 2Kv,le cosΛc∗/b0 (11.9) 

where the term multiplying c∗ resembles Kv,le averaged over the span b0 and c∗ is a characteristic chord length that 

is determined empirically in (Lamar 1976b) to be the streamwise distance from points B to points D in Figure 32. c∗

could have negative value as in the arrow delta wing planform, (Lamar 1976b). In this case this component of vortex 

force contributes negatively to Kv which could be an advantage in limiting the value of Kv. 

The side edge vortex coefficient Kv,se increases with increasing Λ and λ , but decreases with AR, (Lamar 1976a). A 

good correlation of Kv,se with these parameters is found from the lifting surface theory results in (Lamar 1976b):

Kv,se =
4π λ

(1+λ )(AR+2) 7√cosΛ
(11.10) 

which reduces to Eqn. (7.4) for a rectangular wing with Λ = 0◦ and λ = 1. It also reduces to the common result that 

at AR = 0 , Kvse = π , (Lamar 1974). Eqns. (11.5), (11.8), (11.9), and (11.10) were checked against some planforms 

with known coefficients from lifting surface theories in (Lamar and Gloss 1975). For the planforms in Figure 32, the 

comparison is given in Table 4. It is important to note that all three components of Kv have similar magnitudes. Table 

4 shows that the predicted coefficients compare well to the ones listed in (Lamar 1976b).

Table 4. Comparison between force coefficients calculated and those from (Lamar 1976b) for various 

planforms with Λ = 63◦ shown in Figure 32. Numbers in parentheses are equations in this report.

Tail fin Kp Kp Kv,le Kv,le Kv,se Kv,se Kv,a Kv,a
planform (11.5) (11.8) (11.10) (11.9)

Cropped delta 

(AR = 0.873,λ = 0.4) 1.279 1.26 1.504 1.5 1.397 1.3 0.893 0.891 

Cropped arrow 

(AR = 1.069,λ = 0.538) 1.487 1.42 1.824 1.81 1.693 1.43 0.389 0.382 

Cropped diamond 

(AR = 0.738,λ = 0.318) 1.107 1.11 1.274 1.27 1.2 1.19 1.242 1.24
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Figure 32. Different cropped planforms, (Lamar and Gloss 1975). All dimensions are in cm.
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12 Tail fin Planform Assessment
The planform has a major effect on the yaw response as shown, for example, by Eqn. (11.1). Tail fins need a high
Kp for good response at low γ without a large Kv to minimize the yaw rate at high γ . In addition, a high Λ will avoid 

vortex breakdown at low α , or low γ . One last requirement is to have a reasonable value of Kv,se in order to have 

sufficient moment to reorient the turbine downwind if very high yaw angles are encountered during starting at low 

wind speed. 

To increase Kp without reducing Λ, the tail fin could be “notched.” Notching can be thought of as removing a delta 

wing of the same b0 but higher AR from the trailing edge to leave it having a delta shape similar to the leading-edge. 

The first planform in Figure 32 is negatively notched, and the middle one is positively notched to give a cropped 

arrow. The notch ratio, a/b0, where a is the x-distance from point D to C, should be sufficiently positive to provide 

high AR and negative augmented vortex lift Kv,a. This tends to not increase Kv too much as a result of increasing AR. 

At the same time it should have a reasonable taper ratio, λ = BC/AD, to achieve a reasonable Kv,se. The three tapered 

planforms in Figure 32 are characterised by their different λ , which are listed in Table 4 along with their vortex force 

coefficients in the second and subsequent columns. A reasonable value of Kv,se helps to orient the tail fin upwind at 

low wind speed from a high γ0. 

A further required feature of this tail fin is to increase its sweep angle given by 

tanΛ =
4(1−λ )

AR(1+λ ) 

+
2a
b0

(12.1) 

One way of increasing Λ without affecting the aspect ratio is to have λ = 1. However, increasing Λ to very high 

values could make Kp independent of AR, as can be seen from Eqn. (11.5): as Λ increases, Kp → 2π cosΛ, which 

becomes low. Thus, Λ should be moderate for notched planforms, which may deteriorate the performance due to 

vortex breakdown at low angle of attack. 

Another more obvious way of having similar performance for the upwind and downwind orientation is to have 

a rectangular tail fin. This tail fin would have similar Kp as a delta wing of the same AR, but it would have high
Kv,se that would assist the turbine starting with large yaw. A possible problem with rectangular tail fins is that the 

center of pressure is at the leading-edge theoretically and very close to it actually. This will reduce the yaw moment 

arm, but only slightly if c0/xp ≪ 1. Even though rectangular tail fins have the limiting value of Λ = 0◦, their stall 

characteristics in terms of vortex breakdown and maximum lift have been shown experimentally to be similar to 

those of delta wings of the same AR, (Lamar 1974; DeVoria and Mohseni 2017; Bollay 1937).
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13 The Reduced Equation for Tail Fins
13.1 Analytical Response
In this section, the reduced Eqn. (11.1) and two simple extensions of it, are compared to the full models of Section 5 

for the three generic planforms. We start with the comparison of Eqn. (11.1) in Figure 33(a) for a delta fin, when r =
xp is assumed. It can be seen that both frequency and damping are underpredicted. Since the restriction c0/xp ≪ 1, 

required to derive Eqn. (11.1), is not satisfied, the model was recalculated assuming r = xp +2/3c0, which predicts a 

marginally higher damping term while slightly underpredicting the response frequency (Figure 33(b)). 

To check their significance, the flow functions xi defined in Section 2.1.1, were added to Eqn. (11.1) to give

Iz,∗γ̈ = x1Kp

(
γ̇r
U

+ sinγ

)
cosγ +

(
x2Kv|sinγ|+(1− x3)CDc

) (
2γ̇r
U

+ sinγ

)
(13.1) 

where xi are taken from Eqn. (2.34), and CDc = 1.3. Introducing r1 = xp + f1c0 and r2 = xp + f2c0 to separate the 

damping moment arm and steady-state moment arm, where 0 ≤ f1, f2 ≤ 1 depending on the planform, the model 

becomes

Iz,∗γ̈ = x1Kp

(
γ̇r2

1
Ur

+
r2

r
sinγ

)
cosγ +

(
x2Kv|sinγ|+(1− x3)CDc

)(
2γ̇r2

1
Ur

+
r2

r
sinγ

)
(13.2) 

In order to check the effect of planform on its accuracy, the reduced model, Eqn. (13.2), is compared to the full 

model, Eqn. (8.4), for the elliptical fin at low AR = 0.37 in Figure 34(a). In this case the reduced equation’s damping 

is lower than the measurements due to assuming the damping moment arm the same as the center of pressure r =
r1 = r2 = xp + c0/6. 

For the rectangular tail fin with r1 = xp + c0 and r2 = xp, the prediction for AR = 0.5 is shown in Figure 34(b). 

The reduced model predicts lower frequency than the measurements and the full model of Eqn. (8.6). Increasing r2
according to Eqn.(7.2) is expected to improve the predictions of the reduced model. 

It can be concluded that the reduced model is a promising alternative to the complicated full models, if the appro- 

priate moment arms and force coefficients of the different planforms are used. When these parameters are known or 

have been determined experimentally, the response of tail fins of any planforms can be calculated simply and with 

good accuracy using the reduced model. It must be remembered, however, that the reduced model predicts lower 

damping than in the measurements because it neglects the γ̇2 term, but this effect was shown to be small.

13.2 System Identification of the Reduced Equation
In Section 10, SI was used to increase the accuracy of the fit of the full model by adjusting the less-well-known 

aerodynamic parameters of the generic delta planform while keeping CDc, Kp, and Kv fixed. SI may, however, be- 

come computationally intensive or unstable if it was used to estimate the force coefficients Kp, and Kv for general 

planforms. The reduced model, however, could be a reasonable alternative since it contains fewer parameters.
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(a) r = xp.
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(b) r = xp + c0.
Figure 33. Yaw angle predictions of the delta fin using full Eqn. (8.2) (black line) and reduced model 

Eqn. (11.1) (blue line), and the experimental results (red □). AR = 0.58, U = 17 m/s, γ0 = −40◦.
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(a) Elliptical fin, AR = 0.37, U = 10 m/s,
γ0 = −40◦, and r = r1 = r2 = xp + c0/6.
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(b) Rectangular fin, AR = 0.5, U = 17m/s, γ0 = −80◦,
r = r1 = xp + c0, and r2 = xp.

Figure 34. Yaw angle predictions of a) the elliptical fin using full Eqn. (8.4) (black line), reduced model 

Eqn. (13.2) (blue line), and the experimental results (red □), b) the rectangular fin using the full model 

Eqn. (8.6) (black line), reduced model Eqn. (13.2) (blue line), and the experimental results (red □).
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(a) Reduced Eqn. (13.2).
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(b) Full Eqn.(8.6)
Figure 35. Yaw angle estimation of the rectangular wing fin using reduced model Eqn. (13.2) in (a) and full model Eqn. 

(8.6) in (b) compared to the experimental results in blue line . AR = 0.5, U = 17 m/s, γ0 = −80◦, and r1 = xp + c0.

A good test case for SI with the reduced model is the rectangular tail fin, which showed the least accurate predic- 

tion of the full model in Figure 19. In this test the values of Kp, Kv , CDc, σ1, σ2, σ3, and α∗
1 , α∗

2 , α∗
3 , and r2 were 

estimated. The estimated response using the reduced model is shown in Figure 35 for the rectangular tail fin of
AR = 0.5. The estimated parameters are Kp = 1.3, Kv = 3.56, CDc = 1.46, σ1 = 0.49, σ2 = 0.17, σ3 = 0.045, and
α∗

1 = 39.7◦, α∗
2 = 60◦, α∗

3 = 60◦, and r2 = xp + c0/8. The fit of the estimation was 82%, due mainly to the higher 

estimated damping. 

To compare the effectiveness of SI with the full model, the same case was investigated using Eqn. (8.6), and the 

estimation is shown in Figure 35(b). The aerodynamic synthesising parameters α∗
i and σi were left free while the 

other parameters were fixed as was done in Section 10. The estimated parameters are σ1 = 0.1815, σ2 = 0.1175,
σ3 = 0.0101, and α∗

1 = 40◦, α∗
2 = 60◦, α∗

3 = 60◦. The fit is 89%, which is not only better than the reduced model but 

the values of Kp and Kv are kept the same to those in Table 2. 

In summary: even though the reduced model, or Eqn.(13.2), predicts the response to a similar accuracy as the full 

model, the parameters used in the reduced model should be estimated by system identification using the full model.
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13.3 Reduced Model for OpenFAST
The general aerodynamic equations of tail fin yaw are given in Section 5. These equations are valid under general 

conditions without restricting assumptions. They are also essential for estimating accurate values of the model 

parameters as shown in Section 13.2. Under practical conditions, however, tail fins usually satisfy the condition
c0 ≪ xp, which means that the velocities acting on the tail fin do not change over the chord, and xp can be considered 

the reference length in the moment equation. This resulted in the reduced model of Eqn. (13.2). 

The reduced model gives the tail fin response in terms of parameters Kp, Kv, CDc, and the x-functions, and the mo- 

ment arm. In this section the reduced model will be extended to include the effect of Vel and Vin velocity components 

as defined in Figure 1. From Eqn.(5.1), the normal force acting on the tail fin assuming W is constant in time and 

length, is

N = −π ρ

4
x1VxW

∫ xp+c0

xp

(1 −
x− xp

c0
sinε)

∂b(x)2

∂x 

dx − ρ

2
W 2
[
x2Kv + (1 − x3)CDc

]∫ xp+c0

xp

b(x)dx. (13.3) 

The last integral of b(x) is just At f , and the first can be rewritten in terms of the high-AR form of Kp, to give

N =−ρ

2
At f Kpx1VxW − ρ

2
At f

[
x2Kv +(1− x3)CDc

]
W 2. (13.4)

Kp can be determined for the generic shape by, for example, Eqn. (4.5) for the delta tail fin, or approximated by Eqn. 

(11.5). Similarly, the moment equation at the apex (5.2) for the same conditions is

Ma =−π ρ

4
x1VxW

∫ xp+c0

xp

(
1−

x− xp

c0
sinε

)
∂b2(x)

∂x
(x− xp)dx−

ρ

2

[
x2Kv +(1− x3)CDc

]
W 2

∫ xp+c0

xp

b(x)(x− xp)dx. (13.5) 

For the wind tunnel tests in Section 13, c0 was not small compared to xp, which caused xcp to vary with c0. For many 

SWTs, however, c0 ≪ xp, and so xcp ≈ xp. Eqn. (13.5) can then be solved to give

Ma =−ρ

2
At f xcpx1KpVxW − ρ

2
At f xcp

[
x2Kv +(1− x3)CDc

]
W 2. (13.6) 

The advantage of these formulation is that they give the force and moment in analytic form in terms of parameters 

that are AR and planform-dependent. For example, Kp and Kv could be determined for different planforms from 

Section 11.
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14 The Current Model Compared to the Polar Model from Open-
FAST v3.4
Since this work was motivated primarily by the need to develop a new tail fin model for OpenFAST, it is appropriate 

to comment on its relation to the tail fin model used in OpenFAST v3.4, the last release that had a tail fin model. This 

is a “polar model” relying on a lookup table of tail fin lift and drag. Even though the model can accommodate non- 

linear forces, it has some shortcomings. First it assumes a fixed center of pressure in the tail fin moment equation, 

which is valid only for c0 ≪ xp as shown in Section 13. Secondly, it assumes that lift and drag are the resultant forces 

acting on tail fin surface; however, as shown in Section 2.1.1 for sharp-edged tail fin, the force normal to the chord 

of the tail fin is the only cause of yaw moment. As explained in Section 2.1.2, the LEV orients the force normally 

to the tail fin as shown in Figure 3. In addition, the associated thrust cancels the force of the potential flow in the 

tangential direction. In other words, the effect of induced drag of the tail fin is diminished. Finally, the polar model 

is a quasi-steady one and so ignores the terms in the moment equation that depend on the yaw rate and acceleration, 

which are obvious in, for example, Eqn. (8.2). 

Moreover, the current model allows synthesizing the normal force coefficients for most tail fin planforms for any 

aspect ratio, sweep angle, taper, and notch ratios for a wide range of α < |180◦|. This analytic representation is more 

general than the lookup table in the OpenFAST v3.4 model, which is likely to be hard to construct except for some 

simple planforms at low aspect ratios. 

For unusual planforms not covered in the current report, SI of wind tunnel test results allows systematic identifica- 

tion of the parameters describing the tail fin aerodynamics.
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15 Summary, Conclusions, and Recommendations
This report develops nonlinear equations for the yaw response of a tail fin for small wind turbines in a manner that 

can be implemented in the NREL aeroelastic code OpenFAST. 

The linear theory of tail fins and wind vanes is well understood and has some important consequences, (Bradney, 

Evans, and Clausen 2018; Singh, Hemmati, and Wood 2012; Wood 2011; Kerhascoët et al. 2016). For example, it is 

easy to show on dimensional grounds that in the absence of Reynolds number effects, the frequency of the yaw re- 

sponse is proportional to the wind speed at the tail fin. An extension to the nonlinear regime, however, is needed for 

two main reasons. The first is to account for high angles of attack and the second is to generalize the tail fin model 

beyond the generic shapes of delta wings, rectangles, and ellipses for which the linearized equations are known for 

low aspect ratios. We assume that higher aspect ratio and more complex planforms retain the simplification that 

Reynolds number effects are small. Even for the generic shapes, high aspect ratio can seriously complicate the linear 

unsteady slender body theory (USBT) that is the basis of tail fin analysis described herein. In addition, we argue 

that high angles of attack occur most often during the starting of small wind turbines at low wind speed where the 

friction in the yaw bearing assembly may well influence the yaw behavior. Thus a friction model was developed 

by accounting for the well-known difference between static and dynamic friction and using additional inputs from 

measurements of yaw bearing friction. 

Our approach was to extend USBT to high angles and aspect ratios and test the resulting formulations against wind 

tunnel experiments of tail fin yaw response in the absence of a nacelle and rotor. The experiments confirmed the 

wind speed dependence of the response frequency. Unsurprisingly, the low-angle response is dominated by the 

“potential flow coefficient” Kp, which gives way to the “vortex coefficient” Kv at high angles. The implementation 

of Kv follows the analysis of (Polhamus 1966) who quantified the increase in delta wing lift due to vortices shed 

from the leading and side edges at high angles. Additional unsteady effects such as vortex bursting or breakdown, are 

modeled in the literature and herein by simple linear differential equations. 

Our nonlinear equations for the generic shapes at high angles and aspect ratios generally gave good predictions of 

the wind tunnel experiments, but the complete equations are complicated and contain parameters whose values are 

not well established. Thus we used system identification (SI) techniques to optimize the fit of the equations to the 

wind tunnel measurements; small adjustments to the parameters led to significant improvements in the accuracy 

of fitting the model to the data. Also, it is generally sufficient to identify three model parameters that express the 

relative importance of the different flow components with angle of attack. 

The complexity of the complete equations suggested the need for reduced forms, so Eqn. (11.1) and its variations 

were developed through a careful assessment of the relative importance of the terms in the complete equations. The 

reduced equations gave similar accuracy as the full equations, if the appropriate values of different parameters are 

used, and are easier to deal with. We conclude that USBT provides a good framework to develop tail fin models and 

to understand the desirable features of them. For example, we argue that a tail fin requires a high Kp to track the 

wind at low angles and only a moderate Kv to avoid excessive yaw rates at high angles. In addition, the reverse flow 

over tail fins was considered on the grounds that they may experience very high angles of yaw. 

The full model of tail fin yaw response allows for more accurate SI than the reduced model as shown in Section 13.2: 

the full model produced a fit to the measured response of over 80% in most cases. This high accuracy for a nonlinear 

second-order model is considered a powerful result in describing the tail fin yaw response. Also, the full model was 

shown to achieve a better fit than the reduced model by allowing only a small number of adjustable parameters. Part 

of the strength of the full model is that the moment arms of the different force components are separately modeled 

and identified. This is compared to the reduced model, which assumes the moment arm of the damping term, with 

the center of pressure assumed to be the same for both potential and vortex flow models, whereas they can differ 

in the full model. The full model accommodates a varying velocity distribution over the tail fin, which becomes 

important when the chord is not small compared to the tail boom length, which applies to the tail fin models used 

in the wind tunnel tests, Section 8. The full model allowed the ranges for these parameters to be specified in the SI, 

which probably helped to stabilize the process. 

Based on the above, we conclude that the full model of Section 5 should be used for tail fin parameter estimation 

when the planform is similar to the generic shapes considered here. Only the dependence of the flow functions xi for
i = {1,2,3} on the transition angles α∗

i and decay rates σi should be estimated, by fitting the model to the results of
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wind tunnel experiments similar to those described here. Also, the report provides equations for the force coefficients
Kp and Kv for planforms of any taper, sweep angle, notch ratio and aspect ratio. For planforms that differ signifi- 

cantly from the ones described by these shape parameters, the coefficients and the moment arms should be estimated 

from wind tunnel tests using an SI code similar to that in the Appendix. The estimation process should specify a 

range for the parameters to be estimated based on the physical constraints stated in the report in order to avoid un- 

physical values. The SI should be performed at the highest tunnel speed and tail fin release angle possible using 

the full model. The optimized parameters should apply at other wind speeds and release angles with a reasonable 

accuracy. 

The reduced model, Eqns. (13.4) and (13.6), can be used with a good accuracy when the tail fin satisfies the con- 

dition c0/xp ≪ 1. Finally, it is important to note that a major limitation of the wind tunnel tests was their inability 

to produce a time variation in the wind speed that was sufficiently large to test the USBT equations. Despite the 

time-dependent terms containing only parameters that govern the steady wind speed response, it is likely that field 

measurements of SWT yaw will be needed to fully assess the theory.
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Appendix A. MATLAB Code for System Identification of Tail Fin Re-
sponse

System Identification using gray box modeling as described in Sections 10 and 13.2, estimates some parameters of 

the model by maximizing the fit of the theoretical response to the measurements. This Appendix provides the Matlab 

code for the SI in those sections. It is intended to be an example of using SI for tail fin response estimation with gray 

box techniques. The code assumes steady wind speed and optimizes some of the model coefficients of a delta fin in 

Eqn. (8.2). It was used for example to generate Figure 30(b). 

Comments are highlighted in red. All the Matlab SI routines assume the input data is equi-spaced in time. 

indata=load(filename,’-ascii% The first column is time, the second is the yaw angle
yin=indata(:,2); % The yaw angle
data = iddata(yin,[],Ts); % This step seems necessary to process an ascii data file
data.OutputName = ’Yaw Angle’; 

data.OutputUnit = ’deg’; 

data.Tstart = 0; 

data.TimeUnit = ’s’;
% Data for USBT solution
U=5; % Wind speed (m/s)
Itail=0.055; % Total tail fin inertia (kg m∧2)
rho=1.2; % Air density (kg/m∧3)
b0=0.078; % Tail fin span (m)
fa=(0.25*pi*rho*b0*b0); 

Idash= Itail/fa; % Reduced inertia
c0=0.27; % Tail fin chord (m)
xp=0.443; % Tail boom length (m)
Kp = 0.91; % Potential flow coefficient = pi*AR/2
Kv= pi; % Vortex lift coefficient
Cdc=1.3; % Drag coefficient at 90 deg.
kf = 0.001;ks=0.0011;kd=0.0012;n=0.47; % Friction coefficients
s1=0.3; s2=0.1;s3=0.1; a1=39; a2=60; a3=60; % Aerodynamic initial parameters
A1=c0*(0.2*c0*c0+ 0.5*xp*c0+xp*xp/3); % Added Inertia coefficient
A2=U*(c0+xp)*(c0+xp);% Aerodynamic damping coefficient of potential flow
A2_1=U*(0.5*c0∧2+4/3*c0*xp+xp∧2); % Aerodynamic damping coefficient of vortex flow
A2_2=2/5*c0∧3+3/2*xp*c0∧2+2*xp∧2*c0+xp∧3; % Damping coefficient of (d gamma/dt)∧2
A3=U*U*(2*c0/3+xp); % Steady state term coefficient
g=-40*pi/180; % Initial yaw angle
g0=0; % Initial yaw rate
nonlinear_model = idnlgrey(’NLinearYaw_m2’,[1 0 5],[fa;Idash; A1; A2;A2_1;A2_2; A3; ... 

Kp; Kv; Cdc; s1; s2;s3; a1; a2;a3; kf; ks; kd; n],[g; g0; x10; x20; x30],0); setpar(nonlinear_model,’Fixed’, true true 

true true true true true true true true true ... 

true true true true true true true true true false )
% Use the nonlinear gray box SI Matlab routine and set the free parameters
% Specify range of the free parameters:
nonlinear_model.Parameters(11).Minimum=0;nonlinear_model.Parameters(11).Maximum=2; % Range of sigma_1
nonlinear_model.Parameters(12).Minimum=0;nonlinear_model.Parameters(12).Maximum=2; % Range of sigma_2
nonlinear_model.Parameters(13).Minimum=0;nonlinear_model.Parameters(13).Maximum=2; % Range of sigma_3
nonlinear_model.Parameters(14).Minimum=30;nonlinear_model.Parameters(14).Maximum=40; % Range of al- 

pha*_1
nonlinear_model.Parameters(15).Minimum=40;nonlinear_model.Parameters(15).Maximum=60; % Range of al- 

pha*_2
nonlinear_model.Parameters(16).Minimum=60;nonlinear_model.Parameters(16).Maximum=80; % Range of al- 

pha*_3
nonlinear_model.Parameters(20).Minimum= 0;nonlinear_model.Parameters(20).Maximum=1; % Range of n_s
nlgreyest(data,nonlinear_model,’Display’,’Full’,opt);
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getpvec(nonlinear_model,’free’) 

figure; 

compare(data,nonlinear_model) %This command produces figures like 30(b)
xlabel(’Time,s’) 

ylabel(’Yaw angle, gamma’) 

end
% The function NLinearYaw_m2 :
function [dx,y] = NLinearYaw_m2(t, x, u, fa, Idash, A1, A2, A2_1,A2_2, A3, Kp, Kv, Cdc,... 

s1, s2, s3, a1, a2, a3, kf, ks, kd, n, varargin)
% Calculate x_i values
x1=1/(1+exp(s1*(180/pi*abs(x(1))-a1))); 

x2=1/(1+exp(s2*(180/pi*abs(x(1))-a2))); 

x3=1/(1+exp(s3*(180/pi*abs(x(1))-a3)));
% Output equation:
y=x(1)*180/pi;
% The state equations:
dx=[x(2); -((A2*x1*cos(x(1))+2*A2_1*x2*Kv/Kp*abs(sin(x(1)))+2*A2_1*(1-... 

x3)*Cdc/Kp*abs(sin(x(1))))*x(2) +A2_2*(x2*Kv/Kp*abs(x(2))+... 

(1-x3)*Cdc/Kp*abs(x(2)))*x(2)+A3(x1*cos(x(1))*sin(x(1))+... 

x2*Kv/Kp*sin(x(1))*abs(sin(x(1)))+(1-x3)*Cdc/Kp*sin(x(1))))/(Idash+A1)-... 

(kf*abs(x(2))∧0.6*sign(x(2))+ks*sign(x(2))+(kd)*exp(-(x(2)/n)∧2)*... 

sign(x(2)))/(Idash+A1)/fa; 

end 

Part of the input data file is : 

0 -41.7 

0.001 -41.55 

0.002 -41.55 

0.003 -41.55 

0.004 -41.55 

0.005 -41.55 

0.006 -41.55 

0.007 -41.55 

0.008 -41.55 

0.009 -41.55 

0.01 -41.55 

0.011 -41.55 

0.012 -41.55 

0.013 -41.55 

0.014 -41.55 

0.015 -41.55 

0.016 -41.55 

0.017 -41.55 

0.018 -41.55 

0.019 -41.55 

0.02 -41.55 

0.021 -41.55 

0.022 -41.55 

0.023 -41.55 

0.024 -41.55 

0.025 -41.55 

0.026 -41.55 

0.027 -41.55 

0.028 -41.55
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0.029 -41.55 

0.03 -41.55 

0.031 -41.55 

0.032 -41.4 

............... 

4.424 0.45 

4.425 0.45 

4.426 0.45 

4.427 0.45 

4.428 0.45 

4.429 0.45 

4.43 0.45 

4.431 0.45 

4.432 0.6 

........... 

8.805 1.2 

8.806 1.35 

8.807 1.35 

8.808 1.35 

8.809 1.35 

where the first column is the measured time in seconds and the second is the yaw angle in deg. The code needs only 

the second column while the sampling time Ts = 0.001s for this case is input. The last lines of data show the tail fin 

stopping angle γs = 1.35◦, see Eqn. (9.1).
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