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Context & scale

Chemical recycling and upcycling

of plastics will be critical

technologies to address the

plastic pollution challenge. Given

multiple process options for

recycling plastics, rigorous

process analysis is necessary to

identify challenges that must be

overcome for a technology to

reach an industrial scale. For PET

recycling, several chemical

recycling strategies have been

proposed and, in some cases—

chemo-catalytic and thermal

approaches—are being scaled

up. Given that PET exhibits labile
SUMMARY

Esterases have emerged as important biocatalysts for enzyme-
based polyester recycling of poly(ethylene terephthalate) (PET) to
terephthalic acid (TPA) and ethylene glycol (EG). Here, we present
process modeling, techno-economic, life-cycle, and socioeconomic
impact analyses for an enzymatic PET depolymerization-based recy-
cling process, which we compare with virgin TPAmanufacturing. We
predict that enzymatically recycled TPA (rTPA) can be cost-compet-
itive and highlight key areas to achieve this. In addition to favorable
long-term socioeconomic benefits, rTPA can reduce total supply
chain energy use by 69%–83% and greenhouse gas emissions by
17%–43% per kg of TPA. An economy-wide assessment for the US
estimates that the TPA recycling process can reduce environmental
impacts by up to 95% while generating up to 45% more socioeco-
nomic benefits, also relative to virgin TPA production. Sensitivity an-
alyses highlight impactful research opportunities to pursue toward
realizing biological PET recycling and upcycling.
ester bonds that are also common

in natural biological systems, the

research community is vigorously

pursuing the engineering of

esterase enzymes to

depolymerize PET. This study

applies process analysis to

highlight drivers that the

community can focus on to

accelerate the development of a

biological PET depolymerization

process and also provides a basis

to compare current and future

enzyme-based approaches for

PET-recycling to chemo-catalytic

and thermal methods.
INTRODUCTION

Despite widespread application in daily life, there are limited options for the recy-

cling of synthetic plastics, which presents an opportunity for the development of

critical new technologies. As plastics accumulate both in landfills and in the natural

environment, these materials are causing a global pollution crisis due to their recal-

citrance against abiotic and biological breakdown.1–3 Compounding the issue, the

current mechanical recycling industry often produces lower-value products and is

unable to recycle many types of plastics. This confluence of environmental concerns

and the limitations of current recycling technology have catalyzed renewed interest

from the global research and industrial communities to pursue recycling strategies

that rely on depolymerization of polymers into their constituent monomers or other

processable, non-polymeric intermediates, namely via chemical recycling.4

Poly(ethylene terephthalate) (PET) is the most abundantly produced synthetic poly-

ester in circulation today,1,5 produced globally at 82 million metric tons (MMT) per

year.6 The majority (54%) of PET is used in the production of textiles and fibers,

with 24 MMT (or 29%) undergoing further polymerization to produce resin for rigid

containers and single-use bottles, whereas the rest is used in films and other appli-

cations.7 Looking at the PET consumed annually in the United States (US),5 which is

approximately 3 MMT, only 18.5% is currently processed by mechanical recyclers.8
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Therefore, to achieve higher rates of PET recycling and potentially include PET sub-

strates such as textiles that are not currently recycled, multiple chemical recycling

strategies for PET have been proposed, developed, and, in some cases, scaled up

over the last several decades.4,9,10 Methanolysis, hydrolysis, aminolysis, glycolysis,

and thermal depolymerization strategies are among the most well-studied chemical

recycling processes for PET.4,9,10

PET is synthesized mainly via polycondensation of two building blocks: terephthalic

acid (TPA) and ethylene glycol (EG). The inter-monomer chemical linkage in PET is an

ester bond, which is a prevalent linkage in biomolecules. For example, cutin, su-

berin, hemicellulose, and lignin are abundant plant-derived polymers, all of which

exhibit ester bonds.11–13 Given the prevalence of aromatic and aliphatic building

blocks in ester-linked natural polymers, it is perhaps not surprising, in hindsight,

that esterase enzymes can cleave ester bonds in PET and other synthetic polyes-

ters.14–19 Considering the potential for esterases to deconstruct PET under mild con-

ditions, the global research community is vigorously pursuing efforts in prospecting

for new PET-degrading enzymes (PET hydrolases), solving crystal structures thereof,

and engineering and evolving these enzymes for improved PET degradation capac-

ity, with the aim of developing efficient biocatalysts for use as a chemical recycling

approach to address this common polyester.20–36

Given the growth in research related to biocatalyst development for PET depolymeriza-

tion, it is critical to understand the projected economic and sustainability impacts that

such a process could have toward enabling PET circularity. To that end, we present

here a rigorous, comprehensive modeling effort for a conceptual enzymatic process

to depolymerize PET to recycled TPA (rTPA) and EG, including all utilities required for

an integrated process. Techno-economic analysis (TEA) of this process enables predic-

tions of the capital and operating costs to project the minimum selling price (MSP) for

rTPA, including the sale of the two co-products, EG and sodium sulfate (SS). Sensitivity

analyses are employed to highlight the importance of the biocatalytic rate, enzyme

loading, and enzyme cost, along with multiple additional, tunable process variables

that are important for further process improvement and optimization. We employ the

Materials Flow through Industry (MFI) tool37 to estimate the total supply chain energy

and greenhouse gas (GHG) emissions for rTPA production from reclaimed PET via

this enzyme-based PET deconstruction process and compare this with virgin TPA

(vTPA) production. We expand this MFI analysis to include the use of a top-down, envi-

ronmentally extended input-output (EEIO) model38 to evaluate the US economy-wide

impacts of implementing the rTPA process and compare it with the production of

vTPA across multiple environmental and socioeconomic indexes.

Taken together, the results in this study highlight the most crucial process steps to

improve enzyme-based recycling technologies for PET. In addition to the economic

factors, this work identifies important sustainability drivers for realizing environ-

mental benefits (i.e., reduced resource use and byproduct release) and socioeco-

nomic potential (i.e., added economic value and number of jobs) possible through

an enzyme-based PET-recycling strategy.

Process and economic model construction

A process model for enzymatic PET depolymerization was developed by Aspen Plus to

explore how the assumptions and process requirements impact the process economics

and sustainability. Figure 1 presents a simplified process flowdiagram (PFD) for the base

case, whereas a detailed PFD indicating all model inputs is provided in Figures S1–S4.

The recycling facility is modeled on the scale of 150Mt of PET flakes processed per day
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Figure 1. Enzymatic PET-recycling process design and representation of supply chain and economy-wide analysis

(A) Simplified process flow diagram of the PET enzymatic depolymerization process, divided into three sections. In the first section, polyester flakes are

pre-treated (e.g., extrusion, size reduction, etc.) and subsequently enzymatically depolymerized in the second section. Following depolymerization,

rTPA, SS (salt), and EG are recovered via downstream processes in the third section. PET flakes and other raw material inputs are shown in red,

intermediate, recycle, and waste streams are shown in black, and the product and co-product streams are shown in blue. Case studies were performed

to evaluate key variables and process operations in each process section, labeled at the top of the upper panel.

(B) A representation of the supply chain modeled for the bottom-up MFI tool assessment in orange, and the top-down life cycle assessment by the

BEIOM tool in green. BEIOM considers the supply chain for the production of rTPA, as well as production, distribution use, and environmental and

socioeconomic factors. The detailed process flow diagram of the base case design as modeled in Aspen Plus is presented in Figures S1–S4.

ll
OPEN ACCESSArticle
(�50,000 Mt/year). For reference, the average annual capacity of a US PET production

plant is 88,000 Mt/year.6 The plant size modeled here represents 1.7% of all PET

currently consumed in the US and 7% of the PET volume currently recycled in the US.

Post-consumer PET recycling in the US is primarily conducted for single-use beverage

bottles and, in total, accounts for �0.68 MMT (1,503 million pounds) of PET per year,

which is �29% of all PET bottles consumed annually in the US.39 The modeled facility

is assumed to be in close proximity to another manufacturing plant, such as a PET poly-

merization plant or a petroleum refinery, such that high-pressure steam, cooling water,

and wastewater treatment are assumed to be over-the-fence and priced accordingly as

utility operating expenses. Capital investment to build the auxiliary infrastructure for util-

ities is accounted in the outside battery limit costs.

In the baseline case, we assume that clean PET flakes, consisting of approximately

30% colored flakes, are obtained directly from a recycler, priced at $0.66/kg.40,41

The recyclable fraction (i.e., PET fraction, denoted by F) of the total feed is assumed

to be 0.95, with the remainder being contaminants such as caps, labels, adhesives,
Joule 5, 2479–2503, September 15, 2021 2481
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dirt, etc. Although enzymatic recycling is of potentially greater significance for dirty,

comingled streams, we had access to more reliable data on market prices of clean

PET flakes. Hence, the base case considered clean, colored flakes, which serves as

a conservative projection of the rTPA price. Other scenarios with different PET feed-

stock prices and PET purity are analyzed as sensitivity cases. Prior to

depolymerization, feedstock pretreatment steps designed to improve enzymatic

conversion are modeled in which clean PET flakes are fed to an extruder that heats

the plastic above its melting point (Tm�260�C). The molten PET is then quenched to

yield PET with lower crystallinity, followed by size reduction via a microgranulator.42

This series of pretreatment steps results in a PET powder with particle sizes of less

than 1mmprior to enzymatic depolymerization, in line with recent literature.35,42 Un-

like mechanical recycling, drying is not required in this sequence.

Following mechanical pretreatment, the plastic is fed to a series of stirred-tank reac-

tors for depolymerization to rTPA and EG via enzymatic hydrolysis. Specifically, the

PET stream is conveyed to a series of stirred tanks (950 m3 vessels) with a modeled

solids loading of 15% in the base case.35 The depolymerization process is catalyzed

by a generalized PET hydrolase that is produced offsite and purchased directly for

use in this process. Products of PET hydrolysis are recovered in this process scheme

upon reaching a 90% PET degradation extent.35 Additionally, this model ignores

other monomers that may be present in PET (e.g., isophthalic acid, 1,4-cyclohexane-

diol, diethylene glycol, etc.).

After enzymatic depolymerization, the hydrolysate is passed through a filter press

where the remaining solids are separated from the reaction solution, followed by

ultrafiltration to remove the enzymes. The filtrate is subsequently passed through

an activated carbon column to remove additives such as dyes and pig-

ments.35,43,44 These steps inherently assume that rTPA at pH > 7 remains soluble

in the aqueous phase. The solution is then acidified by the addition of sulfuric

acid to lower the pH to 2.5 and cooled to precipitate rTPA.44,45 The precipitate

is passed through a continuous crystallizer and dried to recover rTPA crystals at

a purity of >98%.44,46 The remaining liquor is neutralized to pH 7 by the addition

of caustic (e.g., NaOH) and passed through a membrane unit with 96.5% rejection

for SS and 72% rejection for EG.47–49 The permeate, which is predominately wa-

ter, is sent to the adjacent wastewater treatment, and the retentate is sent to a

continuous crystallizer for SS recovery. The SS is assumed to be crystallized as

Glauber’s salt (the most stable hydrate form) with 98.5% purity and sold at a mar-

ket price of $0.15/kg50 as a co-product (overall, 76% mass recovery, adjusted for

anhydrous form). The model assumes that any remaining SS salt is lost during the

processing steps, such that the mother liquor from salt crystallization primarily

consists of EG and water. EG is subsequently recovered via a series of distillation

columns to obtain EG at a purity of 99%, enabling it to be sold at market price

($0.96/kg).50 The overall recovery of rTPA and EG in the process is modeled at

90% and 50%, respectively, and these values are varied as parameters in the

sensitivity analysis.

Material and energy balances from the model were used to estimate the required

equipment size and capital investment, whereas information on raw materials, utili-

ties, etc., was used to estimate the variable operating expenses. A discounted cash

flow analysis approach with certain financial parameters (see Table S1) was applied

to project the rTPA MSP produced by this facility, with EG and SS salt sold at their

respective market prices as co-products. A summary of the results from this eco-

nomic analysis can be found in Table S2.
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RESULTS

Base case scenario

The base case scenario, as outlined earlier, is a 150-metric-tons-per-day (MTPD)-

sized plant that considers depolymerization of clean PET flakes (F = 0.95, cost =

$0.66/kg, 30% color) to yield rTPA as a primary product, while EG (50% recovery,

selling price $0.96/kg) and SS (76% recovery, selling price $0.15/kg) are sold as

co-products. Co-product selling prices are based on a 5-year average of historical

prices in the US. For reference, historic prices for vTPA and the co-products are pro-

vided in Figures 2A and 2B. Including revenue from co-products, rTPA achieves an

MSP of $1.93/kg with amajority of the cost attributed to the feedstock supply, shown

in blue in the simplified cost breakdown chart (Figure 2C). The base case results for

rTPA MSP can be further delineated by the process sections. The detailed MSP cost

breakdown that combines the capital and operating contributions from each pro-

cess step is shown in Figure 2D.

The total capital investment for a plant designed to process 150 MTPD of PET flakes

is projected to be �$67M (Figure 2E). The highest contribution (29%) to the total

capital investment for constructing this plant is from product recovery steps, i.e.,

rTPA crystallization, salt recovery, and EG distillation, primarily owing to continuous

crystallizers and distillation columns. Feedstock pretreatment, which consists of

extrusion and cryo-micronization, and the depolymerization section, which consists

of a series of batch hydrolysis reactors, contribute nearly equally to the capital ex-

penses, at 20% each. Additionally, a 25% contribution is assumed from the outside

battery limit (OSBL) investment, which consists of additional capital expenditure,

such as development of piping, instrumentation, etc., required to integrate the

over-the-fence utilities into the plant. Detailed information on the specific unit oper-

ations and the capital requirements for each process section is shown in Table S3.

In addition to the initial capital expenditures, the plant will require $44M per year in

operating costs. As shown in Figure 2F, these operating expenses are dominated by

the feedstock cost, which is priced for clean PET flakes (containing 30% colored

flakes) sourced from bottle recyclers.40,41 Electricity consumption is the other major

driver in the pretreatment section, primarily required for melt extrusion and micro-

grinding. In other process areas, the cost of chemicals such as caustic for pH main-

tenance, particularly in hydrolysis reactors, and sulfuric acid for rTPA crystallization

are primary drivers. The cost contributions for these chemicals are largely offset

by the recovery of SS, and salt recovery is being explored as a variation in the

base case process design (vide infra). Similarly, steam usage in the distillation step

is attributed to the EG recovery, which requires substantial water evaporation. In

addition, maintenance costs for filter, activated carbon bed, andmembrane replace-

ment are accounted for in the economics. Further details of the operating costs are

described in Table S4.

Additional analysis, conducted by the MFI tool, estimates that rTPA has a 69% lower

supply chain energy requirement (Figure 2G) and produces 17% less GHG (Fig-

ure 2H) than vTPA production. As shown in Figure 1, we divide the base case into

three sections: (1) feedstock pretreatment, (2) enzymatic PET depolymerization,

and (3) product and co-product recovery (rTPA, EG, and SS).

To further examine the process sections, we considered three primary case studies

focusing on variables within each section. In doing so, this work highlights the poten-

tial for further research and development across multiple disciplines and highlights
Joule 5, 2479–2503, September 15, 2021 2483



Figure 2. Detailed cost breakdown of rTPA in the base case

(A and B) The US historic price data for (A) vTPA and (B) the co-products (EG and SS).

(C and D) The summary of the base case results for the (C) minimum selling price from the combined process, (D) minimum selling price, both the capital

and operating contributions, shown across each process section.

(E) Total capital investment of $67M in the base case split into different steps of the recycling process, including outside battery limit (OSBL), which is

assumed to be 25% of battery limit investment.

(F) Annual operating expenses for the proposed PET-recycling design, disaggregated by process step (total = $44M/year). Raw materials include PET

feedstock cost as well as other chemicals such as enzymes, caustic, and sulfuric acid, and co-products are EG and SS.

(G and H) The base case (G) supply chain energy, and (H) GHG emissions of rTPA are shown in comparison with vTPA. Numerical data in this figure are

reported in Tables S5–S10.
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the most important factors to be overcome to enable the commercial success of this

technology.

Case study I: Feedstock pretreatment

In order to understand the opportunities for process improvement, we examined

various parameters. As noted in the base case, feedstock cost is one of the largest con-

tributors to rTPA MSP. Most feedstock costs are associated with the cleaning of PET

bales and shredding into flakes.41 Due to the variable nature of post-consumer waste

composition, and the lack of uniformity in sorting schemes, the purity grade and relative

contaminant percentages of PET bales vary between material recovery facilities
2484 Joule 5, 2479–2503, September 15, 2021



Figure 3. TEA sensitivity results for process parameters associated with the feedstock, pretreatment, and plant size

(A) Historical market prices of PET flakes.

(B) MSP of rTPA as a function of feedstock cost.

(C) Sensitivity analyses demonstrating variations in the pretreatment process section that exhibit the highest impact on rTPA selling price.

Abbreviations and symbols used—FPET: fraction of PET (by weight in the feedstock, base case value = 0.95), MTPD, metric tons per day (base case

value = 150 MTPD); NMP, no mechanical pretreatment. Numerical data in this figure are reported in Tables S11 and S12.
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(MRFs),51,52 which, in turn, will affect the quality and price of reclaimed PET. Market re-

ports indicate that the average price of mixed, baled PET in the US varies from $0.14–

0.48/kg, translating to clean PET flakes available at $0.55–0.90/kg (Figure 3A).40,41 Due

to the variability in cost, sensitivities of PET prices ranging from $(�0.11) to $1.10/kg are

modeled (equivalent to �5 cents to 50 cents per pound of PET), where negative feed-

stock costs indicate a scenario where a landfill tipping fee is potentially avoided.40,53,54

As observed, the PET feedstock cost drives the greatest variability in selling prices,

which range from $0.71/kg to $2.63/kg as modeled and exhibit a linear relationship

with MSP (Figure 3B). Additionally, to accommodate the variability in relative PET con-

tent, PET fraction sensitivities of F = 0.99 (e.g., clean mechanically recyclable grade)

and F = 0.91 (e.g., post-consumer curb side pickup grade but enriched in PET) are as-

sessed.40,51,52 The relative PET content has minimal effect on MSP ($0.17/kg).

Additional sensitivity cases explored in this case study include varying the plant size

and modifying the pretreatment configuration (Figure 3C). The latter case considers

an alternate design scenario where no mechanical pretreatment (NMP) is required,

relying on the assumption that enzymes capable of activity on both crystalline and

amorphous domains of PET are available, thereby rendering the pretreatment steps

of extrusion, amorphization, and micronization unnecessary. By avoiding the me-

chanical pretreatment (NMP case) and achieving the same rate of depolymerization,

the rTPA MSP can be lowered to $1.69/kg.
Case study II: Enzymatic PET depolymerization

Next, we considered key variables in the enzymatic depolymerization section. Previ-

ous work from several research groups indicates that cost of enzyme production can

range widely from $25–$110/kg depending on enzyme type, expression strategy, ti-

ters, extraction methods, and production scale.35,55,56 This is higher than the cost of

fungal cellulases estimated in previous studies on biochemical conversion of ligno-

cellulosic biomass, which are �$5/kg.57–59 For the base case model, enzyme pur-

chase cost is set as $15/kg and is varied in the sensitivity analysis (Figure 4A).60–63

Aside from enzyme production, additional sensitivity parameters explored include

enzyme loading and bioreactor residence time (t). The base case design considers
Joule 5, 2479–2503, September 15, 2021 2485



Figure 4. TEA sensitivity results for process parameters associated with the enzymatic depolymerization step

(A) Cost breakdown of the rTPA MSP in the base case process design and as a function of process variables including enzyme loading (mg/g PET

feedstock, base case value = 5), enzyme price ($/kg, base case value = 15) as well as sensitivities related to the reactor configuration, including extent of

conversion (x base case value = 0.9), solids loading, wt % (4 base case value = 0.15), and residence time in hours (t base case value = 96 h).

(B) Multivariate sensitivity analyses demonstrating the combination of enzyme cost and enzyme loading in which a decrease in both parameters exhibits

a non-linear decrease in the selling price of rTPA.

(C) Multivariate sensitivity analyses demonstrating the combination of solids loading and enzyme loading, which affects the selling price of rTPA. Higher

solids loading and lower enzyme loading results in reduction of the rTPA MSP.

(D) Multivariate sensitivity analyses demonstrating the combination of solids loading and extent of conversion in which lowering both parameters

results in a decrease of TPA MSP. The contour lines serve as references to interpolate the MSP of rTPA ($/kg). Numerical data in this figure are reported

in Tables S15–S18.
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these variables at an intermediate value of 5 mg enzyme/g of PET input and 96 h,

respectively. Products of PET hydrolysis are recovered in this process scheme upon

reaching a 90% PET degradation extent (the reaction scheme is shown in Figure S1).35

Additionally, the generalized PET hydrolase modeled is assumed to have maximal

degradation activity at 60�C and pH 8. PET hydrolases have been reported to function

over a range of temperatures and pH values,64 as well as a range of enzyme loading

values; therefore, these values were also explored as sensitvity parameters. Tempera-

ture and pH had a negligible impact onMSP in the ranges explored—data provided in

Table S13. The two factors with largest impact on MSP include solids loading (4) for

which a change from 10% to 20% results in a $0.47/kg decrease in MSP between

the two cases, and the extent of conversion (x) for which a change from 0.80 to 0.99

results in a $0.46/kg decrease in MSP between the two limits.
2486 Joule 5, 2479–2503, September 15, 2021
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In several cases, single-point sensitivity analyses are not sufficient to fully reveal process

modeling insights, namely, when process variables are strongly coupled. Thus, several

single-point sensitivity analyses were complemented with multivariate sensitivity anal-

ysis to understand the interaction of process variables and reveal examples of strongly

non-linear relationships that affect the overall rTPA selling prices. Examples of signifi-

cantly correlated variables studied here include enzyme loading and enzyme cost (Fig-

ure 4B), solids loading and enzyme loading (Figure 4C), as well as solids loading and

extent of depolymerization (Figure 4D). As an illustrative example, solids loading

coupled with the extent of depolymerization can not only drive the MSP of rTPA as

lowas $1.60/kg in the range examined at the highest loadings/extents but can also drive

costs to >$2.50/kg at the lowest loadings and extents. An additional multivariate sensi-

tivity exploring enzyme loading and depolymerization is shown in Table S14.

Case study III: Product and co-product recovery

Lastly, we investigated the process variables in the downstream processing section.

Increasing the recovery of EG to 65% or rTPA to 98% will lower the MSP to $1.87/kg

(reduction by $0.05/kg) or $1.83/kg (reduction by $0.10/kg), respectively, whereas

reducing the selling price of EG and/or SS will lead to an increase in the overall

MSP (Figure 5A). Changing the market price of EG by approximately 30% in either

direction of the base case value ($0.96/kg50) changes the selling price of rTPA by

$0.12/kg between the two bounding cases. Since EG recovery leads to a significant

steam usage in distillation, a case where more EG selective membranes49 (99% EG

retention selectivity, while SS selectivity remains the same) are depolyed is modeled,

which could potentially reduce the capital and operating expenses to run the distil-

lation columns. MSP in this case can be lowered to $1.75/kg and would have indus-

try-wide implications in other EG/water recovery scenarios (EG Selective membrane,

Figure 5A).

The base case, reported in the previous case studies, assumes that both EG and SS

are recovered. Therefore, sensitivity cases around downstream process design were

explored where recovery of co-products was changed (Figures 5B and 5C). Two sce-

narios, one in which no EG is recovered (NEG) and one where neither co-product is

recovered (NCP), were considered. In the first scenario (NEG), when EG is not recov-

ered but SS is, the EG-containing solution from the SS crystallizer is sent to waste-

water treatment and the co-product credit associated with EG recovery is lost.

The rTPAMSP in this scenario (NEG) corresponds to $2.08/kg as shown in Figure 5B.

In the second scenario (NCP) where neither EG nor SS is recovered, the mother li-

quor from the TPA crystallizer is sent to wastewater treatment and the revenue op-

portunity from both co-product sales is discounted. As a result, the capital invest-

ment and utilities required for SS and EG recovery are omitted in this scenario. A

similar impact on the rTPA MSP is observed in the scenario exploring no co-product

recovery (NCP), resulting in an increased MSP of $2.10/kg (Figure 5B). Details on the

additional wastewater treatment, co-product credit losses, and the capital expense

tradeoffs can be found in Table S19.

Summary of TEA results

Based on the process variables examined in the three case studies/sections earlier, the

results of those sensitivity analyses from Figures 3, 4, and 5 were summarized to rank

cost drivers on rTPA MSP and are presented in the tornado plot (Figure 6; Table S21).

Within the parameter ranges chosen, feedstock cost is the largest contributor to the

rTPA MSP. The feedstock modeled in this study is clean PET that meets quality stan-

dards for mechanical recycling52 and drove the greatest variability in rTPA MSP as
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Figure 5. TEA sensitivity results for process parameters associated with product and co-product recovery

(A and B) (A) rTPA MSP for the base case (base case values: rTPA recovery = 90%; EG recovery = 50%; EG MP = $0.96/kg; SS MP = $0.15/kg) to indicate

the effect of product and co-product recoveries as well as the co-product market prices (B) MSP as a result of different co-product recovery schemes

without the co-product(s), illustrating that although operational expenses may decrease, MSP will increase because of the lack of a co-product credit.

(C) Process flow diagram of the modified separation processes. Numerical data in this figure are reported in Table S20. Abbreviations used—MP, market

price (for co-products, averaged over 5 years); NEG, no EG is recovered; NCP, no co-product is recovered.
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also noted before (Figure 3A). Next, the effect of plant scale emerged important. A

facility size of 50MTPDwould indicate a decentralized approach (with smaller collec-

tion radii) for building such enzymatic recycling facilities for PET, which increases the

MSP from the base case by 26%, whereas 300 MTPD is being investigated to see the

effect of economies of scale, which decreases the MSP by 5%.

Besides exogenous factors, such as feedstock price and plant size, the relatively high

importance of depolymerization-related sensitivities such as solids loading and the

extent of conversion stand out as the dominant factors affecting MSP, followed by
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Figure 6. Tornado plot summarizing the effect of different process variables investigated on the

rTPA MSP

Univariate analysis summarizing how process variables affect rTPA MSP across the three case

studies of feedstock pretreatment, depolymerization, and product and co-product recovery. The

rTPA MSP in the base case is $1.93/kg. Factors not shown have a minimal effect in a univariate

sensitivity analysis. Numerical data for this figure are reported in Table S21.
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overall TPA recovery. Residence time for batch hydrolysis and enzyme loading would

be of particular interest to the research community, and these parameters could

change the MSP by 5%–9% within the ranges examined. Variations in the total cap-

ital expense (+/� $15M relative to the base case fixed capital investment) is also

studied. Finally, the market price of co-products, varying over a 30% range, has a

relatively minor impact on the overall MSP of rTPA.

Note that this tornado plot only includes key process variables in the base design

and does not include the different process design (i.e., NMP, NEG, and NCP), but

those design changes do have a significant impact on MSP, as noted. Additionally,

the impact of variations in process design on the overall supply chain energy and

GHG emissions, as well as broader socioeconomic effects, is discussed in the

following sections.
Bottom-up analysis of supply chain energy and GHG emissions

To quantify the energy and GHG emissions associated with the modeled supply

chain, we employed MFI, a bottom-up, supply chain modeling tool.5,37,65 Specif-

ically, MFI was used to compare the energy requirements and GHG emissions
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associated with rTPA produced using enzymatic depolymerization with those of the

conventional fossil feedstock-derived vTPA supply chain (see Figure S5). The results

of the TEA modeling were integrated into the MFI database by connecting the pro-

cess inputs from the Aspen Plus model to their corresponding representations in the

MFI database of process inputs. The analysis conducted using MFI includes select

sensitivities from the previously mentioned case studies.

When comparing rTPA and vTPA, it is necessary to consider the effect of the first life of

the TPA (i.e., procurement, production, and polymerization into PET). To do so, we

define the functional unit (our basis of comparison) to be the total number of PET ‘‘life-

times’’ that can be obtained from repeatedly utilizing the enzymatic depolymerization

process on the feedstock obtained from an initial quantity of 1 kg of fossil-derived

PET. Given an overall yield from the enzymatic depolymerization process of 0.63 kg

TPA/kg of depolymerized PET (current process design), and assuming that the requisite

amount of rTPA required tomanufacture new PET is approximately 0.87 kg TPA/kg PET

(MFI process data), the recycled content of the rTPA-derived PET is approximately 72%.

An infinite summation series can be constructed for multiple loops through the enzy-

matic recycling process, which converges to the ‘‘lifetime’’ amount of rTPA-derived

PET that could be achieved from a given amount of fossil-derived waste PET feedstock.

The total amount of PET is calculated to be 3.6 kg in the enzymatic depolymerization

supply chain (see supplemental experimental procedures, MFI methodology and Fig-

ure S6 for the derivation), of which, 1 kg is fossil-derived and the remaining 2.6 kg is ob-

tained from the enzymatic depolymerization process. The supply chain level impacts on

this supply chain were compared with the analogous supply chain to produce 3.6 kg of

PET from the conventional fossil-derived route. The results were then normalized to 1 kg

of PET for simplicity.

Results from the base case and select MFI analyses are presented in Figure 7 for

rTPA and PET, which indicate that there is a significant estimated energy savings poten-

tial from enzymatic depolymerization-based supply chains. The conventional

manufacturing supply chain for PET bottles requires �127 MJ/kg, (as calculated by

the MFI tool), whereas the enzymatic depolymerization supply chains require 74–

82 MJ/kg, a reduction of 35%–42%. This reduction is primarily due to a sharp reduction

in fossil feedstock energy requirements, from �56 MJ fossil feedstock/kg PET for the

conventional route to �18 MJ fossil feedstock/kg PET for the enzymatic depolymeriza-

tion route. In the latter route, fossil feedstocks arise from the production of other

required supply chain inputs (e.g., sulfuric acid, caustic, etc.). Aside from supply chain

energies, the base case and the NMP case are estimated to emit 8% and 21% lower

GHG emissions per kg of PET, respectively, compared with the fossil-derived PET base-

line, or 4.3 kg carbon dioxide equivalent (CO2e)/kg PET and 3.7 kg CO2e/kg PET,

respectively. The reason for the discrepancy between percent energy reduction and

percent GHG reduction is that fossil feedstock use, by definition, does not entail

GHG emissions because the feedstock is not combusted, but converted into products

(hence the blue bar does not appear in the bottom row of charts in Figure 7).

As also shown in Figure 7A, when the system boundary is narrowed to exclude the

polymerization step, monomer rTPA production from enzymatic depolymerization

is estimated to consume 69%–83% less energy than conventional production of

vTPA, mostly due to differences in feedstock energy requirements. In fact, the enzy-

matic depolymerization monomer production entails a negative feedstock energy

contribution due to the offset from EG and SS co-production. GHG emissions im-

pacts for monomer rTPA production exhibit a similar trend, with 17%–43% lower

GHG emissions for enzymatic depolymerization compared with fossil-derived vTPA.
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Figure 7. Supply chain energy and GHG emissions analysis

(A–D) Supply chain energy requirements for (A) TPA and (B) PET production. Supply chain GHG emissions for (C) TPA and (D) PET production. Supply

chain energy and GHG emissions are reported for the case of vTPA manufacture, the base case of this work (Base), and the three process design

sensitives of NMP, NEG, and NCP. In all of the cases reported here, the use of enzymatic processes results in a lower supply chain energy requirement

and GHG emissions. The reduction in supply chain energy requirement and GHG emissions is more pronounced for the case of TPA production over PET

production as the PET modeled here uses fossil-derived, polymerization-grade EG. Figure S5 illustrates the system boundary for MFI and numerical

data for this figure is reported in Tables S22 and S23. Abbreviations used—NMP, no mechanical pretreatment; NEG, no EG is recovered; NCP, no co-

product is recovered.
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Top-down analysis of economy-wide impacts

The bio-based circular carbon economy EEIO model (BEIOM)66 was used to put the

supply chains into a US economy-wide context.38 BEIOM is a top-down, macro-level

model that assesses the economy-wide impacts of emerging technologies or port-

folios thereof. It uses process-level data to create new sectors within the US
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economic structure reflecting the respective technologies at an industry scale. Orig-

inally, BEIOM was developed to quantify the effects of an expanding US bio-

economy, describing the potential benefits and unintended consequences of new

bio-based technologies across several environmental and socioeconomic impact

categories from a holistic perspective. Here, BEIOM is applied to compare the pro-

duction of conventional vTPA with rTPA produced via enzymatic depolymerization.

The inclusion of the rTPA production processes as a new sector in BEIOM followed

the same procedure as previous work evaluating different bio-based processes.38

Specifics on how each TPA pathway was integrated into BEIOM can be found in sup-

plemental experimental procedures and Figure S7, with detailed results illustrated in

Figures S8–S32.

The impacts of producing 1 kg of vTPA compared with 1 kg of rTPA include direct

impacts (generated by the plant itself and its supply chain) and indirect impacts

generated by related activities across all other sectors of the US economy (Figure 8).

To quantify impacts on a per kg basis, the total impacts (direct and indirect) from

either TPA production were divided by the total TPA output of the respective indus-

try. Additional co-products (EG and SS) are accounted for and their impacts are allo-

cated via substitution (on an economic basis). In the rTPA base case, EG and SS are

both recovered. Two sensitivity cases are also modeled to evaluate scenarios where

no EG is recovered (NEG), and where neither EG nor SS are recovered (NCP). We

also model a scenario that recovers both co-products but excludes mechanical pre-

treatment (NMP).

We estimate that rTPA generates socioeconomic benefits for both added economic

value and jobs, except in theNMP scenario where the exclusion of mechanical pretreat-

ment reduces overall economic effects (Figure 8A). Further, the socioeconomic effects

are more concentrated for rTPA in the conversion plant and its direct supply chain,

whereas they are spread out more broadly across the economy for vTPA. Two thirds

of the jobs from rTPA production are concentrated in the conversion process and the

direct inputs for the process. Production of vTPA sustains more jobs further upstream

in the production chain, where one third of the jobs are in the service sectors.

In the resource use metrics category (Figure 8B), rTPA shows a much higher water with-

drawal than vTPA, except whenmechanical pretreatment is excluded (NMP case). This is

exclusively caused by water use accounted for in the US national electricity generation

mix for 2017 and is a consequence of higher electricity consumption modeled to pro-

duce rTPA as compared with vTPA. It suggests that rTPA plants sourcing electricity

with a low water footprint could alleviate this difference. Further, we find that rTPA re-

duces overall land occupation by at least 40% compared with vTPA. In both cases,

the resource use impacts are mainly attributable to economic activities, related to,

but beyond the rTPA plant and its supply chain, i.e., are indirect effects generated by

the systemwithin which the supply chains are operating in.Most land occupation effects

are indirect (i.e., not attributable to the specific conversion facilities) and related to agri-

culture and the oil extraction sectors (land leases). For rTPA, 34% comes from forestry,

27% from grain farming, 12% from oil and gas extraction. For conventional TPA, oil and

gas extraction effects increase to 25%, whereas forestry and grain farming effects are

relatively similar to those from rTPA at 33% and 26%, respectively (Figure S1).

Across all (midpoint) life-cycle impact categories evaluated, rTPA shows an improve-

ment in the domestic footprint by 10%–95% over vTPA (Figure 8C). vTPA impacts are

mainly caused by the TPA production step across all metrics, whereas for rTPA, only

the freshwater ecotoxicity is dominated by the production process. Instead, rTPA
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Figure 8. Socioeconomic and environmental impacts of producing 1 kg of TPA when accounting for the US economy-wide effects

(A–C) Impact from the production of 1 kg of TPA for each scenario presented for (A) socioeconomic, (B) resource use, and (C) environmental impact

categories. Scenarios include the production of vTPA, rTPA (Base), rTPA with no mechanical pretreatment (NMP), rTPA with no EG recovery (NEG), and

rTPA with no EG or SS recovery (NCP). Numerical data in this figure are reported in Table S24.
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impacts are largely caused by upstream processes. Electricity generation also con-

tributes notably to smog formation, acidification, and respiratory effects in the

rTPA cases.

Comparing the rTPA base case with the two co-product disposal sensitivity cases

(NEG, NCP) in Figure 8, we find that co-product recovery reduces the environmental

effects across resource use and impact categories per kg of rTPA. Excluding the me-

chanical pretreatment step (NMP) reduces the environmental impacts of the base

case (rTPA) by up to 65%; however, it also lowers the socioeconomic benefits by

10%–20%.
Joule 5, 2479–2503, September 15, 2021 2493



ll
OPEN ACCESS Article
Capturing economy-wide effects expands the system boundary beyond the supply

chain and generally increases the effects per metric (see Figure 8 ‘‘remaining supply

chain’’ segments for vTPA and rTPA). Although the inclusion of indirect effects does

not favor either one of the two products analyzed, its exclusion would alter results

toward a further improvement of environmental benefits from rTPA while dramati-

cally reducing the socioeconomic benefits attributable to vTPA.

DISCUSSION

In response to the pollution crisis caused by waste plastics, new recycling processes

are needed for which requisite analyses will be critical to understanding the key cost

drivers, supply chain impacts, barriers to scale-up, andmarket implementation. Here,

we present a comprehensive analysis of enzyme-based PET recycling that includes

rigorous process modeling, economic impacts of key process variables, supply chain

energy, and GHG emissions impacts compared with fossil-based incumbent

manufacturing, and examination of life cycle and socioeconomic impacts. These an-

alyses demonstrate that enzyme-based PET recycling exhibits substantial promise,

which can be improved with further process advancements, as detailed here.

Feedstock considerations

The current, global approach to PET recycling nearly universally employsmechanical

recycling of post-consumer single-use PET bottles, and less than 20% of the eligible

waste stream is processed in the US (less than 7% worldwide67). Furthermore, me-

chanical recycling imposes stringent contamination tolerances,52 necessitating

extensive preprocessing and cleaning steps, significantly impacting reclaimed PET

flake prices.68 Accordingly, plastic recycling technologies that are agnostic to the

feedstock quality and expand the waste streams eligible for recycling will be effec-

tive in changing the recycling landscape.

The enzyme-based chemical recycling process presented here is one such prospec-

tive technology. Enzymatic recycling offers the advantage of high selectivity for the

target PET substrate, thereby reducing the need for stringent contamination toler-

ances, opening up the pool of eligible waste feedstocks, and creating an opportu-

nity for lower feedstock costs. Multiple feedstocks and conversion pathways should

be considered for their economic and environmental impacts, and compared with

mechanical recycling, which is already efficient but limited by the purity of the feed-

stock required. In the end, a combination of different technologies, ranging from

mechanical recycling to more substrate selective chemical recycling, will likely

need to be deployed to enable higher PET-recycling rates.

Size of the PET-recycling facility

Aside from feedstock cost, there are other engineering considerations that are key

cost drivers in realizing an enzymatic recycling process for PET, including the facility

size. The facility size will likely be dictated by local and regional collection rates and

whether any incentives exist that encourage recycling participation (e.g., the US

states with bottle deposit programs demonstrate higher collection volumes).39 In

this study, a plant with the capacity to process 150 MTPD was modeled. However,

the operation of any recycling plant is dependent on securing a steady and suffi-

ciently large feedstock supply. Considering that the largest MRFs in the US can pro-

cess about 1,000 MTPD of post-consumer waste,69 if the incoming waste stream is

about 3.7% PET by weight70 and a recovery of 91% PET can be obtained,71 only

33.7 Mt of PET could be secured from such a facility per day. This estimates that

the largest MRFs in the country are unlikely to obtain more than 50 MTPD of PET

that is suitable for mechanical recycling.
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Although the advent of new technologies, including the enzymatic process pre-

sented here, may lead to an enhanced recycling capacity, this analysis highlights

that it will still be necessary for any chemical recycling facilities to obtain PET-based

feedstock from multiple MRFs, or to include additional sources of PET previously

excluded from consideration for mechanical recycling, such as textiles, fibers, and

layered packaging materials. It is important to note that the average distance for

waste PET transport significantly varies throughout the US72 and in other parts of

the world;73–77 therefore, additional factors may influence the economics if the plant

size is increased. For example, in some regions, it might be necessary to establish

centralized recycling facilities to increase the collection volumes of post-consumer

PET78 at the expense of greater transportation costs. Securing a consistent feed-

stock supply by analyzing statistical and geospatial distribution of plastic waste

will be critical to de-risk the operation of any recycling facility.

Substrate considerations

Any requirement for size reduction of the feedstock and/or change in PET crystal-

linity will contribute to the economics, energy demands, and GHG emissions of

the overall process. This is exemplified by the NMP case, which lowers rTPA MSP

to $1.70/kg (12% less than the baseline MSP), generates 38% lower GHG emissions,

and requires 45% lower supply chain energies. Pretreatment that is akin to mechan-

ical recycling has been proposed to enable greater enzymatic process efficiencies.

Specifically, the recent study by Tournier et al. reports an engineered PET hydrolase

enzyme capable of up to 85% product yield from post-consumer waste PET within

20 h of treatment,35,79,80 where the PET was pre-treated by extrusion, amorphiza-

tion, and micronization to reduce the substrate crystallinity and size, respectively.

Size reduction has also been proposed to enhance the extent of depolymerization

by increasing the accessible surface area for enzyme action,81 however, systematic

investigation is necessary to understanding the influence of these factors on enzyme

performance. Additionally, the community will need to find an optimum size reduc-

tion that enables a high extent of depolymerization, desirable for increasing

throughput, and beyond which the additional cost of size reduction may not be

offset by incremental product yield.81–85

Biocatalyst performance

Enzyme performance and optimization remains an open area of opportunity with

important implications for the economics of an enzyme-based recycling process.

Here, we highlight that solids loading, enzyme loading, and enzyme cost are key

cost drivers; however, this is predicated on other assumptions in this model, the

key among them being that the enzyme can achieve a high extent of depolymeriza-

tion of the PET feedstock. To achieve a high extent of depolymerization, the global

research community is investigating multiple parameters including the optimization

of enzyme performance, specificity for substrates of different crystallinities, toler-

ance to inhibition by products and contaminants, and improved stability for

enhanced catalytic lifetime.

The best-studied PET hydrolases to date are seemingly most active on the amor-

phous regions of the polymer.34 Continued optimization and engineering of enzyme

performance on PET substrates of different crystallinities will be critical, as the two

largest applications of PET (bottles and fibers) exhibit high (30%–40%) crystallinity.85

By leveraging enzyme design and exploring the use of thermophilic enzymes, im-

provements across multiple factors can be achieved. For instance, enzymes active

at approximately 70�C may exploit the reduction in crystallinity as PET approaches

its glass transition temperature. Enhanced thermostability may be engineered into
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PET-degrading enzymes as shown by the stabilizing effect of glycosylation on leaf-

compost cutinase (LCC),28 or the replacement of a potential calcium-binding site

in LCC with a disulfide bond35; in each case, the thermal stabilization was accompa-

nied by enhanced PET hydrolysis activity at an elevated temperature.

Enzyme design can also enable faster turnover, product selectivity, and inhibition

resistance, all of which are ideal for mixed feedstock streams (e.g., textiles with

dyes). Recently, accumulation of additives has been documented to inhibit cutinase

activity,81 and therefore, methods to overcome inhibition, or remove contami-

nants,86 could improve enzyme performance. In addition, given the inevitable acid-

ification of the solution that occurs upon ester bond hydrolysis, any acid-tolerant

PET-degrading enzymes that exhibit a broad pH optimum range would reduce

the need to continually neutralize the depolymerization reaction, thus saving on

caustic additive. Interestingly, acid-tolerant cutinases have been identified87–89

with an enzyme from the fungus Thielavia terrestris exhibiting esterase activity

over the pH range 4–8 and detectable PET-degrading activity at pH 4.0 and 50�C.87

Combining all of the properties mentioned earlier—thermostability, acid- and prod-

uct-tolerance, and a high turnover of PET of varied crystallinities—represents amajor

challenge for future enzyme engineering efforts.

Enzyme production

Beyond enzyme function, the work presented here assumes that the enzyme is pro-

duced offsite, which leads to the MSP exhibiting a linear dependence with enzyme

cost. Factors that drive enzyme production costs include the origin of the enzyme,

the expression host, and the level of purification required for adequate activity.

The price of generic hydrolase used in our base design is modeled after extracellular

secretion from the host organism and concentration of the enzyme in the crude

broth, without any elaborate purification. For intracellular protein production, puri-

fication requirements are key cost drivers.56,59,90–92 However, many industrial en-

zymes are secreted from the host therefore avoiding the processing steps associated

with cell lysis.56,59,90 Stabilizing agents are also frequently used to ensure the

longevity of the enzymes. However, consistent supply and compatibility of any sta-

bilizers with enzyme function are important considerations in the development of an

enzyme product.

The production of cellulase enzymes in filamentous fungi offers an analogous system

for comparison and benchmarking, and this approach was used as the baseline for

enzyme costs in the current work. In the case of cellulases, fungi such as Trichoderma

reesei have been evolved and engineered over decades to secrete native and het-

erologous cellulases to extremely high levels (�protein concentrations on the order

of 100 g/L).93,94 Thus, filamentous fungi offer an excellent starting point for future

development of PET-active enzyme production. Alternative eukaryotic expression

hosts may come to the forefront, for example, the methylotrophic yeast Pichia pas-

toris, which has been utilized for the recombinant expression of a variety of esterase

enzymes.28,89,95–100 To date, laboratory-scale fermentations of P. pastoris have pro-

duced recombinant cutinases at yields up to 10.8 g/L.95,96,100

Product and co-product recovery

Although pretreatment and enzyme optimization may influence the kinetics of PET

hydrolysis, efficient product recovery will also have a major impact on the rTPA

MSP, as this determines which products can be sold and at what purity. The process

modeled here assumes that dyes, pigments, and adhesives are removed by the solid
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filtration and activated carbon column.35,42–44 Spent enzymes are removed by ultra-

filtration in the base case, which may not be a necessary step if there is sufficient

removal by the activated carbon column,101 thereby resulting in a lower MSP.

Although this design is aligned with reported practices, alternate and emergent sep-

aration techniques for product recovery can be potentially explored. For example,

TPA could be recovered by sublimation in a process akin to that developed by East-

man.102 The recovery of EG is contingent on the fact that all the added SS salt is

recovered from the solution prior to sending it to distillation columns, which remains

to be verified. As the recovery of EG is an energy-intensive process,103,104 alternative

separation schemes, (e.g., liquid-liquid extraction, membrane-based separations,

condensed phase chromatographic separations techniques, reactive distillation fol-

lowed by hydrolysis, etc.) could also be explored, which may eventually reduce the

MSP and process energy requirements.44,103,105–113
Sustainability impacts

In terms of the environmental impact analysis of the supply chain modeling, it is clear

that a reduction in feedstock energy (in the form of natural gas and crude oil) is a pri-

mary contributor to the estimated reduction in supply chain energy for the enzymatic

depolymerization relative to fossil-derived routes to PET. However, feedstock en-

ergy alone does not offer an opportunity to reduce GHG emissions (since feedstocks

are, by definition, not combusted). Process-based energy requirements (e.g., from

steam utilization) are shown to be significantly reduced in the enzymatic depolymer-

ization routes at the expense of increased electricity usage. GHG emissions associ-

ated with the supply chain’s electricity requirements are highly dependent on the

assumed grid mix of generation technologies. MFI supply chain models reflect cur-

rent industrial practices within the US industry; for electricity specifically, MFI as-

sumes a national grid mix as of 2016.114 Since themodeled enzymatic depolymeriza-

tion supply chain has been shown to be relatively more electricity-intensive than

conventional PET production, additional GHG emissions reductions could be real-

ized with an underlying electricity grid mix having a higher penetration of lower-

or non-GHG-emitting, renewable (e.g., solar and wind) generation sources.

Furthermore, analysis with BEIOMhighlights that, within the rTPAplant design, the crys-

tallization process might warrant a more in-depth assessment to reduce process emis-

sions. In the present design, it shows the highest share of process emissions and result-

ing relative contributions to the impact categories assessed (Figure S30). Sulfuric acid

emissions are driving ecotoxicity and acidification impacts; EG (a regulated hazardous

air pollutant) is driving human toxicity; both EG and sulfuric acid affect smog formation,

along with volatile organic compounds from equipment leaks.
Social and environmental equity

The economy-wide comparison of vTPA and rTPA shows that the environmental and so-

cioeconomic effects of the two processes are distributed unequally across their supply

chain tiers (see also Figure S10). Environmental impacts from vTPA largely result from

the production process itself, whereas its socioeconomic benefits mainly occur across

the broader economy and are not necessarily regional. The distribution of effects

from rTPA are reversedwith socioeconomic benefits largely occurring at the facility itself

and its direct suppliers, whereas most environmental impacts result from indirect activ-

ities further away from the rTPA supply chain. To account for and detail these social and

environmental equity considerations, future analysis should further specify effects in

regional contexts and recommend process alterations, if possible, to achieve an appro-

priate balance.
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Beyond conventional substrates for recycling

Given the considerations presented, this work provides targets for process develop-

ment toward realizing a more comprehensive recycling strategy than is available

today. Leveraging the selectivity of biological depolymerization offers the opportu-

nity to process mixed waste plastics and expand the eligible range of feedstocks.

This concept can be extended to an integrated depolymerization refinery where

the action of a cocktail of enzymes could break down the mixed plastic waste stream

in a one-pot or tandem fashion. Changing feedstock, especially to materials that are

not recycled today, would also allow for expanded plant sizes to offer the benefit of

economies of scale for processing varied plastic types at higher volumes, particularly

since PET bottles comprise only 30% of all PET produced globally. Other forms of

PET waste, including discarded fabrics, textiles, and waste carpets (polyester fibers)

comprised 44 MMT (or 54%) of global PET demand in 20196 also present an oppor-

tunity for the application of enzyme-based recycling.

Importantly, the recycling approach described here will likely mirror the enzyme-

based processing of other polymers, especially those that contain linkages that

mirror natural polymers (e.g., nylons, polyurethanes, polycarbonates).115,116

Although each polymer will exhibit its own unique challenges, they may have

similar characteristics that increase their ease of recycling. As an illustrative

example, polyurethanes frequently feature crosslinking, which may limit access

to enzyme activity or slow reaction rates; however, polyurethanes may also

have a lower glass transition temperature and present a higher surface area, fea-

tures that may accelerate reaction kinetics.19 The enzymatic recycling process

model and subsequent analyses described here can therefore provide a founda-

tion for evaluating other new enzymatic technologies, as well as broad guidance

for the developing field.

Conclusions

Here, we describe the process design of an enzyme-catalyzed PET-recycling pro-

cess and discuss the key factors impacting the process economics, supply chain

energy, GHG emissions, socioeconomic impacts, and job creation potential for

the enzyme-based recycling strategy as compared with the fossil-derived produc-

tion currently employed. The TEA results estimate the potential for rTPA produc-

tion at $1.93/kg, and the study outlines certain scenarios to further reduce costs.

In terms of pretreatment, feedstock prices and mechanical preprocessing are the

largest contributing steps to cost and energy requirements. Meanwhile, in the

depolymerization process, the extent of PET breakdown, solids loading, enzyme

price, and enzyme loading are all key cost drivers. Importantly, the yields of

recovered TPA and co-products (i.e., SS and EG) dictate the overall throughput

of the plant and significantly impacts the economics. Supply chain analysis shows

that PET recycling via the enzymatic route has lower supply chain energy require-

ment and lower supply chain GHG emissions compared to vTPA. An economy-

wide assessment shows the potential socioeconomic (and largely regional) bene-

fits of adding a plastics recycling sector and details environmental impacts per

process and supply chain steps to highlight potential improvement areas for

reducing unintended environmental consequences. There are multiple technolo-

gies in development as an alternative to the current mechanical PET-recycling

strategies (e.g., chemo-catalytic, pyrolysis, etc.) of which enzymatic recycling of-

fers the benefit of providing substrate specificity for complex mixed feedstock

streams. Although the framework provided here is focused on PET reclaimed

from an MRF, the insights presented here apply more broadly to polymeric sys-

tems that are susceptible to enzymatic depolymerization.
2498 Joule 5, 2479–2503, September 15, 2021



ll
OPEN ACCESSArticle
EXPERIMENTAL PROCEDURES

Resource availability
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Materials availability

This study did not generate new unique materials.

Data and code availability

The datasets in this article are provided in full in the supplemental information. The

Aspen Plus models can be provided upon request and can be replicated by the in-

puts shown in the detailed PFD in the supplemental information.

The MFI tool is freely available to interested users on the NREL website. Accounts

can be created there to use the tool. There are restrictions to the availability of

the MFI code and database due to the proprietary nature of several process inven-

tory datasets used by the tool.

Methods are described throughout the main text and in detail in the supplemental

information where appropriate. In general, Aspen Plus models were constructed

for all process and TEA analysis. MFI and BEIOM were used to quantify various sup-

ply chain and economy-wide effects.
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