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coincides with the peak building loads, increased demand
charges are incurred. There is an opportunity to reduce energy
and demand charges by implementing smart-charging controls
and by integrating distributed energy resources (DERs) along
with vehicle electrification.

REopt™ is a techno-economic optimization model devel-
oped by the National Renewable Energy Laboratory (NREL).
It is a planning tool formulated as a mixed-integer linear
program to optimally size and dispatch the DERs and storage-
based assets given the historical building loads and rate tariffs
for a specific site [3]. The range of loads, technology resources,
drivers, and outputs considered in the model are shown in
Fig. 1. The most common objective function of the model
is to minimize the life-cycle cost (LCC) of energy. In this
work, solar photovoltaics (PV), stationary battery, and chilled
water tank thermal energy storage (TES) technologies are
modeled. The addition of the electric school bus fleet into the
REopt model is a key innovation of this work that enables
an integrated optimization of DER technologies and smart-
charging EV batteries to minimize life-cycle energy costs.

Fig. 1: REopt techno-economic optimization tool. Source: [3]

Abstract—Considerations for electrifying school buses are 
presented with an analysis of battery sizing to match bus-driving 
requirements. The charging and vehicle-to-building dispatch of 
the electric school buses were optimized to evaluate the potential 
to reduce the impact of the bus charging on the school’s electric 
utility bill. Distributed energy resources and flexible building 
loads were also considered with the school bus electrification to 
evaluate the further reductions in energy costs with enhanced 
systems integration and optimized dispatch. The effect of degra-
dation on the school bus batteries was analyzed to determine 
if the smart-charging and vehicle-to-building battery operation 
decreases the life of the battery. The results show that there 
is an opportunity to mitigate the increase in electric utility bill 
with improved charging controls and bi-directionally operating 
the school bus batteries. The battery degradation analysis using 
dispatch with optimized charging and discharging shows that 
acceptable battery life remains.

Keywords—Electric Vehicle, School Bus, Fleet Electrification, 
Distributed Energy Resources, smart-charging, Vehicle-To-Grid.

I. INTRODUCTION

The electrification o f m edium- a nd h eavy-duty vehicles 
has numerous societal benefits. W hen c ompared t o their 
diesel counterparts, electric vehicles (EVs) are quieter, reduce 
combustion product emissions to zero, and are mechanically 
simpler, making them easier to maintain. Diesel school buses 
have been shown to increase the exposure of school children to 
aerosol pollutants including diesel exhaust particulates [1]. Ex-
posure to these particulates is linked to weezing and decreased 
lung function [2]. Additionally, reduced maintenance needs 
benefits s chool d istricts, w hich o ften l ack t he infrastructure 
to make major repairs to their fleets.

Although the electrification o f v ehicles p rovides savings 
by eliminating diesel fuel and reducing maintenance costs, the 
electricity required for charging is an added cost. Commercial 
scale buildings such as schools typically have utility rates 
that include both energy and demand charges (potentially 
dependent on the time of use). If charging occurs during peak 
electric rate times, this energy can be expensive. If charging
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In any EV application, it is important to understand how
long the batteries will last given the specific usage scenario
because batteries are by far the costliest component in an
EV [4]. Significant advances have been made on lithium-
ion (Li-ion) battery life-degradation modeling and analysis
with the underlying literature spanning research topics from
understanding battery-aging mechanisms [5] to developing
mathematical models for health-conscious control applications
[6]. In this paper, one objective is to analyze the impact on
the long-term health of the EV batteries from controlling and
dispatching them in ways to reduce the school’s electric utility
bill.

The case study presented is a school in New Jersey. Various
scenarios are analyzed as illustrated in Fig. 2. The analysis
assumes that buses are parked at the school when they are not
driving. While buses are often parked at depots for fueling and
maintenance, the results of this analysis show that there may be
an economic incentive to park EV buses at schools so that they
can be used to manage utility bills and potentially contribute
to resilience. Scenario 1 represents the business as usual case,
where the school purchases all electricity from the utility, and
uses diesel buses. Scenario 2 considers opportunities for utility
bill reduction through DERs, but still uses diesel buses. In
Scenario 3, six electric buses are introduced with a manual
charging strategy of charging the buses as soon as they return
back to the school. Scenario 4 allows REopt to optimally
charge the buses (while still meeting the charge requirement for
driving) to mitigate excess energy and demand charge costs.
In scenarios 5 and 6, REopt optimally sizes DER technologies
under manual (5) and smart-charging (6) scenarios for the
electric buses. Scenario 7 assumes the buses are able to
discharge the battery energy back to the building load, which
is referred to in this paper as ”vehicle to building” (VTB), in
order to further reduce energy and demand charges.

Fig. 2: Scenarios of electrification and DER technologies
analyzed.

II. METHODS

The duty cycles of the electric school buses were simulated
using an electric school bus model and data logged from school
buses used in Torrance, California; although not geographically
similar to New Jersey, this was the best available data and the
school bus driving profiles are representative of a suburban

TABLE I: Drivetrain Model Parameters

Symbol Value Units Description
m 15195 kg Vehicle mass
Crr 0.008 - Rolling resistance coefficient
Cdl 3.8 N

(m/s)2
Drag coefficient

rtr 4.5/1.0 - Transmission gearing (2-speed)
ηtr 0.98 - Transmission efficiency
rdf 4.5 - Differential gearing
ηdf 1 - Differential efficiency

school anywhere in the United States. The GPS coordinates
and elevation of each bus were logged every second. From
these measures, vehicle speed, acceleration, and road grade
were calculated. The vehicle drivetrain model is a variant
of NREL’s FastSim vehicle simulation tool [7]. This type of
model is called backward-looking, because it uses recorded
driving profiles to calculate the energy expenditure of the
vehicle working backward through the drivetrain. The benefit
of these models is that the they do not involve any iteration,
making them faster to execute. The drivetrain model is de-
scribed in (1), and further in [1], with vehicle parameters listed
in Table I:

θ−→
v
F = m

dv

dt
+mgsin(θ) +mgCrrcos(θ) + Cdlv

2

F−→
v
τdf =

Frwheel
ηdfrdf

, ωdf =
vrdf
rwheel

τdf−−→
ωdf

τtr =
τdf
ηtrrtr

, ωtr = ωdfrtr (1)

τtr−−→
ωtr

Pem =
τtrωtr

ηem(ωtr, τtr)
Pem−−−→ Ees = Ees − Pem∆t

Fig. 3: Battery sizing by daily energy use.

In order to replace 100% of the diesel buses with electric
buses, it is important that the buses have sufficient battery
capacity. Using the model described above, the daily energy
use of each bus for each day of one week was estimated.
Average consumption was 1.58kWh

mi and 76
k Wh/day. The

battery size needed to complete a day of operation is estimated
by multiplying the daily energy consumption by a factor of
safety of 1.25 and rounding to the nearest 25 kWh increment.
Figure 3 shows that 31 of 32 vehicle days simulated could
be completed with a battery size of 125 kWh. It also shows
that buses 2,3, and 4 could complete complete their daily
driving with a 100 kWh battery. In practice, fleet electrification
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Fig. 4: State of charge and occupancy of bus depot for a week

can be a gradual process, using EVs on shorter routes, and
gradually replacing conventional vehicles which drive progres-
sively more energy-intense schedules. To be conservative in
battery sizing, a battery capacity of 150 kWh was chosen for
each bus to ensure that 100% of the vehicle days could be
replaced with electric driving this battery also allows each bus
to drive for an entire day without recharging. In-use, school
buses have the opportunity to charge in the middle of the day
while school is in session. To evaluate these opportunities, a
geofence was drawn around the central bus depot. Figure 4
shows the number of buses parked and eligible for charging
by time of day. On weekdays, the buses were parked for an
average of 3.02 hr

day between the hours of 8AM and 2PM. When
the vehicles are able to charge during the day in addition to
charging in the evening, their depth of discharge (DOD) never
drops below 50% SOC. Downsizing batteries by leveraging
charging opportunities significantly reduces the capital cost of
an EV, currently by about $500/kWh.

Typically, buses are plugged in to start charging as soon
as the buses return to the school, and this is the case for
the Manual Charging scenarios. Figure 5 shows an example
week of school electric load with the added load from bus
charging in the manual charging scenarios, and it shows that
the charging load is mostly additive to the peak school load
which will increase demand charges.

Fig. 5: Example week of manual bus charging added to school
load.

For smart-charging and VTB scenarios, an optimization
capability is needed. The addition of the EV fleet (school

buses) to REopt is a new innovation from this work. The
driving energy required for the N vehicles (six in this case) is
now an input to REopt and a new constraint is added to ensure
that the bus battery minimum state of charge requirement
is achieved at the time that the bus leaves the school. For
smart-charging, REopt is allowed to optimize when the vehicle
charges so long as it still meets the minimum state of charge
requirement prior to the trip. For VTB, REopt is allowed to
discharge energy from the bus battery when it is docked at
the charging station while the charge requirements for each
driving route are still met.

The school electric loads are generated using the DOE
commercial Reference Buildings [8] using the following lo-
cation: Baltimore, Maryland, ASHRAE 90.1-2004 (nearest
location to New Jersey with the same climate zone). The
year-long hourly load profile has a minimum, maximum, and
average load of 96, 1189, and 367 kW respectively with a total
energy consumption of 3,218,300 kWh over the year.

The energy and demand charges assumed in the analysis
are based on the local utility and independent system oper-
ator (ISO) charges. The utility rate structure is from Orange
and Rockland Utilities, Rockland Electric Company (RECO),
General Service, No. 2 Service Class with Basic Generation
Service. The tariff details are shown in Table II [9]. The energy
rate is based on utility distribution charges plus the hourly-
varying PJM real-time price signal for the Rockland Electric
Transmission Zone. Demand charges are quite low, but there
is an additional demand-like charge within the PJM operating
territory called ”Peak Load Contribution” (PLC, also known
as coincident peak and 5CP). This charge is based on the
customer’s load during the PJM system’s five highest load-
hours, which typically occur in the summer.

TABLE II: Electric Utility Rate Structure Used in the Case
Study

Value Units
Energy Charges Summer/Wintera 0.07049/0.0672 $/kWh
Energy Adder of PJM Real Time Market Priceb Varies by Hour $/kWh
RECO Demand Charges Summer/Wintera 1.51/1.27 $/kW-month
PJM Peak Load Contribution 9.76 $/kW-month
a Summer includes June, July, August, and September
b Average PJM Real Time Price in 2018 was $0.029/kWh

Although an uninformed building energy manager may not
know when these peak hours occur, there are companies for-
hire that act as a curtailment service provider (CSP) and can
predict system peak hours and inform the school to reduce load
(or dispatch a battery, for example). To account for uncertainty
in predicting the exact peak load hours, CSPs will typically tell
customers to reduce load across a larger number of hours, to
increase the probability of reducing load during the 5 peak
hours. For this analysis, we modeled the 32 highest PJM
system load hours and the building’s PLC was calculated as
the average of the school’s load during those hours.

There are four options for REopt to use available assets
to reduce load, but their availability depends on the scenario
considered:

1) Avoid EV charging (only available in smart-charging
scenarios)

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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2) Use stored chilled water to reduce the electric chiller
load

3) Discharge a stationary battery (if chosen)
4) Discharge the EV battery (only available in VTB

scenario)

Table III shows the life cycle economic analysis inputs used
in the case study.

TABLE III: Life Cycle Economic Analysis Inputs

Objective Minimize life-cycle cost
Ownership models Direct purchase
Analysis period 25 years
Discount rate (nominal) 3%
General inflation rate 1%
Electricity cost escalation rate (nominal) 2%/yr
Interconnection limit Unlimited
Net metering limit Not to exceed annual site load

Table IV shows the DER technology cost and performance
characteristics assumed for the analysis. The estimated rooftop
area available for PV limits the PV size to 500 kW-DC, so that
is set as a maximum size in REopt.

TABLE IV: Distributed Energy Resource Technology Charac-
teristics

Solar PV
PV array type Rooftop
Space available for PV 500-kW-DC max
Total installed costs $1.708/W-DC
Annual O&M costs $16/kW-DC
Technology resource TMY3 solar in Montvale, NJ
Stationary Battery Storage
Battery chemistry Lithium-ion
Capital costs $1000/kW + $500/kWh
Replacement Year 10
Replacement costs $460/kW + $230/kWh
AC-AC round-trip efficiency 89.9%
Minimum state of charge 20%
Thermal Energy Storage
Type Single chilled water tank
Capital costs $2/gal
Approximate daily figure-of-merit 85%90%
Minimum state of charge 10%

The battery life degradation analysis framework developed
by NREL is used to rapidly investigate the extent to which
specific battery usage profiles degrade the life of the battery by
reducing its usable capacity [10]. This framework uses simple
proxy rate models, whose parameters are identified through
model regression of rapid-aging experimental data, to reflect
a decrease in usable capacity of the battery and increase in
internal resistance. An example of a capacity-fade model and
fade-rate model from this framework is shown in (2) [11]:

QLi = b0 − b1t1/2life, Qsites = c0 − c2N

b1 =
b1,ref
∆tcyc

∫
tcyc

[
exp
(
− Ea

R
(1/T − 1/Tref )

)
× (2)

exp
(
− αF

R
(Uneg/T − Uneg,ref/Tref )

)
×

exp
(
µb1

max(∆DOD)βb1

∆DODref

)]

where QLi and Qsites represent the remaining capacity after
cyclable Li-ion loss (resulting from solid-electrolyte interface
growth from calendar time, tlife, and cycling) and active
site loss (due to mechanical damage to the electrodes from
cycling). The model parameters (b0, c0, b1,ref , Ea, etc.) are
identified from aging data regression. The parametric structure
of these models is rooted in physics-based justifications such
as the dependence of the fade rate, b1, on temperature through
an Arrhenius relationship (i.e. exp

(
− Ea

R (1/T − 1/Tref )
)
).

For a comprehensive discussion on battery life models and
parameterization, see [10], [11]. We use five different battery
technology life models developed using this framework to
analyze capacity degradation based on the REopt cycling
profiles. REopt’s dispatches are not informed by degrada-
tion functions and therefore are battery technology agnostic.
Different technologies have been known to show different
aging behaviors for the same operating conditions. Thus,
we post-process the REopt dispatches to perform degrada-
tion analysis in this paper by: (1) selecting a representative
battery cycling profile (defined by time-series data of input
current or power, corresponding state-of-charge (SOC), and
temperature of the battery cell); (2) selecting a battery model
(four battery technologies spanning three chemistries, namely:
lithium nickel cobalt aluminum oxide (NCA), lithium nickel
manganese cobalt oxide (NMC), and lithium iron phosphate
(LFP)); and (3) simulating the life model for 10 service years
and identifying how the capacity decays and which stress
factors (temperature, SOC, depth-of-discharge etc.) contribute
primarily to capacity fade.

The REopt optimization model is used with the input data
described above to minimize life cycle cost of energy. The sce-
narios are compared to understand the value of implementing
smart controls and integrating DERs with the EV bus fleet.

III. RESULTS

The life cycle cost analysis results for the seven scenarios
are shown in Fig. 6 and Table V. In addition to electric utility
cost differences, the diesel fuel cost savings from electrification
are quantified. The school bus energy determined by the vehi-
cle drive-train model is converted to diesel fuel consumption.
The avoided annual diesel fuel consumption for all size buses is
calculated to be 7,274 gallons. The levelized cost of diesel fuel
is estimated to be $3.86/gal (current diesel price of $3.32/gal
escalated by 0.6%/year); this amounts to an annualized savings
of $28.1K/year and a life cycle cost savings of $489.3K.

These results do not explicitly include an estimate for the
capital cost of the EV buses and the charging and controls
equipment, and they also do not include maintenance cost
savings from EVs. The net present value (NPV) of scenarios 3-
7 therefore represent the capital cost less any maintenance cost
savings that could be paid to make the project break-even. The
available capital cost to be spent on the EV bus and charging
equipment and controls at the break-even point is shown in the
last row of Table V. Note, that any maintenance cost savings
from EVs would add to the break-even cost per bus.

Scenario 1 is the business-as-usual case, and shows the life
cycle cost of energy to the school if they make no changes,
and continue to purchase all of their energy from the utility
and run diesel buses. The life cycle cost of all other scenarios

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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is compared to Scenario 1 to identify whether the school
saves money or loses money by making a change. Scenario
2 (DER only) shows that the school can save almost $1M in
life cycle energy costs by investing in DER (PV and TES)
while continuing to run diesel buses. For all scenarios which
consider DER, REopt selected the maximum PV size of 500
kW-DC.

Adding EVs without DER results in a slightly positive
NPV, but this is assumed to be too low of a break-even cost
to pay for buses and infrastructure with only $37K available
for the manual charging (scenario 3) and $48K available for
smart charging (scenario 4).

By combining DER with the EVs, the savings provided by
DER can be used to offset the costs of the EVs, resulting in
a break-even cost per bus of greater than $200K from which
to purchase the EV buses and charging infrastructure. This
is believed to be adequate to pay for the incremental cost of
EV buses (replacing diesel buses) and charging infrastructure
based on an NREL estimate of these costs. DER with EV
manual charging (scenario 5) has a break-even cost of $201K,
and DER with smart-charging improves this slightly to $211K.
However, the biggest benefit in EV control comes from using
EV batteries to help reduce building peak load and perform
energy arbitrage (scenario 7); this scenario increases the break-
even cost by greater than 20% to $256K when compared to
DER with smart-charging EVs. It should be noted that VTB
will require greater controls and equipment functionality which
comes at an additional cost.

Fig. 6: Life cycle cost results for all scenarios.

Table V quantifies the economic benefits of all the elec-
trification scenarios, establishing that EV smart-charging with
VTB and DER (Scenario 7) is the most profitable one in the
case studies considered in this paper. To compare Scenario 7 to
a baseline vehicle usage case (no REopt based optimization)
viś-a-viś the life of the battery, we use the life models for
four battery technologies: a 50 Ah NCA cell, a 15 Ah NMC
cell (NMC #1), a 20 Ah LFP cell, and a 25 Ah NMC cell
(NMC #2). It is assumed that the cell temperature is the
same as the ambient temperature1 [12]. Fig. 7 shows the
capacity-degradation trends for the four battery technologies

1In practice, a well-calibrated thermal model would predict the temperature
of the cell with the ambient temperature being an external input signal to the
model

when subjected to the cycling profile of Scenario 7 and a non-
optimized baseline case. Except for the LFP technology, the
other technologies show remaining capacities of 80% or higher
after 10 years of operation under the REopt-based cycling.
Such longevity of the battery technologies can be attributed
to: (a) less cycling by REopt’s optimal dispatch strategy (input
power is zero for >80% of the cycling time) and (b) an average
SOC closer to the mid SOC range throughout the cycling
period (∼53%). Milder ambient temperature conditions of New
Jersey (mean temperature of ∼13◦C) is also contributing to
the slower capacity degradation seen in Fig. 7a. The baseline
case shows less capacity degradation for NMC #1 and NMC
#2 compared to Scenario 7 but more degradation for NCA and
LFP. This is owing to the contrasting SOC and DOD character-
istics of the baseline case and Scenario 7. For instance, lower
average SOC (53% vs 97%) of Scenario 7 helps NCA and
LFP models to exhibit lesser degradation compared to baseline.
However, higher maximum DOD (85% vs 41%) of Scenario
7 makes NMC #1 and NMC #2 to degrade more compared
to baseline. To understand the impact of temperature variation
on battery life, we subject the battery technologies to the same
cycling profile but with different thermal conditions, namely
constant temperatures of 0◦C and 36◦C. Fig. 7b shows that a
higher temperature can significantly decrease the life of a Li-
ion battery. For example, after 10 years at 36◦C, the capacity
of NMC #1 decays completely to 0% and the capacities of
the other technologies decrease to 50% or lower of the initial
capacity. However, at 0◦C, capacity decay is slowed compared
to the ambient temperature case. This is specific to the usage
profile of the applications considered in this paper. At such
low temperature, capacity degradation slows down when the
battery is kept in storage (i.e. no load condition). In scenario 7,
more than 80% of the time, the input power to the EV battery
is zero, which results in slower capacity fade at 0◦C.

IV. CONCLUSIONS

The life cycle cost of energy impacts of electrifying school
buses under various scenarios is presented. By combining
DER with the EVs, the savings provided by DER can be
used to offset the electric charging costs of the EVs, resulting
in a break-even cost per bus of greater than $200K which
is estimated to be sufficient to purchase the EV buses and
charging infrastructure. Improved controls which can provide
intelligent charging strategies can mitigate the impact of EV
charging on energy and demand costs. With additional hard-
ware and controls functionality, enabling the EVs to discharge
to offset building load reduces demand and energy charges and
provides a net utility bill cost reduction when including DERs
such as PV and flexible building loads enabled by chilled
water thermal energy storage. Furthermore, battery life analysis
results indicate that electrified school buses can participate
in VTB activities for net cost reduction without sacrificing
battery life significantly. However, proper thermal management
is important to maintain battery life.

V. FUTURE WORK

Future work will explore additional revenue stream op-
portunities of the EVs by considering demand response and
wholesale market participation in different regions of the
United States. Other cost considerations to be investigated
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TABLE V: Life Cycle Analysis Results for All Scenarios

1: Business-
as-usual

2: DER
only

3: EV Only
Manual

4: EV Only
Smart

5: EV
Manual and

DER

6: EV
Smart and

DER

7: EV
Smart-VTB
and DER

Units

PV Size - 500 - - 500 500 500 kW-DC
TES Size - 2,286 - - 2,028 2,286 2,018 kWhe equiv
Capital Cost $0.00 $1.41 $0.00 $0.00 $1.35 $1.41 $1.34 $M
Energy Cost $7.15 $5.94 $7.38 $7.35 $6.16 $6.14 $6.07 $M
Demand Cost $0.34 $0.24 $0.37 $0.34 $0.26 $0.24 $0.24 $M
PJM PLC Cost $2.55 $1.31 $2.55 $2.55 $1.39 $1.31 $1.18 $M
Diesel Fuel Cost $0.49 $0.49 $0.00 $0.00 $0.00 $0.00 $0.00 $M
Total Life Cycle Cost $10.52 $9.54 $10.29 $10.23 $9.31 $9.25 $8.98 $M
Net Present Value $0.00 $0.98 $0.22 $0.29 $1.21 $1.27 $1.53 $M
Break-even Cost Per Bus $0 $0 $37,418 $47,968 $200,852 $210,968 $255,795 $/bus

(a) Remaining capacity over time (b) Remaining capacity after 10 years at different tem-
peratures

Fig. 7: Impact of REopt based battery cycling profile in Scenario 7 on the life the battery

include the capital cost of EV buses, charging infrastructure
and additional controls equipment required for smart-charging,
VTB, and DR and wholesale market participation. Also, differ-
ent use cases for fleet electrification such as package delivery
vehicles will be evaluated.
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