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Executive Summary 
To quantify and reduce the difference between the expected and the actual energy production of 
wind plants, the National Renewable Energy Laboratory (NREL) orchestrated an industry-wide 
data sharing initiative, the Wind Plant Performance Prediction (WP3) project. Through this 
multiyear effort, NREL gathered preconstruction and operational data from industry partners, 
developed the Open Operational Assessment (OpenOA) open-source operational analysis 
software, and studied historical trends of the energy prediction bias. NREL has recently 
completed Phase 1 of the benchmark exercise. This report summarizes the infrastructure, 
methodology, and tools NREL developed to facilitate this initiative as well as the results and 
lessons learned from the Phase 1 analysis.  

The motivation for this work is that the financial risk associated with developing, owning, and 
operating wind power plants remains a barrier to reducing the levelized cost of energy for wind. 
Specifically, predicting the amount of energy a given wind plant will produce before it is 
constructed remains challenging, and industry has observed a bias toward overprediction (Lee 
and Fields 2021). Further, the uncertainty associated with these predictions remains high, 
resulting in a wide range of possible outcomes for wind plant owners and investors. Given the 
narrow operating margins of wind power plants, this overprediction of energy production—and 
therefore the overprediction of revenue—is damaging to project economics. A wind industry 
owner consortium (owners) approached NREL and the U.S. Department of Energy to develop an 
industry working group focused on reducing this source of financial risk through a first-of-its-
kind data sharing initiative. The Wind Plant Performance Prediction (WP3) project was created 
from this request, and this report represents the successful completion of Phase 1 of the WP3 
project to benchmark industry energy prediction performance. 

In Phase 1, 6 wind plant owner participants agreed to share preconstruction and operational data 
for a total of 10 existing wind plants. The preconstruction data were shared with NREL from 
industry consultant participants, who typically conduct energy yield assessments (EYAs) before 
a wind project is financed and built. The results from these EYAs—conducted during 2018 and 
2019—establish the expected energy production during the lifetime of the wind plant and form 
the basis for project economics and financial deal structures. The operational data were analyzed 
by researchers at NREL, who computed a benchmark, long-term corrected, annual energy 
production (AEP) value to which EYAs could be compared. NREL acted in the role of data 
aggregator and manager, ensuring the secure transfer of data among stakeholders and conducting 
analysis of the results. This role as an independent third-party data arbiter is a unique capability 
provided by government and federally funded research-and-development centers.  

The WP3 team administered various foundational studies and data sharing exercises before the 
full inauguration of the Phase 1 analysis. NREL successfully conducted a historical validation 
survey (Lunacek, et al. 2018) demonstrating a 5.5% estimation bias, including curtailment across 
the industry; completed a pilot project to test the process for benchmarking consultant EYAs 
against operational data; and then rolled out Phase 1 of the WP3 benchmark to analyze 10 
operating wind plants. NREL has developed and tested several internal capabilities to manage 
and share data, collect EYA results, and conduct an open-source operational assessment using 
the OpenOA platform. 
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NREL and the WP3 benchmark team have successfully completed Phase 1 of the benchmark. All 
10 wind plants have undergone operational analysis by NREL, and 68 of a possible 80 EYA 
submissions have been received from 8 participating consultants. With this data set, NREL can 
compare EYA submissions with the operational data to establish a baseline for performance and 
can begin exploring the underlying reasons for error and uncertainty. A detailed explanation of 
the operational assessment methodology is provided in Section 2.3.4, and the resulting 
comparison of EYA data to operational data is discussed in Section 4.  

Key findings of the Phase 1 analysis are as follows: 

• We record mean and median underpredictions of AEP of -1.2% and -0.7 %, respectively, 
with a sample standard deviation of 4.8% which is four times greater than the mean 
underprediction. 

• The energy prediction errors and the associated uncertainties demonstrate considerable 
variations among consultants. In particular, the average energy prediction biases for each 
consultant range from 4% underprediction to 2.6% overprediction. The associated 
standard deviations of the median consultant AEP estimate bias (P50) span from 3.7%–
6.1%.  

• The EYAs in our sample tend to have similar direction of overprediction or 
underprediction of bias for a given project but differing magnitudes of the predicted 
energy bias. Specifically, median energy prediction biases range from 6.3% 
underprediction to 4.1% overprediction at the project level. 

• Gross energy comparisons reveal broad disagreement among consultants. Gross energy 
represents the total energy estimated to be available to the wind plant before physical 
losses are considered. For most projects, the gross energy estimates vary from 5%–10% 
among consultants. This is a significant source of spread in the resulting EYA process. 
The spread in gross energy suggests that efforts related to improving wind resource 
estimation, such as improved instrumentation and modeling, will help to reduce overall 
P50 variability. 

• Total energy loss and categorical loss comparisons reveal the wide variation in the 
estimated energy lost from physical and operational processes. Individual consultant 
estimates of total loss range from 14%–26%, with a median value of 18.8% across all 
projects. These losses include but are not limited to electrical losses, wakes, and icing.  

• In general, there is much broader disagreement among consultants in both International 
Electrotechnical Commission categorical uncertainties and total AEP uncertainties than 
in corresponding losses. The source of this variation is unclear, but it is likely driven by 
each participant’s internal, unique uncertainty estimation methods and training data sets. 
Uncertainty quantification appears to be the least mature area of the EYA process as 
demonstrated by the level of variation amongst participations.  

• In a preliminary analysis of the disagreement in categorical loss and uncertainty estimates 
among consultants, we study the amount of disagreement by determining the interquartile 
range (IQR) of the difference between the estimates for each category and the 
corresponding project-level mean estimates. This analysis suggests that, for the data set 
studied, turbine performance, environmental, and wake loss estimates are the largest 
sources of disagreement among the loss categories. Specifically, disagreement for these 
three loss estimates (IQR values of 1.56% to 1.75%) is greater than the disagreement for 
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availability (IQR=1.12%) and electrical losses (IQR=0.71%). Further research is needed 
to draw industry-wide conclusions and to determine which loss categories have the 
greatest impact on total energy prediction variability.  

• In a preliminary analysis of the disagreement in categorical energy prediction uncertainty 
estimates among consultants, project evaluation period uncertainty (IQR=2.61%) and 
plant performance uncertainty (IQR=2.26%) record the highest interquartile ranges. This 
implies that consultant estimates of 1) how well the wind resource over the evaluation 
period represents long-term average conditions, and 2) plant performance (which is 
directly related to energy losses) are among the largest sources of disagreement for 
uncertainty estimation. Further research is needed to draw industry-wide conclusions and 
to determine which uncertainty categories have the greatest impact on the variability of 
total energy prediction uncertainty. 

Together, these results suggest that bias correction is generally effective at reducing average P50 
bias; however, there remains broad disagreement on the methods to arrive at a consensus P50 
value. Additionally, there remains fundamental disagreement on the steps in the EYA process, as 
demonstrated by commercially significant variations among consultants for estimates of gross 
energy, losses, and uncertainties. This demonstrates the need for consultant access to additional 
verification data as well as research to identify the best methods for gross energy quantification 
and uncertainty estimation. 

The WP3 benchmarking initiative, while successful has generated many valuable lessons for 
future data sharing initiatives. There is a definitive need to improve data collection and data 
sharing practices to ensure scalability of future efforts. Acquiring access to high-quality data 
requires continuing industry support through adoption of common data standards and analysis 
definitions. Follow-on work should seek to scale to many projects with improved representation 
for geography, markets, and turbine technology. Future efforts in this space should investigate 
specific sources of bias between predictions and actual operations. This includes topics such as 
gross energy, wake modeling, and environmental effects.  
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1 Introduction 
Financial risk resulting from the uncertainty associated with developing, owning, and operating 
wind power plants remains a barrier to reducing the levelized cost of energy. At the inception of 
the benchmark project, a National Renewable Energy Laboratory (NREL) analysis showed that 
modern wind power plants in the United States were underperforming in their expected annual 
energy output by 3.5%–4.5% after controlling for grid curtailment losses (Lunacek et al. 2018), 
with many underperforming by more than 10%. A more recent literature review conducted by 
NREL suggests that biases in wind power plant energy predictions are decreasing over time (Lee 
and Fields 2021). Nonetheless, to compensate for this uncertainty, investors require a larger 
return on investment and apply correction factors that mask much of the underlying sources of 
uncertainty; thus, wind energy projects have reduced access to low-cost capital. Further, 
operating wind plants often take a simple approach to estimating operation-and-maintenance 
costs (e.g., straight-line estimates based on similar plants), which can eat into profits. To 
overcome these issues, the wind industry must improve the models they use for estimating wind 
plant performance and operations. 

A consortium of wind plant owners requested that NREL lead a U.S. Department of Energy 
(DOE) working group to benchmark the accuracy of wind power plant energy predictions against 
real operational data. The owners were also motivated by DOE and NREL’s potential to 
characterize systematic energy underperformance, identify sources of uncertainty, and explore 
root causes. The Wind Plant Performance Prediction (WP3) project was created, and this report 
represents the successful completion of Phase 1 of the WP3 project. Note that the WP3 
benchmark project is not the first initiative to benchmark industry performance; it is, however, 
the first independent analysis of this depth and scale. You can find a summary of the various 
industry analyses in (Lee and Fields 2021). 

During the project, wind plant owners provided both preconstruction and operational data to 
NREL. The preconstruction data were provided to wind resource assessment consultants so they 
could conduct energy yield assessments (EYAs). NREL took all the completed EYAs, along 
with the operational data, and conducted an operational assessment to benchmark the EYA 
results against actual operational data. Given the large amounts of sensitive data required for this 
effort, as well as the historical opposition to sharing data within industry, successful completion 
of Phase 1 represents an unprecedented milestone for industry data sharing.  

1.1 The Challenge 
The U.S. wind industry is facing the expiration of the production tax credit, which has been a 
driver of industry growth for more than a decade. As a result, many institutions are predicting a 
sharp decline in the development of wind power plants starting in 2021. Figure 1 shows this 
installation “cliff” as forecasted by several organizations.  
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Figure 1. Wind capacity additions from the “Wind Energy Technology Data Update: 2020 Edition” 

(Wiser et al. 2020) 

Wind plant owners can prepare for this potential decline in installations by reducing the cost of 
building, owning, and operating wind plants. One of the best, near-term ways to do this is by 
reducing the uncertainty and risk associated with the financing of new projects. The riskier it 
appears to own and operate a wind power plant, the more expensive it will be to acquire capital 
for development and construction. Further, large wind plant owners are concerned that their wind 
project portfolio might not meet long-term performance expectations, which dampens the future 
of wind development. One primary driver of this risk and uncertainty are preconstruction EYAs 
made by third-party consultants and in-house energy assessment teams at developers. In a 
validation study of historical data, NREL researchers found that EYAs overpredict energy 
production by 5.5% on average, including curtailment, and that the total error on those estimates 
ranges from 5%–12% (Lunacek et al. 2018). This study demonstrates the opportunity for 
improvement. Figure 2 demonstrates the bias and uncertainty found in the historical validation 
study (HVS).  

The financial impacts of this performance gap will be project specific. Based on our 
conversations with wind plant owners, an overprediction of only 3% poses a significant threat to 
their profitability, which is a strong disincentive to continue investing equity capital. Further, a 
1% change in energy yield is equal to approximately $20/kW in the turbine price, or 
approximately $4 million net present value. The typical energy yield assessment takes 100–200 
hours for wind resource assessment consultants to complete, yet overprediction bias and 
uncertainty persist (Lee and Fields 2021). By addressing this performance gap, industry can 
reduce financial risk for investors and decrease the weighted cost of capital.  
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Figure 2. Prediction bias and uncertainty in wind energy estimates. The negative mean and 

median biases illustrate overprediction of annual energy production (AEP).  

1.2 The WP3 Solution 
To improve the accuracy and confidence of preconstruction EYAs, wind plant owners and 
investors need better, more certain energy yield predictions. The WP3 benchmark project is an 
industry-driven response to this reality. For the first time, industry has taken the important step 
of working together at scale, sharing valuable operational data with DOE and NREL to 
investigate the sources of bias and uncertainty in these energy estimates. The owners provide 
wind plant preconstruction and operational data to NREL in an organized and documented 
fashion, and NREL provides guidance and feedback as needed. The owners also provide 
introspection of the design of experiment, key metrics of success, data challenges, analysis best 
practices, and quality of results. 

1.2.1 Project Participants 
• Project owners: Project owners provide preconstruction and operational data to the 

project. They also worked closely with the NREL team to help develop internal 
capabilities for benchmarking preconstruction energy estimates against the operational 
data. For Phase 1 of the WP3 benchmark, the owner includes EDF Renewables Inc, EDP 
Renewables, RWE, Pattern Energy, Renewable Energy Systems, Enel Green Power, and 
Avangrid. 

• Resource assessment consultants: The consultants use the preconstruction energy data 
to conduct EYAs. From there, NREL compares their EYA against operational data to 
benchmark the results. For Phase 1 of the WP3 benchmark, the consultants include WSP, 
ArcVera Renewables, UL (formerly AWS), EAPC-EMD, Luminate, Mott MacDonald, 
Natural Power, K2 Management, (formerly Prevailing Wind), and Wood Group.  

• Original equipment manufacturers (OEMs): The equipment manufacturers offer 
insights into various aspects of the preconstruction data and operational data. For Phase 1 
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of the WP3 benchmark, the OEMs include Acciona-Nordex, General Electric, Vestas, 
Senvion, and Siemens Gamesa.  

• Government: Government participants act as neutral third parties, holding and managing 
data as well as conducting objective analysis for the benchmark. For Phase 1 of the WP3 
benchmark, the government participants include DOE, NREL, and the Pacific Northwest 
National Laboratory (PNNL). 

1.2.2 Project Structure and Operations 
NREL interfaces directly with wind plant owners and resource assessment consultants for data 
sharing, including the transmittal of project data and benchmark submissions. Nondisclosure 
agreements are in place to protect all stakeholder data from improper use. NREL serves as the 
centralized data collection and reporting hub for the initiative. Wind plant owners transfer project 
data to NREL for cataloging and distribution to the wind resource consultants. NREL then 
analyzes consultant responses for accuracy of preconstruction estimate methodologies compared 
to actual production. Upon submission of all project preconstruction EYAs, consultants are given 
access to operational data for the wind plants and asked to calibrate their EYA estimates. The 
operational data are valuable to the consultants and are seen as a benefit of participation in the 
WP3 process. DOE labs can also use the data for ongoing research per the terms of the 
nondisclosure agreement. Figure 3 displays a graphical representation of stakeholder 
responsibilities, roles, and data flows. 

 
Figure 3. WP3 data sharing structure 

1.3 WP3 Project Goals 
Ultimately, the benchmark will verify the accuracy of the annual energy production (AEP) 
prediction process, including the 50% probability of exceedance of the AEP estimate (P50), 
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uncertainty estimation process values (P75, P90, P95, P99), and loss estimation processes. More 
broadly, WP3 has three high-level goals: 

1. Create a platform for data sharing, data analysis, and model improvement.  
2. Generate accurate, independent benchmarks of preconstruction energy assessment 

accuracy using operational performance data from industry. 
3. Improve the accuracy and confidence of preconstruction energy estimates.  
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2 Capabilities and Methodology  
NREL, PNNL, and DOE are actively developing capabilities that support the storage, 
aggregation, analysis, and reporting required to implement the WP3 benchmark initiative.  

2.1 Data Archive and Portal 
The DOE-sponsored WP3 benchmark research project leverages PNNL’s Data Archive and 
Portal (DAP) to collect, store, and disseminate data among performance risk, uncertainty, and 
finance (PRUF) stakeholders and WP3 participants. DAP and PRUF are both part of DOE’s 
ongoing wind research activities under the Atmosphere to Electrons program (a2e.energy.gov).  

Wind plant owners provide both preconstruction and operational data to NREL via the DAP, 
which then goes through a quality-control step and iterative dialogue with owners to answer 
questions and to ensure the integrity of the data sets. Wind resource assessment consultants 
download the preconstruction data via DAP, conduct their resource assessment, and submit 
results to NREL via a collection form that is hosted on the DAP. NREL WP3 staff manage 
partner access to the DAP and can upload and download data as required to facilitate data 
sharing. 

2.2 Energy Yield Assessment Results Collection 
The WP3 benchmark process requires input data from consultants in the form of completed 
EYAs. There are, however, challenges with comparing the output from consultants’ models, 
given the diversity in output formats, units, and other nomenclature. The WP3 team developed 
an online form, hosted by the DAP, to standardize submissions and to ensure a fair and accurate 
comparison. To perform this harmonization, NREL is relying on the draft requirements from the 
International Electrotechnical Commission (IEC) 61400-15 working group “Assessment of Wind 
Resource, Energy Yield and site suitability input conditions for wind power plants.” This draft 
standard helps to bring together disparate results and descriptions from a number of consultants. 
The WP3 benchmarking initiative is one of the first times that the unified IEC framework has 
been applied in practice (Lee and Fields 2021; Fields and Sherwin 2018; Filippelli et al. 2018). 
As such, there are still some issues to be overcome, and NREL has developed several data 
collection approaches to remedy these issues during the WP3 benchmark pilot and Phase 1 
portions of the work. 

2.2.1 EYA Results Collection Web Application 
The EYA application is a client-side web page that runs only in a web browser and facilitates the 
collection of robust preconstruction estimates. The application makes it possible for NREL to 
validate data before submission, which creates a higher likelihood that values will be easy to 
access and directly comparable once submitted. Prior to building the current EYA application, 
NREL experimented with other collection methods, such as Microsoft Excel spreadsheets. It was 
quickly found that entries often had incorrect units, and the data processing was difficult, if not 
impossible, to automate because of additional rows or columns being added or the variable 
descriptions and column headers being changed by our external participants. The EYA 
application addresses these data quality problems by providing a more rigid input form that 
provides real-time feedback to the users on what they are entering and how NREL will be 
interpreting those values. 

https://a2e.energy.gov/
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Figure 4 shows an example of the collection form and the feedback we give users during the 
process. In the figure, one cell is highlighted in red because the entry is outside an expected 
range. This does not prevent users from submitting the value, but it highlights this potential error 
at the point of entry, providing the user with an opportunity to correct the data before they are 
submitted to NREL. Finally, when possible, the EYA application provides a summary of how 
entered values will be interpreted by NREL. Total losses, for example, are computed in real time 
by aggregating the reported loss categories. This provides users with one more cue to detect data 
entry errors. One important design decision was that all tabular data can be copied and pasted 
between the EYA web application and Microsoft Excel (or a similar spreadsheet platform) using 
the client’s clipboard. This allows users to work with and reshape their data using a tool that is 
familiar to them before the values are transferred to the application in bulk. This reduces errors 
caused by entering multiple values by hand or from using unfamiliar software. 

 
Figure 4. Example of EYA application data collection fields 

There are certain advantages to using a client-side application. When a user submits results, the 
application posts a data packet to a server that simply forwards the packet to a collection email 
account. The application is statically served, and no user data are stored on the server. This 
architecture reduces maintenance requirements and eliminates the potential security 
vulnerabilities associated with running a back end. Because the application is served through a 
web browser, NREL can update the code and roll out to users instantly as well as track the 
different versions of the data model as changes occur. The application also includes an export 
feature that makes it possible download an EYA submission file to share with colleagues. Future 
versions of this application might add server-side support as more requirements are identified. 
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Figure 5. Home page and navigation for the EYA application 

Figure 5 shows the home page of the application, which is organized into tabs that represent the 
various aspects of the EYA data. At the beginning of Phase 1, it was found that the amount of 
data requested from consultants was too great and that full compliance with the data collection 
application was simply not feasible. NREL then defined a subset of all the fields (the bold tabs in 
Figure 5) to kick-start the data collection phase and reduce the data entry burden on consultants. 
The reduced set of data allows NREL to collect enough information to facilitate the stated goals 
of the Phase 1 benchmark. Note that the analysis is therefore limited by the data we could 
reasonably collect from our partners. Additional data might be requested by the WP3 team to 
provide the remaining portion of the request (the non-bold tabs in Figure 5) to take the analysis 
to an even more granular level. So far, the results received through the collection application 
have been much easier to analyze in an automatic fashion, and the feedback from consultants 
who use the app to enter their data has been widely positive. NREL expects to implement feature 
enhancements and to begin requesting more detailed data requests via the non-bold tabs in the 
form (e.g., the “uncertainty” tab) for future phases of the project. 

2.3 OpenOA (Operational Assessment Software) 
On the operational assessment side, the WP3 team developed an open-source operational 
assessment software library, OpenOA (Perr-Sauer et al. 2021), hosted on GitHub 
(https://github.com/NREL/OpenOA), to produce consistent industry standard operational 
analysis metrics. These metrics can be compared with the energy predictions in the EYA data. 
These metrics, computed from operational data, are a critical part of the benchmark analysis 
because they represent the “ground truth” energy production values. As such a critical piece of 
the analysis, it became apparent that our software should be made open source so that it could be 
shared with and reviewed by WP3 stakeholders. At the time of the benchmark analysis, OpenOA 
software contained two high-level analysis methods. 

The plant-level analysis summarizes monthly energy generation, availability, curtailment, and 
other high-level losses to generate a plant-wide, long-term corrected AEP value. It is important 
to understand which losses are included in this value and which are not so that an apples-to-

https://github.com/NREL/OpenOA
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apples comparison can be made with the consultant EYA estimates. Drawing from the 
discussions with industry partners, NREL developed a set of industry standard programmatic 
tools and algorithms to compute this key performance metric. A detailed description of this 
analysis method is provided in Section 2.3.4. 

The turbine-level analysis includes high-resolution data (10-minute averages or finer data) for 
each turbine, which allows a granular look at energy production, loss categories, and sources of 
uncertainty. These data allow NREL researchers to estimate the individual loss categories from 
operational data.  

OpenOA provides the first open-source tool kit for this purpose. Outside of its immediate use for 
the PRUF project, the design of this software was also supported by the NREL Research Data 
Initiative and provides NREL researchers and the broader wind industry with a capability to 
perform consistent, reproducible operational analysis on wind plant data. More importantly, the 
operational analysis conducted through OpenOA reflects industry standards and future 
capabilities that do not exist consistently across industry. 

2.3.1 Software Architecture of OpenOA 
OpenOA is a package for the Python programming language, which is compatible with Python 
3.6 or greater. The package contains three modules: (1) types, (2) tool kits, and (3) methods. 
Figure 6 shows the relationship between each component and provides an example of a 
computed distribution for AEP. In this example, we use data from the supervisory control and 
data acquisition (SCADA) system, the plant-level energy meter, and meteorological reanalysis 
data. The statistical flagging, gap-filling, and time-series tool kits are then used to process these 
raw data. Finally, a distribution of AEP metrics is computed using the operational AEP 
benchmark methodology. This example provides a high-level overview of an analysis using 
OpenOA and is not meant to represent any particular project. 
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Figure 6. Schematic of dependencies among modules for an example computation of AEP 

Here, we enumerate the three modules of OpenOA and explain their functionalities. The tool kits 
module is a container for general helper functions that represent common tasks in the analysis of 
wind plant operational data. These functions are written to operate on pandas data frames and 
NumPy series, making these functions useful to all Python developers and users, even if they do 
not leverage the other components of OpenOA. The tool kits module is organized by purpose, 
with submodules such as unit conversion, time-series imputing, and power curve fitting, to name 
a few. 

The types module implements the model for wind plant operational data and associated data. The 
model is built around a class called PlantData, which acts as a high-level container for 
constituent data. This class is central to the processes of data management, cleaning, and 
transformation. The goal of this module is to help standardize operational data sets in the wind 
industry. We propose a data model with a schema that is based on the IEC 61400-25 standard as 
shown in Figure 7. The schema is provided in a JSON format and can be leveraged and extended 
by software developers.  
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Figure 7. Unified Modeling Language diagram depicting the object structure that implements the 

OpenOA data model 

The methods module contains Python classes that use the PlantData model and low-level tool kit 
functions to perform an end-to-end analysis. Two methods—the plant-level and turbine-level 
analyses—are available in this module at the time of writing. Both methods are implemented as 
Python classes and can be used in an interactive manner through the Python interpreter. These 
built-in analysis methods can be extended by creating subclasses and overriding their methods.  

2.3.2 Documentation 
Documentation is a critical part of any open-source codebase. It is the key that unlocks the code 
for unfamiliar users. The OpenOA documentation is comprehensive and includes the full 
application programming interface (API) of each tool kit module, installation instructions, and a 
set of Python Jupyter Notebooks with example outputs and figures. The documentation is drawn 
from internal docstrings and reStructuredText (RST) files throughout the codebase. It is 
automatically compiled after each merged pull request on GitHub. Documentation is then 
automatically pushed to a publicly hosted website on Read the Docs 
(https://openoa.readthedocs.io) as shown in Figure 8.  

https://openoa.readthedocs.io/
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Figure 8. Screenshots of OpenOA documentation: (left) application programming interface for the 

filters tool kit and (right) Monte Carlo P50 AEP Python Jupyter Notebook 

2.3.3 Open-Source Development 
OpenOA is a multiyear effort, and the number of developers has been expanding over the years. 
After multiple internal beta releases throughout 2018, Version 1 of OpenOA was released to the 
public on September 10, 2018. The software is now developed in a public repository where the 
development team can collaborate with and accept contributions from the broader community.  

2.3.4 Operational Annual Energy Production Benchmark Methodology 
The WP3 method for generating an AEP estimate based on operational data follows an industry 
standard approach. This approach establishes a relationship between reported, loss-corrected 
monthly energy production and the concurrent, monthly average wind speed from a long-term 
data set. This relationship is then applied to a full long-term wind speed database to estimate the 
long-term AEP. 

Uncertainty in the AEP estimate is calculated through a Monte Carlo approach (Montgomery and 
Runger 2014; Wilks 2011). Specifically, inputs into the OpenOA code, as well as intermediate 
calculations, are randomly sampled based on their specified or calculated uncertainties. By 
performing the operational assessment tens of thousands of times under different combinations 
of the random sampling, a distribution of AEP values results from which uncertainty can be 
deduced.  

An overview of the Monte Carlo-based AEP calculation is shown in Figure 9. Uncertainty is 
assessed in the following input data and AEP calculation processes: 

1. Reported energy data:  
A. Uncertainty in reported revenue meter data is assumed to be 0.5%. 

2. Modeled wind resource data: 
A. Uncertainty is quantified by the use of different reanalysis products. 
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B. ERA-Interim (Dee et al. 2011), the Modern-Era Retrospective analysis for 
Research and Applications, Version 2 (MERRA2) (Bosilovich et al. 2016; Gelaro 
et al. 2017), and Global Forecast System reanalysis data are currently considered. 

3. Reported availability and curtailment losses: 
A. Uncertainty in the reported losses is assumed to be 5%. 

4. Large combined losses: 
A. Accounts for the fact that large, combined availability and curtailment losses for a 

given month result in a highly uncertain gross energy calculation. 
B. It is industry standard to remove the data points when their combined losses 

exceed some threshold (e.g., 15%).  
C. We account for uncertainty in the analyst decision here by varying the threshold 

from 10%–20% (Craig et al. 2018). 
5. Identification of regression outliers: 

A. Accounts for analyst choice in assessing what is and is not an outlier in the linear 
regression relationship between the monthly energy production and the monthly 
average resource 

B. Implemented through robust linear regression and random samples based on the 
Huber’s t weight function to select outliers between values from 2–3 (Huber and 
Ronchetti 2009; Seabold and Perktold 2010). 

6. Regression relationship: 
A. Accounts for the imperfect relationship between monthly energy production and 

monthly average wind speed  
B. Implemented by calculating the error in the slope and intercept values, as well as 

the covariance between the two, to resample the slope and intercept values that 
are then used for the remainder of the AEP calculation.  

7. Windiness correction: 
A. Accounts for the variable historical wind resource and our confidence in the long-

term correction applied to the AEP 
B. Implemented by varying the period of record for the long-term correction from 

the last 10 years to the last 20 years. 
Note that interannual variability, which captures the uncertainty of the wind resource in any 
given future year (Lee et al. 2018a, 2018b), is not considered for this operational AEP 
benchmark. Rather, the total uncertainty in the operational AEP reflects NREL’s confidence in 
the long-term AEP based on the historical data and time period available to NREL. For this 
reason, any uncertainty associated with future annual variations in the wind speed is beyond the 
scope of this total uncertainty calculation. 
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Figure 9. A Monte Carlo approach to AEP estimation using operational data 

The steps in implementing this Monte Carlo-based AEP approach to calculate an AEP and 
uncertainty metric are summarized in the remainder of this section. 

• Step 1: Process and review reported monthly energy data. 
In this step, wind plant data (availability, curtailment, and revenue meter energy) 
provided by owner/operators are processed into monthly values (if not already 
done so) and under quality-control checks. Next, monthly gross energy is 
calculated by adding back the reported monthly availability and curtailment losses 
to the reported monthly revenue meter energy. 

• Step 2: Review reanalysis data and select products to use in AEP calculation. 
Reanalysis data are used to correct the operational energy during the plant period 
of operation to the long term. The reanalysis data are plotted (example provided in 
Figure 10) and checked for reasonableness, i.e., the reanalysis data showing 
reasonable trends over time with no noticeable discontinuities would pass the 
quality control test. If unreasonable trends or discontinuities are identified for a 
reanalysis product, it is not considered in the AEP calculation process.  
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Figure 10. Example of long-term monthly wind speeds (normalized) for different reanalysis 

products. An example period of record for a wind plant is shown in shaded blue. 

• Step 3: Review wind plant data and calculate long-term losses. 
Monthly time series of gross energy and availability and curtailment losses are plotted 
and manually checked for reasonableness (examples provided in Figure 11 and Figure 
12). Large, anomalous availability and curtailment losses are flagged. Flagged data 
require follow-up with either the data provided or the owner/operator to determine if 
these losses are considered representative of long-term plant performance. Losses that are 
deemed not representative of long-term performance are excluded when calculating the 
long-term availability and curtailment losses for the wind plant.  

 

Figure 11. Example of monthly gross energy during the plant period of record 
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Figure 12. Example of monthly availability and curtailment loss during the plant period of record 

• Step 4: Review regression relationship. 
Next, linear regression plots of the monthly reported gross energy and monthly average 
wind speeds for each reanalysis product are plotted to check for reasonableness and to 
identify outliers (example shown in Figure 13). Before plotting, monthly gross energy 
values are normalized to 30 days to provide a more accurate regression relationship. 
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Figure 13. Scatterplots of gross energy and monthly averaged wind speeds for different reanalysis 

products. Outliers are identified as red crosses. 

• Step 5: Run the Monte Carlo AEP calculation. 
Once data have been adequately reviewed and decisions on the input data have been 
made (i.e., choice of reanalysis products, removal of anomalous loss months from 
consideration of long-term loss calculation), the Monte Carlo AEP calculation is 
executed. A total of 50,000 iterations are considered. For each iteration, the following 
steps are performed: 

o First, randomly select the following: 
 Reanalysis product to be used 
 The combined availability and curtailment loss threshold 
 The outlier threshold in the Huber’s t weight function within the robust 

linear regression (or the Huber’s t criteria) (Huber and Ronchetti 2009) 
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 The number of years to use in the long-term correction. 
o Normalize the gross energy data to 30 days. 
o Perform the linear regression with the applied Huber’s t criteria, and record the 

slope and intercept values, their standard errors, and the covariance between the 
slope and intercept. 

o Based on the calculations in the previous step, create a joint distribution of 
possible slope and intercept values, and then randomly sample a pair of slope and 
intercept values from that distribution. 

o Use the sampled slope and intercept values to calculate 30-day normalized gross 
energy during the long-term period of record (defined by the number of years 
selected in the first step). 

o Calculate the monthly average 30-day normalized gross energy for each calendar 
month, convert it back to the regular number of days per month, and then sum to 
calculate the long-term gross energy. 

o Remove the long-term availability losses to obtain the long-term AEP (noting that 
for this benchmark, long-term curtailment losses are not removed). 

After completing the 50,000 simulations, a distribution of AEP values will result from which 
uncertainty can be reduced (example provided in Figure 14). 

 
Figure 14. Long-term AEP distribution after 50,000 simulations 

  



 

19 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

3 Work Packages 
The WP3 project currently has three work packages defining the products being produced. Each 
work package used feedback from and interactions with NREL staff, PNNL DAP management, 
wind plant owners, OEMs, and wind resource consultants. 

3.1 Historical Validation Study 
Before embarking on the larger data collection effort required for the full benchmark, the NREL 
team conducted a baselining exercise to try to validate some of the industry-wide resource 
assessment bias estimates being provided by industry. The HVS compared monthly production 
data, obtained from the U.S. Energy Information Administration, with preconstruction P50 
energy estimates collected from the owners of 56 projects in the United States. HVS results 
indicate significant bias between predicted and measured energy, even when controlling for 
factors such as commission date and grid curtailment. Results were highly dependent on the 
exogenous variables used during the analysis, which were accounted for with a sensitivity 
analysis over a range of reasonable values. For projects starting after 2011, which makes the 
analysis more representative of modern wind modeling capabilities, the calculated bias was 
−5.5% ± 1.28%, with 1%–2% of that being attributable to curtailment (Lunacek et al. 2018). 
Figure 2 in the introduction summarizes the results from the HVS.  

3.2 Benchmark Pilot 
To kick-start the benchmarking effort and test the process for collecting and analyzing EYA 
submissions against operational data, NREL chose a pilot wind power plant project from one 
owner in the stakeholder group. This pilot project, coded as z01 for anonymity, was 
representative of Phase 1 projects and provided valuable insights into potential issues that could 
come up during the rollout of the full 10-project Phase 1 effort. NREL acquired preconstruction 
data from the owner-operator of the project and released the data to the consultants via the DAP. 
NREL also developed and released the initial attempt at the EYA collection form in Microsoft 
Excel, which was the starting point for and precursor to the EYA results collection web 
application described in Section 2.2.1. NREL used EYA submissions from a total of 10 
consultants: ArcVera, DNV GL, EAPC, K2 Management, Luminate, Mott MacDonald, NRG 
Systems, WindGuard North America, Wood Group, and WSP (note that submissions from 
additional consultants were received after the analysis presented in this section was completed). 
Through a series of virtual and in-person meetings, NREL also received feedback from the 
consultants on potential process improvements. 

3.2.1 Consultant Response Collection 
For the pilot, the data request was rigorous, with the following specific requests captured in the 
spreadsheet response form (Figure 15):  

• Project summary: a summary of the 20-year P50 total project losses and uncertainty 
• Energy losses: project energy losses categorized into wake effect, availability, electrical, 

turbine performance, environmental, and curtailment/operational strategies  
• Uncertainty: project uncertainty values associated with measurements, horizontal 

extrapolation, vertical extrapolation, plant performance, historical wind resource, and 
project evaluation period variability  
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• Process description: survey of each consultant’s in-house EYA process, including the 
choice of numerical models, analyst experience, etc. 

• Measurement details: metadata associated with how each consultant processes and uses 
meteorological masts data 

• Measurement statistics: temporal wind speed data used during the assessment process  
• Energy yield per turbine: predicted average wind speed, wake loss, net energy yield per 

year, and turbulence experienced by each turbine of the project for 20 years.  

 
Figure 15. Screenshot from the Energy Yield Summary tab of the EYA results collection tool used 

for the pilot project. The consultants were asked to fill out the green cells. 

3.2.2 Pilot Results 
The pilot project was the first iteration of NREL’s benchmark methodology. NREL collected 10 
consultant responses and compared them to the benchmark AEP as calculated from owner-
provided operational data. As shown in Figure 16, 5 of the 10 consultants estimated net energy 
production higher than the AEP derived by NREL using operational data via OpenOA. 
Moreover, as shown in Figure 21, annual average per-turbine production varied widely across 
different consultants, which implies that despite some agreement at the plant-level AEP, there 
are still significant differences in the underlying methods. It appears that each consultant has 
“tuned” their various methods to ultimately output similar plant-level results, but the underlying 
calculations are inconsistent.  

Figure 16, Figure 17, and Figure 18 show Level 1 results from the pilot, which represent the 
primary metrics of interest for the benchmark (e.g., the P50 bias and the total project 
uncertainty). Specifically, this includes plots for P50 gross and net bias, P50 bias comparison, 
and uncertainty comparison.  
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Figure 16. P50 gross and net bias. Consultant estimates for z01 capacity factor. The blue and 
orange bars represent gross and net energy production, respectively. “AEP” represents the 

NREL-calculated benchmark capacity factor (normalized to 1), and the shaded bar represents the 
uncertainty. 

 
Figure 17. P50 bias comparison. Percentage difference between consultant P50 values and the 

NREL operational assessment. The zero horizontal line represents the NREL operational 
assessment value, and the grey band represents the uncertainty. 
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Figure 18. Uncertainty comparison: consultant estimates for z01 uncertainty. The orange box 
plots represent net energy production and the uncertainty predicted by consultants. The blue 

shaded box plot represents the NREL-calculated benchmark capacity factor. 

To take a closer look at the underlying causes behind the Level 1 pilot results, NREL also 
conducted a more granular Level 2 analysis, which represents secondary metrics of interest for 
the benchmark (e.g., categorical energy losses and uncertainties). These are metrics that will aid 
in understanding why the Level 1 metrics might disagree from each other and the calculated 
NREL operational assessment values. Specifically, this includes plots for categorical loss 
comparison (Figure 19), categorical uncertainty comparison (Figure 20), turbine-level capacity 
factor comparison (Figure 21), wake deficit comparison (Figure 22), and wind resource 
comparison (Figure 22).  
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Figure 19. Consultant-estimated losses by category for z01. Each box plot distribution represents 

10 different consultant estimates for z01 losses. 

 
Figure 20. Consultant estimates for z01 uncertainty by category. Each box plot distribution 

represents 10 different consultant estimates for z01 uncertainty. 



 

24 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 21. Consultant estimates for per-turbine capacity factor for z01. Each box plot distribution 

represents 100 turbines, with standard deviation displayed at the top of the plot. 

 
Figure 22. z01 Wake deficit analysis of the predicted wakes from three consultants 

 
Figure 23. z01 resource analysis of the turbine-level annual average free-stream winds from three 

consultants 

3.2.3 Lessons Learned 
The pilot project provided important lessons learned for benchmarking Phase 1 and offered an 
excellent opportunity to revise the EYA results-submission process. The most important 
takeaway was the need for more effective and engaged communication with the consultants and 
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owners to reduce obstacles to results submissions and to increase overall participation and 
timeliness.  

The spreadsheet collection method ran into several challenges, and the pilot project made it clear 
that Phase 1 would need a better solution for collecting consultant responses. Filling out the 
spreadsheet was time-consuming for the consultants, the Excel files after consultants’ editing 
were difficult to parse, data validation was difficult to enforce, and version control of the 
responses was challenging. Particularly, using an Excel-based form resulted in consultants 
modifying tables, data structures, and data fields in the provided template. These modifications 
were extremely common and led to problems in data post-processing and analysis. In some 
cases, NREL could not derive meaningful conclusions with statistical significance. To address 
these data collection challenges, the WP3 team developed the EYA collection application 
described in Section 2.2.1 to improve uniformity, ease of use, validation, and version control.  

The pilot project also revealed a need to improve the metadata documentation for 
preconstruction and operational data. As a result, for Phase 1, NREL prepared project overview 
documents consisting of metadata such as wind plant nameplate capacity, turbine layout, and 
meteorological tower records. Each project overview document was included with the 
preconstruction energy data provided to the consultants in Phase 1.  

3.3 WP3 Phase 1  
Phase 1 represents the formal launch of the WP3 project and includes the data from 10 
operational wind power plants. Each consultant conducts one EYA per project, resulting in 10 
submissions from each consultant. Upon submitting all 10 EYAs to NREL and completing Phase 
1 of the benchmark exercise, consultants receive operational data for all 10 projects to revise 
their methods and to perform their own research activities.  

3.3.1 Phase 1 Setup 
For Phase 1 of WP3, NREL selected projects that mirror expected near-term future deployments 
in the U.S. wind belt. In this region, NREL selected projects at random after filtering for specific 
characteristics (Section 3.3.2). With a small set of 10 projects for Phase 1, defining a project 
group with similar features will allow for greater statistical significance; therefore, as a key 
theme of this initial phase of WP3, in Phase 1 NREL chose wind projects with relatively simple 
terrain. Tackling this straightforward group of projects sets up the WP3 collaborative to pursue 
more complex “edge” cases in subsequent project phases. 

NREL used the Regional Energy Deployment System (ReEDS) Standard Scenarios Results 
Viewer (Cole et al. 2019) to examine modeled deployments from 2016–2020. We ranked them in 
descending order of installed capacity, then looked at states installing at least 1 GW of wind in 
this time frame. As expected, most deployment is expected in the middle of the United States, in 
the so-called “wind belt” states (Table 1). Figure 24 shows these states on a U.S. map, where the 
modeled near-term deployment is indeed concentrated within the central United States.  
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Table 1. Top Wind Installation States from 2016–2020 Modeled in ReEDS with Mid-Case Scenario 

State Installed Capacity 
(GW) 

% of Total 
Installations 

Cumulative % Total 
Installations 

Texas 27.29 42% 42% 

Wyoming 6.50 10% 52% 

Oklahoma 5.35 8% 60% 

Iowa 4.14 6% 66% 

North Dakota 3.42 5% 71% 

Montana 3.31 5% 76% 

South Dakota 2.29 3% 80% 

Minnesota 1.85 3% 83% 

Indiana 1.61 2% 85% 

Ohio 1.57 2% 87% 

Kansas 1.27 2% 89% 

Remaining States 6.93 11% 100% 

TOTAL 65.5   

 
Figure 24. Predicted near-term U.S. wind plant deployments used when selecting Phase 1 projects  

3.3.2 Project Characteristics 
The following characteristics and associated criteria represent the next level of filtering for the 
Phase 1 project list.  
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• Wind plant characteristic filtering: to represent a diversity of wind plant 
configurations, including plant size, array design, and a representative number of 
measured production years. 

o Size: 100 MW or greater 
o Hub height: At least 80 meters aboveground 
o Turbine size: 1.5 MW or greater 
o Operation: minimum 3 years of operation 
o Geography: Central United States or simple terrain 
o Curtailment: 5% or less (alternatively remove data periods that are above the 

threshold) 
o Availability: 95% or greater (alternatively remove data periods that are below the 

threshold). 

• Owner/operator diversity: to represent several operation-and-maintenances approaches 
and to avoid overrepresenting specific operators/owners. 

o Operations: documented operation-and-maintenance strategy including any 
upgrades or modifications 

o Curtailment: minimum monthly curtailment values; preferred is hourly or finer 
temporal resolution of curtailment signals from utilities.  

• Turbine manufacturer diversity: to represent a diversity of turbine technologies and 
avoid overrepresenting specific turbine manufacturers. 

o Turbine OEM: active OEMs capable of supporting warranties, operations, and 
maintenance. This eliminates defunct OEMs from consideration. 
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4 WP3 Phase 1 Analysis 
NREL and the WP3 benchmark team have successfully completed Phase 1 of the benchmark. All 
10 Phase 1 wind plants have undergone operational analysis by NREL, and 70 of a possible 90 
EYA submissions have been received from 9 participating consultants. Eight consultants have 
completed at least half of the project submissions, constituting 68 submissions, and have been 
included in the Phase 1 analysis discussed in this report. With this data set, NREL can compare 
EYA submissions with the operational data to establish a benchmark for energy-estimation 
performance and can begin exploring the underlying reasons for error and uncertainty. A detailed 
explanation of the operational assessment methodology is provided in Section 2.3.4, and the 
resulting comparison of EYA data to operational data is included in the following sections. Note 
that the consultant EYA submissions were received during 2018 and 2019; some consultants’ 
EYA methods may have changed since then. Similarly, the preconstruction wind measurements 
used for wind resource assessment in this study do not necessarily represent current best 
practices in the wind industry.   

The Phase 1 analysis includes the investigation and comparison of the P50 net energy estimate 
(Section 4.1), gross energy (Section 4.2), energy losses (Section 4.3), and prediction uncertainty 
(Section 4.4), with more detailed analysis of spatial variability, modeling approaches, project 
parameters, and examination of other metadata planned for future work. 

4.1 P50 Net Energy Estimate 
P50 represents the central estimate of the predicted energy distribution. This can be thought of as 
the long-term median energy production or the most likely outcome of the consultant predictions. 
Next, we compare the consultant EYA to the measured AEP as created by the OpenOA analysis. 
The total distribution of the differences between the estimated P50 and the measured AEP is 
shown in Figure 25 for the WP3 Phase 1 sample. This plot represents the 10 projects in the Phase 
1 sample and might not be representative of total industry prediction capability. Industry-wide 
analyses, such as the NREL HVS discussed in Section 3.1, are intended to represent actual 
industry performance. The average bias of our sample indicates underprediction but is still 
relatively small, at -1.2%; however, the standard deviation of the P50 bias remains high, at 4.8%.  
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Figure 25. P50 bias distribution for WP3 Phase 1. The positive values illustrate overprediction of 

AEP.  

For the 10 Phase 1 projects, on average, consultants were largely successful at estimating energy 
performance. But given the near 5% margin of error, it is still likely that any given consultant 
estimate for any given project could have been drastically different from the measured 
operational data. It is clear that a deep level of analysis is justified to begin to understand the 
underlying differences between consultant responses and predictions. In particular, an in-depth 
analysis approach is required to truly understand P50 performance and the implications of 
estimation methodologies across different industry players and project types. The breakdown of 
P50 bias by consultant and by project (Figure 26) reveals that P50 bias estimates tend to vary 
more between projects than between individual consultants, although certain consultants tend to 
consistently overpredict or underpredict. 

  
Figure 26. P50 bias distribution for WP3 Phase 1 color-coded by project and participant  

Figure 27 shows how the P50 bias differs between each individual project and by participant. 
This demonstrates a systematic tendency toward over- or underprediction relative to the 
operational assessment values on the project level. For example, Project A is unanimously 
overpredicted, whereas Project B is unanimously underpredicted. Moreover, the ranges in the 
prediction errors among consultants for each project are broad. Project B, for example, displays 
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that the consultant’s range of underprediction errors is from 3%–14%, whereas the range in 
prediction errors in Project E spans from approximately 8% underprediction to 8% 
overprediction.  

One key finding of this work is that the distribution of the P50 bias varies more by project than 
by consultant. This is clearly evident when comparing the left and right panels in Figure 27, 
where the ranges in P50 bias distributions are very different across the individual projects (left 
panel) and across participants (right panel). That is, P50 bias estimates tend to vary more 
between projects than between individual consultants, although certain consultants tend to 
consistently over- or underpredict the AEP.  

 
Figure 27. P50 bias box plot distributions for WP3 Phase 1 by project and by consultant 

4.2 Gross Energy 
Gross energy is defined as the total energy available to the wind plant from the wind resource 
alone. This can also be thought of as an ideal energy before losses are subtracted. The WP3 
benchmark definition of gross energy excludes all losses, such as wakes, although gross energy 
does include the natural variation of the wind resource at the site. A valid comparison to 
measurements is not yet available for gross energy estimates, so we simply compare the gross 
energy estimated by consultants within projects. This comparison reveals that the total energy 
estimated to be available to the wind plant before physical losses are considered varies widely 
from 5%–10% between consultants; however, some of the variability could be caused by slight 
discrepancies in how consultants define gross energy (i.e., whether any losses are included). 
Figure 28 shows the how these variations in gross energy among consultants for each project, 
combined with estimates of different types of losses, lead to a consultant’s P50 prediction, where 
the units of energy are normalized by the operational assessment of P50.  
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Figure 28. P50 waterfall chart for WP3 Phase 1 by project and by consultant 

4.3 Energy Losses 
Energy losses are the physical energy sinks that subtract from the gross energy to arrive at the 
P50 net energy estimate. Figure 28 demonstrates how aggregating the estimates of individual 
loss categories leads to a consultant’s EYA P50. This work examines variability in the total 
combined loss (the difference from gross energy to net energy) as well as the variability of each 
individual loss category level. The WP3 benchmark process used the proposed IEC 61400-15 
energy loss framework to define the standard loss categories (Lee and Fields 2021; Fields and 
Sherwin 2018; Filippelli et al. 2018). These include the following major categories and 
corresponding subcategories (note that we do not investigate loss estimates at the subcategory 
level in this report): 
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• Wake effect (internal wake effects, external wake effects, future wake effects) 
• Availability (turbine availability, balance-of-plant availability, grid availability) 
• Electrical (electrical efficiency, facility parasitic consumption) 
• Environmental (icing, performance degradation, environmental loss, exposure) 
• Turbine performance (suboptimal performance, generic power curve adjustment, site-

specific power curve adjustment, high-wind hysteresis) 
• Curtailment/operational strategies (load curtailment, grid curtailment, 

environmental/permit curtailment, operational strategies). 

 
Figure 29. Total loss box plot distributions for WP3 Phase 1 by project 

Figure 29 shows the variation in total losses by project. The variability within projects is 
considerably large, with some projects varying by greater than 10% from lowest to highest 
consultant estimate. Despite the large variability within projects, the median loss estimates are 
similar between projects, with a tendency for the interquartile ranges of each project’s loss 
estimates to overlap. There is also considerable variability in the total loss estimates for each 
consultant, where a consultant’s loss estimates might vary anywhere from 3%–11% across the 
range of projects. This range in variability could be caused by the degree to which consultants 
vary their estimates of individual loss categories from one project to the next.  

The categorical losses also exhibit considerable variability within each specific loss category 
(Figure 30). Figure 30 represents all loss estimates from all projects and consultants in the WP3 
Phase 1 sample, expressed as the difference between the individual estimates and the 
corresponding average categorical loss values for each project. By subtracting the project-level 
average losses from the individual estimates, we attempt to remove the impact of interproject 
variability from the assessment of consultant agreement (i.e., although categorical losses could 
be significantly higher for some projects than others, we are interested in the degree of consultant 
agreement within each project). We consider the level of consultant agreement for each loss 
category by examining the interquartile range (IQR) of the estimates for each category. In 
particular, we see that turbine performance (IQR=1.75%), environmental (IQR=1.62%), and 
wake losses (IQR=1.56%) have the largest interquartile ranges—suggesting that these loss 
categories are among the largest sources of consultant disagreement—followed by availability 
(IQR=1.12%) and electrical losses (IQR=0.71%). Note that the order of the loss categories 
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arranged by IQR does not match the ranking when sorted by the median loss estimate across all 
projects (see Figure 30). For example, the median wake loss estimate (6.75%) is roughly twice as 
large as the median turbine performance loss estimate (3.35%), but the IQR values suggest that 
turbine performance losses are a comparable source of disagreement. Additionally, although not 
investigated here, the level of consultant agreement may vary across projects. Further research is 
needed to understand the impact of the disagreement for each loss category on the overall energy 
prediction variability. 

 
Figure 30. IEC 61400-15 loss category box plot distributions for WP3 Phase 1 by project. 

Curtailment loss estimates are not included here because they were not considered as part of the 
WP3 analysis. 

4.4 Prediction Uncertainty 
The energy prediction uncertainty for an EYA is a critical indicator of potential risk for 
investors. This analysis examines both the total combined uncertainty on the P50 net energy and 
the variability at each uncertainty category level. The WP3 benchmark process used the proposed 
IEC 61400-15 energy prediction uncertainty framework to define standard uncertainty categories 
(Lee and Fields 2021; Fields and Sherwin 2018; Filippelli et al. 2018). These include the 
following major categories: 

• Historical wind resource 
• Project evaluation period variability 
• Measurement uncertainty 
• Vertical extrapolation 
• Horizontal extrapolation 
• Plant performance. 
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Figure 31 compares the 10-year standard deviation of the energy predictions for the WP3 Phase 
1 sample. There is significant spread in the total estimated uncertainties for most projects in the 
Phase 1 sample, with ranges in uncertainty predictions up to 10%.  

 
Figure 31. Total energy prediction uncertainty (10-year standard deviation) box plot distributions 

for WP3 Phase 1 by project and by participant 

But there exists a much lower spread in each consultant’s individual estimates of total project 
uncertainty (with the exception of Participant 5). This is likely driven by the consultants’ unique, 
internal uncertainty estimation methods or training data sets. The large spread in uncertainty 
values for Participant 5 could be caused by multiple analysts within the consultant group 
contributing EYA submissions. Further examination of the categorical uncertainties as shown in 
Figure 32 also demonstrates substantial variability for specific uncertainty categories. Figure 32 
represents all uncertainty estimates from all projects and consultants in the WP3 Phase 1 sample. 
All uncertainties plotted in Figure 32 are presented as the difference between the individual 
uncertainty estimates and the average categorical uncertainty values for the corresponding 
project. Similar to Section 4.3, we use interquartile ranges to indicate the level of consultant 
agreement for individual uncertainty categories. In general, broader disagreement in uncertainties 
is observed compared to the loss categories (Figure 30), with interquartile ranges up to 2.61%. 
We also see less clear signals about which uncertainties are the greatest sources of disagreement; 
IQR values range from 1.57% for horizontal extrapolation to 2.61% for project evaluation period 
uncertainty, with the other uncertainty categories roughly evenly spaced throughout this range. 
Note that further research is needed to draw conclusions about the relative impact of each 
uncertainty category on the variability of the total energy prediction uncertainty estimates.  
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Figure 32. IEC 61400-15 uncertainty category box plot distributions for WP3 Phase 1 

4.5 Energy Yield Assessment Performance Evaluation 
The total accuracy or performance of an EYA is still an ongoing area of research and discussion, 
and we discussed several metrics in the previous sections that encapsulate the interests of a 
variety of stakeholders, including project owners and investors. This section provides an 
overview comparison of the predicted energy distributions and the total bias. Figure 33 and 
Figure 34 demonstrate both the predicted P50 net energy and the uncertainty relative to the 
OpenOA operational energy and uncertainty. These analyses visually demonstrate the large 
variability in both P50 energy levels and uncertainties. In particular, the average P50 prediction 
biases for each consultant range from -4%–+2.6%, and the associated uncertainties of the P50 
error span from 3.7%–6.1% (Table 2).  
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Figure 33. WP3 Phase 1 comparison of predicted EYA to operational assessment by project 

 
Figure 34. WP3 Phase 1 comparison of predicted EYA to operational assessment by participant 

 

EYA P50 
OA P50 Bias 



 

37 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Table 2. P50 Bias Performance by Participant 

Participant P50 Net/OA 
Bias Mean 
(%) 

P50 Net/OA 
Bias Std.  
(%) 

Mean 
Absolute 
Error (%) 

Projects 
Completed 

0 -4.02 6.11 5.46 5 

1 2.64 3.66 4.11 5 

2 0.11 3.64 3.08 8 

3 -3.53 5.41 4.89 10 

4 -2.48 4.83 4.50 10 

5 0.26 4.03 3.27 10 

6 0.48 5.30 4.18 10 

7 -1.93 3.73 2.90 10 
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5 Lessons Learned 
Throughout Phase 1 of the WP3 benchmark, several lessons were learned that will positively 
impact future initiatives. First and foremost, we learned that massive data sharing initiatives are 
possible within the wind industry (Lee et al. 2020). This was not completely certain at the outset 
of this project, considering that the benchmark required asking all stakeholders involved to share 
their proprietary and extremely sensitive data. The initiative was made possible by leveraging 
DOE laboratories as a neutral third party. The project has ultimately been a success and can be 
used as a model for other data sharing efforts. There were also many specific lessons learned 
throughout Phase 1—enough so that it is possible to divide them into categories. 

5.1 Data Access 
“Data access” refers to the ability to define, collect, and aggregate the various types of 
preconstruction and operational data required to develop a credible benchmark. Preconstruction 
data were collected from owners and distributed to consultants; operational data were collected 
from owners and used by NREL to develop operational assessment benchmarks; metadata and 
process data were collected from stakeholders. Specific data access lessons from Phase 1 
include: 

• Wind plant preconstruction and operational data are nonuniform and not standardized 
across different wind plants and owners, making them difficult to aggregate. For 
example, the variable names and units differ among project owners. This, in turn, made it 
challenging to develop uniform methods for summarization and analysis. Careful thought 
should be given to the data collection procedure, such as the creation of a data collection 
application. 

• Defining and making data requests as early as possible can help overcome data collection 
challenges because it helps owners assess their internal capabilities and resources. 
Owners might not have ready or easy access to all required data, and they might not 
know this is the case until they try to collect them. Different wind plants might have 
different methods for storing data, even within an individual owner’s project portfolio. 
Sharing data of jointly owned projects that involve multiple investors and owners can 
also be a challenge. 

• Wind plant selection criteria should include data accessibility and data quality as a 
critical component to overcome the challenges of collecting useable data. In the future, 
wind plants where there is high confidence in data quality and accessibility should be 
prioritized for selection in benchmark efforts.  

• Similarly, the high variance among owners or projects for operational data is a challenge 
that will require more diligence and planning in the future regarding the data quality, data 
availability, and data temporal resolution.  

• Application programming interface (API) access to operational data would be highly 
beneficial. This would allow an analysis team to directly access owner databases and 
make specific data calls on demand, removing the need for owners to relay and manage 
every single data request. 
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5.2 Data Management 
“Data management” refers to the ability for DOE, NREL, and PNNL to store confidential data 
internally and to manage access to that data across a diverse set of stakeholders. There are two 
competing needs to meet this requirement: (1) day-to-day storage requiring frequent updates and 
(2) long-term storage of large, sensitive data sets. Specific data management lessons from Phase 
1 include: 

• The current system for collecting and sharing data needs to be streamlined going forward, 
with a reassessment of how to best handle the (1) day-to-day storage and management 
and (2) long-term storage. User experience and speed are critical to (1), as well enable 
project staff to have more direct control over how the solution is managed. Metadata 
tracking and the visibility of data sets are critical to serving the need of (2). Security is a 
deeply important concern across both types of data management. 

• It is challenging to develop and deploy data management systems in parallel to executing 
a data-intensive project such as WP3. On several occasions during Phase 1, there were 
delays in making data accessible to project stakeholders because of unforeseen 
challenges, such as deploying new data management features or through system bugs that 
needed to be addressed before data could be shared. These types of unforeseen delays are 
common in software development efforts, but they are compounded when deployed at the 
same time as a new and untested business process.  

5.3 Energy Yield Assessment Results Collection 
After each consultant conducted an EYA for a project, they submitted the results to NREL 
through a custom-built data-upload portal attached to the DAP. This was ultimately successful, 
and the method proved effective and secure. At the same time, there were several lessons learned 
about process and technology improvements that can improve EYA collection in the future:  

• Consultants have unique in-house processes that do not map directly to each other, let 
alone to any single collection system that NREL can design. As a result, we can never 
fully eliminate user error or ambiguities in the data. We can and should still strive to 
reduce error via improved validation, by better and more documentation, and by adding 
flexibility to how consultants interact with the EYA collection application. 

• The types and granularity of data requests from consultants should be optimized and 
agreed upon before a new project phase. A balance must be achieved between the amount 
of data requested from consultants and the burden of actually entering that data into the 
collection application. 

• Updates to user management, data storage, user interface design, and the process for 
resubmitting results will be essential for a streamlined Phase 2 of the WP3 benchmark. 

• Turbine-level results, met campaign data, and granular statistical information are more 
time consuming for consultants to port to the EYA collection application, and as a result, 
some finer resolution data might not be practical to collect. For example, initially NREL 
asked consultants to describe things such as loss distribution shapes and detailed 
measurement calculations, but these proved impractical and were eventually removed 
from the data ask. 
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• Submission timelines and deadlines should align with commercial timelines of consulting 
firms. The industry has a clear “busy time” during the last quarter of the calendar year, 
during which it is unlikely they will be able to make many EYA submissions. 

• Going forward, NREL needs to improve the way time-varying losses are collected from 
consultants (e.g., blade degradation assumptions, refinishing schedules, short-term and 
long-term degradation). These data were proved critical to the benchmark but were not 
recognized as such until well into the project. Time-varying losses are needed to correct 
long-term energy production estimates to the operational assessment period of record.  

5.4 Operational Data and Assessment 
NREL collected operational data for each project in Phase 1, including availability data, turbine 
SCADA data, metadata, and related information. There were several data challenges, process 
challenges, and analysis challenges, each of which were overcome throughout Phase 1. That 
said, many lessons were learned for future operational assessment efforts:  

• The OpenOA project proved to be an important open-source analysis tool that helps 
support the transparency and accuracy of the benchmark findings. It is also increasingly 
being used by other researchers and industry stakeholders for their own operational 
analysis needs. Further development of OpenOA will be critical for future AEP 
benchmark projects as well as any other DOE projects involving operational data from 
power plants.  

• The operational data model specified in IEC 61400-25 proved cumbersome to implement 
with ambiguous naming conventions. An industry-wide effort to build a reference 
implementation based on this data model, such as the ENTR Alliance 
(https://www.entralliance.com/), or OSDU (https://osduforum.org) which could be used 
across different software packages, would be valuable. 

• Performance upgrades (e.g., vortex generators or control system upgrades) are not always 
listed in preconstruction data packages, which means they might not be obvious when 
making operational data requests. Because these upgrades impact plant performance, not 
including them in EYAs or in the operational assessment can result in discrepancies in 
results.  

• Better coordination with owners on the operational period of record, as well as on 
project-specific details such as the construction of neighboring wind plants, will lead to 
more complete preconstruction data packages being sent to consultants. This will avoid 
having to provide changes to EYA guidance mid-project, which can be time-consuming 
for consultants and NREL analysts.  

5.5 Metrics, Analysis, and Results 
Once NREL collected EYA results from the consultants and operational data from owners, the 
benchmark team began conducting comparative analysis to develop the benchmark and to 
develop a set of Phase 1 results. In doing so, the NREL team learned how to best approach this 
analysis:  

• It is critical to be on the same page with all stakeholders about important metrics of 
success. Each stakeholder group (DOE, NREL, owners, consultants, turbine OEMs) 
might have a unique set of priorities that will result in different desired types of analysis. 

https://www.entralliance.com/
https://osduforum.org/
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Project results should reflect priorities of the stakeholders and should consider the overall 
goals. This will help to appropriately tailor the message and define the best way to 
convey the value of the project.  

• Developing early results and socializing them with all stakeholders is critical to ensuring 
clarity and value of results. NREL was able to iterate quickly based on feedback from the 
stakeholder group, ultimately resulting in a higher level of confidence in the presented 
results. 

• Clarity is key, and effective communication with industry collaborators ensures 
continuing success of this effort. Open analysis and unambiguous comparative metrics 
can alleviate this. 
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6 Conclusions and Next Steps 
Across multiple years, the WP3 benchmark initiative successfully conducted an HVS of energy 
estimation performance (Lunacek et al. 2018), completed a pilot project benchmarking 
consultant EYAs against operational data for a single operating wind plant, and with this report 
completed Phase 1 of the WP3 benchmark. To support these efforts, NREL developed and tested 
several internal capabilities to manage and share data, collect EYA results, and conduct an 
operational assessment using the OpenOA platform. To date, the WP3 benchmark analysis has 
shown that prediction bias and energy production uncertainty have been significant challenges 
for the industry and that the underlying causes of both bias and uncertainty remain largely 
unknown. Prediction bias has improved over time; however, detailed analysis of pilot data and 
Phase 1 results indicate a lack of agreement on underlying methods. Specifically, we see broad 
disagreement in the quantification of wind resource levels, losses, and uncertainties. 
Additionally, there is broad disagreement about turbine-level production when given identical 
source information for the predictions. 

The original purpose and goals of WP3—particularly improving the accuracy and confidence of 
preconstruction EYAs—remain intact and highly relevant given the support we have received 
from industry to continue our efforts and in light of the increasing market pressures for low-cost, 
high-performing assets. The WP3 benchmark represents a near-term pathway to improve the 
financial performance of wind power plants, resulting in a reduced cost of energy for wind.  

In parallel to the completion of the Phase 1 benchmark, NREL is performing a more detailed 
analysis looking at sources of P50 energy production and uncertainty prediction error. These 
results will be published in additional peer-reviewed journal articles. 
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