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Project Overview

Goal: Estimate the value of building flexibility to the grid to
inform technology cost targets. Value streams of interest
include capacity, energy, and ancillary services.

Motivation: Better understand the potential magnitude of the
building sector’s role in supporting the future U.S. electric grid,
and the factors that are likely to influence that magnitude.

Approach: Conduct scenario analysis using a price-taking model
to dispatch generic demand-side flexibility resources against
modeled future grid scenario hourly prices.

NREL | 4



Project Status

FY20 Phase 1
* Dispatch model design and implementation

e Analysis of flexible building value for select 2030 grid scenarios,
maximizing grid service monetary value
FY21 Phase 2

* Analysis of flexible building value for select 2050 grid scenarios
with varying levels of other sources of flexibility

 New: Include demand-side flexibility in capacity expansion and
production cost modeling (price-forming); mixed integer
programming; dispatch model upgrades
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n Methods: Modeled Future Grid Conditions
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Method for Estimating Grid Service

Value of Future Market Entrants

e Produces e Produces hourly e Compiles e Dispatches the
installed generation capacity, energy, flexible building
generation and dispatch and ancillary service against price
transmission electricity prices prices, and data
capacity emission rates
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Future Grid Conditions from the

2019 NREL Standard Scenarios

Estimated grid service value of a 2030 market entrant:
 Mid RE (Mid Case 2030)

e High RE (Low RE Cost High NG Price 2030)

 Low RE (High RE Cost Low NG Price 2030)
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Installed Capacity
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Generation

= Low RE Mid RE High RE
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Geographic Resolution

in Price Taker Model
Map of eGRID Subregions

Lesser known abbreviations

« MRO*: Midwest
Reliability Organization

e SPNO & SPSO: Southwest
Power Pool

e SR**:SERC

e RFC*: ReliabilityFirst
Corporation

USEPA, eGRID, March 2020

Crosshatching indicates that an area falls within overlapping
eGRID subregions due to the presence of multiple electric
service providers. Visit Power Profiler to definitively determine
the elERID subregion associated with your focation and
electric senvice pravider

http:/fwww.epa govienergy/power-profiler



Grid Services Valued

e (Capacity price (ReEDS)
* Energy price (i.e., locational marginal price from PLEXOS)

* Ancillary service prices for flexibility reserves, regulation
reserves, and spinning reserves (PLEXOS)
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Capacity Prices
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Capacity Prices

Annual Capacity Value
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Energy Prices
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B Methods: Building Demand Flexibility
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Price Taker Model Overview

Maximize Grid Service Value,
subject to:

Key Inputs
Key Outputs

- Shifting results

- Hourly profits

- (Hourly emissions)

- Capacity, energy and
ancillary service price
time series

- Shifting window< 24 hours

/ - Dissipation (optional)
- Efficiency (optional)
- Power capacity constraints

- (Emissions time series)

- Flexible building
parameters

For simplicity, dissipation and efficiency effects are modeled as constants
(not as time-varying functions of, e.g., outdoor temperature)
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Building Flexibility Representation

Let P;, (kW) be the power consumed by the building in hour h.

Let S}, (kWh) be amount of energy service that has been
provided by hour h.

Then
Sh+1=Sh+Ph’At, At = 1 hour

is a basic model of how energy service accumulates.
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Building Flexibility Representation

To develop a flexibility model, we consider 1 kWh of load that in
the baseline (no-shifting) case, occurs at hour h™:

== baseline
”VVWL [ ]
P, 00— ! : | —~

h* h*+1
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Building Flexibility Representation

Then we can imagine shifting the energy use:

== baseline
1 kW~‘~ | ‘ ‘ == shifted
Pn 0 | I ' : j 1 } : —
h* h'+1

h* h*+1
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Building Flexibility Representation

And computing the difference: shifted baseline
APh: Ph - Ph

1kw |7

1 kWh+
ASh 0 1 : /\1 : : —

h* h*+1

-1 kWh'"-
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Building Flexibility Representation

We impose a shiftability window:

Nl
Hour * *
AP, O | h h*+ 1 :
h J

-1 kW-"

1 kWh+
ASh 0 : /\1 :

-1 kWh-”—
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Building Flexibility Representation

We impose a shiftability window:

L 5 e e ety :
AP, 0 4 ! : | | | | —
h h* h* +1 h h+1
-1 kW Lo :
M Constraint to reach same
accumulated energy service
1 kWh-“- P by end oI window
ASy o : — : : h—
h R OR 1 R h+1
-1 kWh-”— e ’

the service level constraints are set to allow full delivery (but not over-delivery) of the required service ., | 2
anytime in the shifting window



Building Flexibility Representation:

Service Efficiency

If service is delivered less efficiently outside of the original hour:
Sh+1 — Sh +77hPh At Np* = 1 77h< 1Vh#h"

{1 2 e
AP, 0 - | : | i | | —
h e RT+1 h  h+1
“1kw+
M Constraint to reach same
accumulated energy service
1 kWh-“- e — by end OI window
ASh o 4l : — ! i
h h* R +1 h ~h+1
-1 kWh e ’
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Building Flexibility Representation:

Dissipation

If the energy service is subject to dissipation effects:
Sh+1 — (1 — (I)Sh +77hPh -At,a = 0

= haseline
1 kW~‘~ I_'—\ = shifted
Py 0 | | : } —
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Building Flexibility Representation:

Dissipation

If the energy service is subject to dissipation effects:
Sh+1 — (1 — (I)Sh +77hPh -At,a = 0

1kW=+¢+
AP, 0 1 : : | | : : —
h e ht+1 h h+1
1kWt+ e
M Constraint to reach same
_____ accumulated energy service
1 kwh- T . by end oI window
AS, o 4 | | — | e
h R S h-"h+1
-1 kWh'”—
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We do not allow scenarios with non-zero

dissipation to delay service

If the energy service is subject to dissipation effects:
Sh+1 — (1 — (I)Sh +77hPh -At,a > 0

1kwd i
AP, 0 ! : i i ! : —>
h B R+
-1kwr o e
Constraint to reach same
________ accumulated energy service
1kWh+ . T \ 1 by end of window
ASp 0 L : : : * : : :
h v h 41
-1 kWh'"— 7 a1
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Building Flexibility Representation:

Capacity Limit

max(APy) < 64 kW

Limits the flexible building unit’s maximum amount of power increase.

In general, we want to allow full shifting to any hour within the window, but
this leads to extremely unrealistic bounds with high dissipation and large
windows (e.g., 2,048 kW with dissipation 0.5 and -12/0 window).

We do not attempt to realistically model power capacity headroom. That is, it
may not be possible to shift to certain hours because the equipment would
already be operating and unable to increase load as much as desired.
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Objective Function Components

Let G;, = —AP;, - At be Generation from the grid perspective

Capacity value of shifting = Capacity price * Gy,
(Annual capacity price [S/kW] is distributed to hours [S/kWh] by Cambium)

Energy value of shifting = Energy price * Gy,

Emission impact of shifting = Emission factor * G,
Objective Function 1: Maximize ) (capacity + energy value)
[Objective Function 2: Minimize > (emission)]

NREL | 30



Grid Service Provision

As a post-processing step, we determine whether the baseline
load at hour h* should be used for shifting or ancillary services:

1. For each shifting window (of length < 24 hours), calculate
capacity + energy value of shifting

2. Compare this net profit to the ancillary service prices and
choose exactly one of

e shifting (capacity + energy) ¢ regulation reserves
* spinning reserves * flexibility reserves

whichever service is most valuable to provide.
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Scenario Matrix

Total number of shifting

opportunities simulated: 24,834,600
(21 regions x 24 hours x 3 grid scenarios
x 45 flexibility parameter sets x 365 days)

Pre 12 post O
Pre 12 post 11

Original Grid Scenario | Shifting Efficiency | Dissipation | Capacity
Usage Window * Limit
Hour
Hour 1 Low RE Pre 1 postO 0.75 0 64
through 24 Mid RE Pre 1 post 1 1 0.005
High RE Pre 4 post O 1.25 0.05
Pre 4 post 4 0.5

* Dissipation cases are only
allowed to shift earlier.
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n Example: One-Day Dispatch
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Example Day Prices

* 1 kWh of flexible load in NWPP, original usage hour at 1/1/2030 19:00 local time.

*  Prices (cent/kWh) for various services during the 24-hour period around the original hour
(1/1/2030 8:00 — 1/2/2030 7:00):

_10.0- _ Service
o3 ] . — Ener
=z ’° ' ~ Flexibil
~X 50- [ exibility
%E 25. | ———— —~ Spinning
o © 0.0- e — Regulation

Jan 01 12:00 Jan 01 18:00 Jan 02 00:00 Jan 02 06:00 — Capacity

Energy 0.21 0.22 9.53

Flexibility 0 0 0

Spinning 0 0 0.17

Regulation 0 0 0.06

Capacity 0 0 0 NREL | 34



Demand-side cannot
service energy and
ancillary services at the

15:00 15:00 same time. The model

Energy + Capacity 0.21 0.22 9.53 opts for the service that

Dispatch with Different Windows

(cent/kWh) maximizes the profit.
1- i s2g Window -4/+4:

0 %é g Profit = (-1)*0.22 +
. B S5 (1+9.53-9.31

-2-

1- i == Window -12/+11:

0 5 g€%  Profit=(-1)*0.21 +
3 RS2 (1)*9.53=9.32

2- =°

Delta Generation (kWh)

Jan 01 12:00 Jan 01 18:00 Jan 02 00:00 Jan 02 06:00
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Dispatch with Different
Efficiency and Dissipation

Energy + Capacity 0.21 0.22 9.53
(cent/kWh)

= E a D
1 S&3
3 g5 @
x A i
gt | ==
E 3333 R
® 2-

£ =
o 1 i S8
20 689
A g2
# FS'CJFD
637 oo

2- &

Jan 01 12:00 Jan 01 18:00 Jan 02 00:00 Jan 02 06:00

Both scenarios have
window -12/+11.

Efficiency 0.75, Dissipation
0:
Profit = (-1/0.75)*0.21 +
(1)*9.53 =9.25

Efficiency 0.75,
Dissipation 0.05:

Profit = (-1/0.95%/0.75)
*0.22 +(1)*9.53 =9.17
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B Results: Impact of Flexibility Parameters and Grid Scenario
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Input Data: Mid RE Energy + Capacity
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Impact of efficiency:
0.75->1->1.25

We start with just 4 selected regions,
Mid RE, Dissipation 0, Window -12/+11



Mid RE Efficiency 0.75
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1

Mid RE Reference
Average Daily Profit (cent/kWh)
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Mid RE Efficiency 1.25
Average Daily Profit (cent/kWh)
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Impact of Dissipation:
0 ->0.005->0.05->0.5

Mid RE, Efficiency 1, Window -12/0
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1

Mid RE Dissipation 0.005
Average Daily Profit (cent/kWh)
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1

Mid RE Dissipation 0.05
Average Daily Profit (cent/kWh)
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Mid RE Dissipation 0.5
Average Daily Profit (cent/kWh)
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Impact of Grid Scenario:
Low RE -> Mid RE -> High RE

Efficiency 1, Dissipation 0, Window -
12/11
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1

Mid RE Reference
Average Daily Profit (cent/kWh)
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High RE
Average Daily Profit (cent/kWh)
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The trends we observed through the
selected regions hold true on the
national scale




. Annual Average Profit cent/kWh-day by Region
Mid RE 2030 g /kWh-day by Reg
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Temporal pattern (cent/kWh-day)
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* Western states have higher annual average for evening hdlirs. *



Higher efficiency leads to slightly higher value

efficiency = 0.75 efficiency = 1.0 efficiency = 1.25
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Distribution of hourly profits (cent/kWh-day) by region by efficiency for Mid RE, dissipation 0, window -12/+11 runs for
all original usage hours. Red dots indicate the mean values. Whiskers extend to the 10t and 90t percentiles of the |
distributions. L



Higher dissipation leads to diminishing value

dissipation = 0.0 dissipation = 0.005 dissipation = 0.05 dissipation = 0.5
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Distribution of hourly profits (cent/kWh-day) by region by dissipation for Mid RE, efficiency 1, window -12/0, for
all original usage hours. NREL | 56



Larger shifting window leads to higher value

Larger window

window = pre 1 post 0 window = pre 1 post 1
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Higher RE penetration leads to

higher average value, but it’s complicated...

grid_scenario = Low RE grid_scenario = Mid RE grid_scenario = High RE
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Distribution of hourly profits (cent/kWh-day) by region by scenario for efficiency 1, dissipation 0, window -12/11,
for all original usage hours. NREL | 58



Capacity prices in lower RE can result in extreme

high prices over short periods

Hourly value averaged over a month (672 — 744)

Low RE Mid RE High RE
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o o
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123456789101112 123 456789101112 12345678 9101112
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Boxplot of mean monthly value for each original usage hour and region under window [-12, +11], efficiency 1,
dissipation 0 by month and grid scenario. Whiskers extend to the 10t and 90t percentiles of the distributions.  nreL | 59



If only one hour each day is shiftable,
the highest value hour will be utilized...




Daily Value Duration Curve
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The highest-value hour for each day in each region is shown sorted in descending order.
Mid RE, Efficiency 1, Dissipation 0, Window -12/+11 NREL | 61



Annual sum value of shifting 1kWh

from the highest value hour of each day
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Low RE, window [-12,+11]

Annual sum value (S) of the highest-value hour
of each day under Low RE, window [-12, +11],

] =1
efficiency 1, dissipation O. NREL | 63




Low RE, window [-1,+1]

Annual sum value (S) of the highest-value hour
: : .
of each day under Low RE, window [-1, +1],

] 50
efficiency 1, dissipation O. NREL | 64




High RE, window [-12,+11]

Annual sum value (S) of the highest-value hour
of each day under High RE, window [-12, 11], ‘ i

] =1
efficiency 1, dissipation O. NREL | 65




High RE, window [-1,+1]

Annual sum value (S) of the highest-value hour
of each day under High RE, window [-1, 1], 0 =
efficiency 1, dissipation 0. NREL | 66




ﬂ Summary and Conclusions
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Summary

Hourly value averaged over days in each month (28 to 31) by parameter
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A box plot is shown for the configuration in each parameter that leads to the min/max average monthly value.
Whiskers of the box show the 10-90% of the distribution; lower and upper bounds of the box show the first and

third quartiles; red triangles show the mean values. NREL | 68



Conclusions

e Across all regions and scenarios, average monthly values range from 0 to 38
cent/kWh-day.

e Value of the highest-value hour each day across all the scenarios has a range of 0—
620 cents/kWh-day.

* Original usage hour has the biggest impact on value, with evening hours being
extremely valuable. Lower dissipation, larger window, and higher RE penetration
lead to higher monthly averages. Efficiency has limited impact.

e High capacity values in certain scenarios contribute to extreme high values over
short periods.

* Focusing on the mean values, top values, or the highest-value hour per day can
lead to different observations; therefore, all results are provided in an open
database.
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PLEXOS hourly
economic dispatch
of select Standard
Scenario-model
year combinations

PLEXOS is commercial power system production cost
modeling software licensed from Energy Exemplar.
Production cost models are (sub-)hourly operational
models of bulk power systems (analogous to EnergyPlus
for buildings).
Use cases include:

— Western Wind and Solar Integration Study

— Eastern Renewable Generation Integration Study

For this study, PLEXOS uses linear programming to
perform hourly economic dispatch of the U.S. power
system (represented by the 134 ReEDS balancing areas)
for select Standard Scenarios and model years (ReEDS
computes build-outs for 2010-2050 in 2-year
increments). Key outputs for this analysis include hourly
prices and marginal generators.
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Ancillary Service Assumptions in the PLEXOS Model

Reserve Timeframe Load Wind PV
Product (second) Requirement |Requirement |Requirement
(% of load) (% of capacity)

Regulation 300 1% 0.5% 0.3%
600 3% - o
Flexibility 1200 — 10% 4% when PV

is generating
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