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Abstract 
Production cost models are often used for planning by simulating power system operations over 
long time horizons. The simulation of a day-ahead energy market for a one-year horizon can take 
several weeks to compute. Tractability improvements are often made through model 
simplifications, such as reductions in transmission modeling detail, relaxation of commitment 
variable integrality, and reductions in cost modeling detail. One common simplification is to 
partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. 
However, horizon partitions are often executed with overlap periods of arbitrary and sometimes 
zero length. We calculate the time domain persistence of historical unit commitment decisions to 
inform time domain partitioning of production cost models. The results are implemented using 
PLEXOS production cost modeling software in a high performance computing environment to 
improve the computation time of simulations while maintaining solution integrity. Our results 
show that including two days of overlap on partitioned problems give adequate solution quality. 
Additionally, we achieve roughly 25-times speedup in the solver when optimizing 52 weeks in 
parallel, with overlap, versus a single annual optimization. 
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1 Introduction 
A production cost model (PCM) simulates the operation of generation and transmission systems 
by finding, during each time interval, the least-cost solution to generating sufficient energy to 
meet demand. The solution is restricted by transmission constraints (e.g., linearized de-coupled 
optimal power flow [DCOPF]), generator operation properties (e.g., startup costs, ramp rates, 
and maintenance outages), and reserve requirements to meet intra-interval generation-demand 
imbalances. Utilities, independent system operators (ISOs), and regional transmission operators 
(RTOs) run PCMs for planning purposes (e.g., to test feasibility of capacity or transmission 
expansion) and during daily/hourly operation to schedule generating units. Integration studies 
require the detailed simulation of the system during every hour of multiple years to adequately 
quantify operations and reliability of proposed projects. This process requires running many 
annual PCM simulations to assess each integration option under a variety of scenarios. PCMs 
present a set of mixed integer programming (MIP) problems with dynamic constraints coupling 
time steps. PCM computation times can often extend into multiple days for large systems. Due to 
the dynamic nature of generator operating constraints, the integrity of PCM optimization 
problems is dependent upon the simulation horizon over which the problem is defined. 
Typically, PCMs are used to simulate operations on an annual horizon to capture the seasonal 
variability of load and renewable resource availability. However, in practice, it is common to 
reduce the computational complexity of annual PCM simulations by partitioning the simulation 
horizon into monthly problems (General Electric Company 2013; Energy Exemplar 2013). 
Often, these discrete partitions are made with little or no consideration of the system boundary 
conditions at the endpoints of the partitioned simulation horizons. This paper explores the 
tradeoffs associated with time domain partitioning of PCM simulations. 

While PCMs are models of power system operations, they are commonly used for planning 
studies and policy analysis. For instance, a PCM can simulate energy and reserve prices for a 
variety of different generation portfolios or market structures. Traditionally, a single 
deterministic solution is given based on a PCM simulation horizon. Some studies simulate a suite 
of scenarios highlighting the system sensitivity to certain input variables (e.g., wind or solar 
generation profiles) where each simulation is computed simultaneously (Meyers et al. 2011). 
Other studies require that scenarios be computed serially so that results can inform future 
simulations. Both cases would benefit from a reduction in computation time via parallelization of 
simulations. The increasing availability of inexpensive computer hardware and parallel 
processing platforms provide resources that remain relatively untapped by PCM software. This 
research focuses on the computational enhancement of a single PCM simulation by partitioning 
simulation horizons. We present results on real systems using a commercial PCM software 
package (PLEXOS). PLEXOS was created by Energy Exemplar in 2001and has been developed 
into a highly extensible PCM package that enables high fidelity modeling of emerging 
technologies (e.g., storage and renewables). PLEXOS extends the standard features of many 
production cost modelling software packages by providing the capability to simulate operations 
at sub-hourly time resolution (Ventyx 2013) (General Electric Company 2013). 

Equations 1–7 describe the core PCM optimization problem. The objective function in Equation 
1 considers both operating (c) and startup costs (sc) associated with each generation unit (k) for 
each time period (t). Equation 2 represents the system load balance constraint where the sum of 
generation output (g) for committed (u) generators must equal the sum of all system loads (l) 
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plus losses. Equations 3–5 model generator behavior: constraining committed generator outputs 
to within minimum (gk

t,MIN) and maximum (gk
t,MAX) output levels, temporal shifts in generation 

to within ramping capabilities (rampk
t,MAX), and maximum energy production to within daily, 

weekly, monthly, and yearly limits (gh
day|week|month|year_max). Equations 6 and 7 model electricity 

transmission using the linearized DC power flow method (Grainger and Stevenson 1994), where 
f represents the megawatt power flow along the system transmission lines. The power transfer 
distribution factor matrix (PTDFs

k,j) describes the distribution of power injected at busk and 
withdrawn at the slack bus (s) that flows along linek. Additional constraint equations are added to 
this core PCM formulation to model behavior, such as forced outages, generator up/down time 
constraints, fuel constraints, emissions constraints, and reserve/security constraints. 

 Min ∑ ∑ 𝑐𝑘𝑡𝑔𝑘𝑡𝑢𝑘𝑡 + 𝑠𝑐𝑘𝑡(𝑢𝑘𝑡 − 𝑢𝑘𝑡−1)𝑘𝑡  (1) 
s.t. 

 ∑ 𝑔𝑘𝑡𝑢𝑘𝑡𝑘 = ∑ 𝑙𝑘𝑡𝑘 + ∑ 𝑙𝑜𝑠𝑠𝑗𝑢𝑗   ∀ t (2) 
 ∑ 𝑔𝑘

𝑡,𝑀𝐼𝑁𝑢𝑘𝑡𝑘 ≤ 𝑔𝑘𝑡 ≤ 𝑔𝑘
𝑡,𝑀𝐴𝑋𝑢𝑘𝑡   ∀ t, k (3) 

 𝑔𝑘𝑡 − 𝑔𝑘𝑡−1 ≤ 𝑟𝑎𝑚𝑝𝑘
𝑡,𝑀𝐴𝑋𝑢𝑘𝑡   ∀ t, k (4) 

 ∑ 𝑔ℎ𝑡𝑘 ≤ 𝑔ℎ
𝑑𝑎𝑦|𝑤𝑒𝑒𝑘|𝑚𝑜𝑛𝑡ℎ|𝑦𝑒𝑎𝑟_𝑚𝑎𝑥  ∀ h (5) 

 𝑓𝑗𝑡 = ∑ 𝑃𝑇𝐷𝐹𝑘,𝑗
𝑠 (𝑔𝑘𝑡𝑢𝑘𝑡 − 𝑙𝑘𝑡 )𝑘   ∀ t, k, s (6) 

 𝑓𝑗
𝑡,𝑀𝐼𝑁 ≤ 𝑓𝑗𝑡 ≤ 𝑓𝑗

𝑡,𝑀𝐴𝑋  ∀ t (7) 
PCMs are typically utilized to simulate the annual operation of a power system, and are thus run 
in annual simulation horizons that are traditionally computed by running a single simulation that 
finds the optimal solution of each time step given the solution of previous time steps. Without 
explicit consideration of the simulation start conditions (i.e., unit commitment and generator up 
times), such annual simulations are themselves approximations of how power systems actually 
operate.  For example, if an annual simulation starts on midnight of January 1 without 
information about system operation in the previous year, no information about how long 
generators have/have not been operating is passed to beginning time steps1, and thus the 
simulation cannot represent the inter-temporal constraints that define generator operation. Inter-
temporal constraints are required to represent the time that it takes to turn on/off a generator and 
to change the output of a generator. While the accuracy of PCM simulations is dependent, in 
part, on the enforcement of these inter-temporal constraints, the effects of enforcement in earlier 
time steps likely diminish. For example, while a certain generator may have a binding minimum 
on time sometime during January, that constraint is unlikely to affect that generators operation in 
August. Additionally, the inter-temporal constraints require the sequential simulation of each 
time step in the horizon, which can lead to extremely long computation times. This theory guides 
our approach to determine an appropriate partitioning method to speedup PCM simulations.  

This paper explores the effects of two key simulation start parameters on the results of 
partitioned PCM simulations. With reference to an un-partitioned annual simulation, we explore 
how the time points of partition boundaries and the partition overlap duration (or spin up) affects 
the partitioned simulation results. Figure 1 shows an illustration of the annual simulation horizon 
partitioned into four, roughly quarterly, horizons. The partitioned simulations commence at the 
time corresponding to the beginning of the overlap period and extend the duration of the 
                                                 
1 By default, PLEXOS considers all inter-temporal constraints non-binding at the beginning of simulation horizons. 
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partitioned horizon. The simulation results corresponding to the overlap period before the 
partition boundary are discarded to yield a single complete set of annual simulation data resulting 
from the completion of all partitioned simulations. We vary the number and location of partition 
boundaries and the duration of the overlap periods and analyze the effects of these two 
parameters on the solution quality and run time of time domain partitioned PCM simulations. 

 

  

Figure 1. Illustration of annual simulation horizon versus quarterly partitioned simulation 
horizons. Partitioned simulations start at the beginning of the overlap period and data 

simulated before the partition boundary is discarded. 
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2 Solution Time Reduction 
Time domain decomposition of PCM simulations is a method for reducing the time to solution 
for problems that contain many optimization intervals that are tied together by inter-temporal 
constraints (e.g., generator ramping constraints). By optimizing distinct partitions simultaneously 
(i.e., in parallel) on separate pieces of computer hardware, solutions can be achieved with a 
speedup relative to the number of partitions. Amdahl’s law argues that the maximum speedup for 
a given number of partitions occurs when the computation time for each partition is equivalent 
(Amdahl 1967). Assuming the PCM solution time is dominated by the optimization of the set of 
MIP steps and that each MIP step can be solved in roughly the same time, a near linear speedup 
relative to the number of partitions is achievable without overlap. In a first attempt to create 
partitions with roughly equal solution times, we decomposed the horizon into partitions with 
equal simulation time horizons (e.g., weekly or monthly). Achieving a linear speedup of an 
annual simulation decomposed into week-long partitions would allow the simulation of problems 
that once took a month to be completed in less than a day. 

Maximum speedup of time domain decomposed simulations would occur when the simulation is 
partitioned into simulations the same length as each optimization step (e.g., an annual day-ahead 
market simulation would achieve maximum speedup when partitioned into 365 single day 
simulations). Additional problem constraints and characteristics limit the achievable speedup and 
resultant reduction in runtime. To achieve valid solutions, it is necessary to not create partitions 
so small as to not capture the longer inter-temporal generation constraints, such as 
minimum/maximum generator run times. The disruptions caused by the initial conditions of each 
partitioned horizon may introduce significant inaccuracies because the inter-temporal constraints 
are not informed by the solutions to previous time steps. To minimize some of the inaccuracies 
caused by partitioning, redundant computation (e.g., an initialization period at the beginning of 
each partition) may be required.  

Speedup of solution times will be limited by redundant and serial computation requirements, 
such as model initialization, solution input/output (I/O), reconstruction of the full annual solution 
from the individual partitions, and writing solutions to disk. For the remainder of this document, 
we assume that PCM solution time is dominated by the MIP optimization steps, thus the serial 
components of the simulation time (compilation, validation, reconstruction, and saving) are 
ignored. Additionally, the computational complexities and time to solution of individual interval 
or partition solutions are not necessarily equal and may depend on a number of factors. Thus, 
computational load balancing may also be important.2 

  

                                                 
2 A point that is made more relevant by our observations that solution times become increasingly uncertain as the 
MIP gap tolerance is made more precise. 
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3 Research Approach 
3.1 Partitioned Solution Quality 
Solutions to the PCM optimization problem are sensitive to input data and many simulation 
parameters. Figure 2 and Figure 3 show how the generation dispatch results of an un-partitioned 
annual simulation are changed by solving independent months. Figure 2 shows a generation 
dispatch stack snapshot from an un-partitioned annual simulation3, and Figure 3 shows how the 
partitioned simulation generation deviates from the un-partitioned results. To quantify these 
differences and benchmark the effects of varying simulation input parameters, we develop as set 
of comparison criterion metrics. 

 
 
Solution quality can be defined using a number of different metrics. The objective of PCMs is to 
minimize the total system cost. Therefore, a logical solution quality metric exists in comparing 
the total system cost over the simulation period, with and without parallelization. However, 
because PCM simulations result in a series of MIPs where each MIP solution contributes to the 
overall production cost, PCM solutions may have equivalent objective function values while 

                                                 
3 See Section 3.2 for details on the modeled system. 

Figure 2. Generation dispatch stack by generator type for the time window starting January 30 
and ending February 8 

Figure 3. Generation dispatch differences between an annual simulation and a monthly 
partitioned simulation 
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their solutions differ. Thus, other solution quality metrics need to be considered: total variation 
of generation dispatch or commitment variables, locational marginal prices (LMPs), and capacity 
factor by generator type. Here, we aim to measure and quantify the uncertainty introduced by 
time domain partitioning. Equivalent simulations would yield equivalent dispatch values for 
every generator during every time step. However, due to common modeling simplifications (e.g., 
simplified transmission constraints and constant/linear generator heat rate curves) and the 
similarity of many generator costs, there is no expectation to achieve perfectly equivalent 
solutions with even minor perturbations in simulation technique. For example, Figure 4 shows 
differences in generation from two simulations that differ only in the generator random outage 
seed definition. Rather than a binary test of equivalence, the difference between two solutions is 
described in (8) using the root mean square deviation (RMSD) of generation. 

 

 𝑅𝑀𝑆𝐷(𝑔) = �∑ ��𝑔𝑡−𝑔𝑡′�
2�𝑛

𝑡=1

𝑛
 (8) 

Where, g and g’ represent the outputs of a specific generator resulting from an un-partitioned 
reference simulation and a partitioned simulation, respectively. The RMSD metric quantifies the 
difference in the dispatch of specific generators. The RMSD metric can also be calculated for 
differences in committed generation, generation cost, or differences in reserve provision (the 
megawatt capacity of a specific generator that is procured for a particular reserve product).  

Equation 9 defines a normalized RMSD that quantifies the deviation of total generation from a 
group of generators (S) as a function of system demand (L). The NRMSD metric enables the 
analysis of all generators or generators categorized by generator type. The definition of NRMSD 
in Eq. 9 aggregates individual generator errors to allow generation substitutions within generator 
types. For example, in a system with two coal generators, the NRMSD metric would remain zero 
despite a shift in generation between the two coal generators, as long as the total coal generation 
dispatch remained equivalent between simulations for a given time period. A method that 
preserves individual generator errors is analyzed in the Appendix. 

 𝑁𝑅𝑀𝑆𝐷�𝐺(S)� =
�∑ �∑

𝑔𝑡−𝑔𝑡
′

𝐿𝑡𝑔∈S �
2

𝑛
𝑡=1

𝑛
 (9) 

Figure 4. Generation dispatch differences between two simulations with different random 
generator outage seeds 
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Quantifying and analyzing the differences, or similarities, of multiple PCM simulations depends 
upon the specific goals of the study. Some studies may be more interested in the optimal reserve 
provision, while others may only be interested in total system cost. To develop a generic metric 
for differences between PCM simulations, we analyze the differences in three sets of outputs 
resulting from simulating the operations of the identical systems. To capture the overall 
difference of the set of objective function values of two PCM simulations, the NRMSD of the 
reserve provisions (10) and production costs (11). In Eq. 10, R represents the sum of reserve 
provisions for the set of generators (S) over the time periods (t∈{1,…,n}) and r represents the 
reserves provided by an individual generator during an individual period. Equation 11 can be 
calculated for total production cost or for the components that make up production cost (fuel, 
startup, and variable operation and maintenance [VOM]). 

 𝑁𝑅𝑀𝑆𝐷�𝑅(S)� = �∑ �∑ 𝑟𝑡−𝑟𝑡
′

𝑟∈S �2𝑛
𝑡=1

𝑛�∑ ∑ 𝑟𝑡𝑟∈S
𝑛
𝑡=1 �2

 (10) 

 𝑁𝑅𝑀𝑆𝐷�𝐶(S)� = �∑ �∑ 𝑐𝑡−𝑐𝑡
′

𝑐∈S �2𝑛
𝑡=1

𝑛�∑ ∑ 𝑐𝑡𝑐∈S
𝑛
𝑡=1 �2

 (11) 

3.2 Test System 
We evaluate the impact of partitioning on an electric power system on a test system composed of 
two balancing areas largely in the State of Colorado. The test system is described extensively in 
(Denholm and Hummon 2012; Denholm et al. 2013; Hummon et al. 2013). The Colorado test 
system consists of two balancing areas (Public Service of Colorado [PSCO] and Western Area 
Colorado Missouri [WACM]) using data derived from the database established by the Western 
Electricity Coordinating Council (WECC) Transmission Expansion Policy Planning Committee 
(TEPPC) model and other publicly available datasets. Transmission is modeled zonally, without 
transmission limits within each balancing authority area. Projected generation and loads were 
derived from the TEPPC 2020 scenario (TEPPC 2011). Hourly load profiles were based on 2006 
data and scaled to match the projected TEPPC 2020 annual load. Hourly solar and wind power 
generation profiles are time synchronized to the load profiles for the year 2006. The system 
peaks in the summer with a 2020 coincident peak demand of 13.7 GW and annual demand of 
79.0 TWh. A total of 201 thermal and hydro generators are included in the test system, with total 
capacities listed in Table 1. We adjusted the conventional generator mix to ensure the available 
capacity (after outages) was always at least 9% greater than demand by adding a total of 1,450 
MW of natural gas fueled generation (690 MW of combustion turbines and 760 MW of 
combined cycle units). This adjustment was necessary, in part, because the simulated system 
does not include contracted capacity from surrounding regions or any capacity contribution from 
solar and wind resources. The base case of the test system assumes a wind and solar penetration 
of 16% on an energy basis. For comparison, Colorado received about 11% of its electricity from 
wind in 2012 (EIA 2013).4 PV profiles were generated using the System Advisor Model (SAM) 
(Gilman and Dobos 2012) with 2006 meteorology. Wind data was derived from the Western 
Wind and Solar Integration Study (WWSIS) dataset (GE 2010).5 Discrete wind and solar plants 

                                                 
4 Colorado generated 6,045 GWh from wind in 2012 compared to total generation of 53,594 GWh. See (EIA 2012). 
5 All generation profiles were adjusted to be time synchronized with 2020, which is a leap year. 
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were added from the WWSIS datasets until the installed capacity produced the targeted 
energy penetration.6 

 
 

Fuel prices were derived from the TEPPC 2020 database. Coal prices were $1.42/MMBtu for all 
plants. Natural gas prices varied by month and ranged from $3.90/MMBtu to $4.20/MMBtu, 
with an average of $4.10/MMBtu (EIA 2012). No constraints or costs were applied to carbon or 
other emissions. 

We generated hourly requirements for contingency, regulation, and flexibility reserves.7 
Contingency reserves are based on the single largest unit (a 810 MW coal plant) and allocated 
with 451 MW to PSCO and 359 MW to WACM, with 50% met by spinning units.8 Regulation 
and flexibility reserve9 requirements vary over time based on the statistical variability of load, 
wind, and PV, with the methodology described in detail by Ibanez et al. (2012). Hummon et al. 
(2013) describes the application of the methodology to the test system.  

The sum of the total operating reserves (met by spinning units) averages 582 MW, which 
corresponds to about 6.4% of average load. Table 2 summarizes the general characteristics of the 
three modeled reserve services. Reserves were modeled as “soft constraints,” meaning the 
system was allowed to not meet requirements if the cost exceeded the high threshold value 
shown in Table 2. These penalties were chosen to be high enough so that least cost decision is to 

                                                 
6 The sites were chosen based on capacity factor and do not necessarily reflect existing or planned locations for wind 
and solar plants. 
7 For additional discussion of these reserves (especially flexibility reserves, which is not yet a well-defined market 
product), see (Ela et al. 2011). 
8 The PSCO and WACM balancing areas are part of the Rocky Mountain Reserve group, which shares contingency 
reserves based on these values.  
9 For these services, only the “upward” reserve requirements were evaluated. The need for downward reserves 
becomes of greater importance at high renewable penetration when conventional thermal generators are operated at 
or near their minimum generation points for more hours of the year. Future work will evaluate the cost and price of 
separate up and down reserve products in these scenarios. 

Table 1. Test System Generator Capacity in 2020 
System Capacity (MW) 

   Coal 6,178 
   Combined Cycle (CC) 3,724 
   Gas Turbine/Gas Steam 4,045 
   Hydro 773 
   Pumped Storage 560 
   Wind 3,347 (10.7 TWh)  
   Solar PV 878 (1.8 TWh) 
   Demand Response 293 
  Othera  513 
Total  15,793 

a Includes oil- and gas-fired internal combustion generators. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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start a new unit to provide reserves. Unserved load was also modeled as a soft constraint, with a 
penalty price of $10,000/MWh. 

 
The PLEXOS simulations performed in this analysis used day-ahead scheduling with a 48-hour 
optimization window, rolling forward in 24-hour increments. The extra 24 hours in the unit 
commitment horizon (for a full 48-hour window) were necessary to properly commit the 
generators with high start-up costs and the dispatch of energy storage. All scenarios were run for 
one chronological year using PLEXOS version 6.207 R08, with the model performance relative 
gap set to 0.5%. 

  

Table 2. Summary of Operating Reserves in the Base Case of Test System 

Operating Reserve 
Service System Drivers 

Time to 
Respond 

[min] 

Requirement   
(% of load)  

Mean 
(Min/Max) 

Penalty 
[$/MW-h] 

Regulation PV, wind, load 5 1.33 
(1.00/1.71) 9,500 

Contingency largest generator 10 4.54 
(2.97/5.95) 9,000 

Flexibility PV, wind 20 0.64 
(0.13/1.07) 8,500 

 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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4 Unit Commitment Decision Persistence  
The partitioning method described in Figure 1 provides an effective method to partition PCM 
simulations for parallel execution that achieves roughly linear speedup proportional to the 
number of partitions. Without overlap, the solution quality is not necessarily preserved. 
Generator operation is governed by physical constraints, such as minimum and maximum run 
times, down times, and ramp rates. These dynamic constraints provide a mechanism by which 
optimal unit commitment decisions made in previous time steps carry forward and affect future 
unit commitment decisions. The characteristics that drive this commitment persistence vary by 
generator operating parameters, which are largely governed by fuel source, thus providing a 
logical grouping for analyzing unit commitment persistence. For instance, the modelling 
parameters of a coal-fired generator reflect the time it takes to bring a unit up to temperature 
produce enough steam to begin generating electricity. Similarly, the time required to change the 
amount of electricity produced (dispatch level) reflects the required temperature and pressure 
changes needed to achieve the new generation dispatch point. While these constraints are unique 
to a particular generator, coal-fired steam turbines typically have similar operating 
characteristics. By comparison, a natural gas-fired combustion turbine does not require steam 
production and thus requires less time to startup, shutdown, and change its operating point than a 
coal-fired generator. Figure 5 shows the autocorrelation of the number of committed generators 
by fuel type for a variety of time snapshots (seasons) throughout the year. The horizontal axis 
shows autocorrelation lags in hours up to 1 week. The autocorrelation analysis shows that the 
time it takes for unit commitment decisions to decorrelate varies by generator and by season. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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The autocorrelation analysis in Figure 5 suggests that commitment decisions of coal generators 
and storage units persist for roughly 1–2 days throughout the year while the persistence of other 
generators (gas combustion turbine [CT] and combined cycle [CC]) is dependent on the time of 
year. The intervals of high correlation evident in the gas CT and CC autocorrelations suggest that 
the commitment status may be relatively predictable for gas CTs and CCs during the summer 
and fall. These results suggest two strategies for achieving high quality solutions through time 
domain partitioning. The first strategy is to start the simulations far enough ahead of the partition 
boundaries so that the system has enough time (overlap period) to reduce the effects of the start 
conditions. The sensitivity of the system to the overlap period and the timing of partition 
boundaries are explored in the remainder of the document and are informed by the 
autocorrelation analysis in Figure 5 that suggests the majority of the system commitment 
decisions become decorrelated after roughly 2 days. The second strategy to enhance partitioned 
simulation solution quality is to seed the start conditions of each partitioned simulation with an 
informed system state. This could be done by defining, among other variables, the unit 
commitment pattern at the beginning of each simulation. This strategy is the subject of ongoing 
research efforts. 

Figure 5. Autocorrelation of generator unit commitment by fuel type and by season 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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5 Start Overlap and Boundary Location Sensitivity 
The analysis presented in Section 4 demonstrates the persistence of various unit commitment 
decisions in a PCM. Here we investigate the effects of varying both the partition boundary (i.e. 
the days on which simulations are partitioned) and the overlap period of PCM simulations. To 
investigate the effects of these two parameters on partitioned PCM simulations, we analyze a 
suite of test simulations with reference to an un-partitioned annual “base case” simulation where, 
other than simulation horizon, all other model parameters are equivalent. The suite of test 
simulations is generated by simulating 30 days of operation starting at midnight on each day of 
the year. This process results in a suite of 336 thirty-day simulation results. The 30-day horizon 
is chosen to provide enough data to allow analysis of overlap periods of several days to several 
weeks.  By analyzing the differences between each simulation in our test suite and the base case, 
we can quantify the effects of varying the overlap period. The effect of varying the number of 
overlap days is described by the daily RMSDs in normalized generation dispatch, normalized 
reserve provision, and generation cost of coal, gas CC, and gas CT generators10 as functions of 
the number of days since the start of each simulation (overlap days).  

Figure 6 shows that coal and gas CC generation differences are significant for up to 2 days of 
overlap. The figures describe the distribution of 336 sample differences for 1–30 days of overlap 
where the red dot represents the median and the bottom and top of the whiskers represent the 25th 
and 75th percentiles. After the partitioned simulations experience 2 days of spin up, differences in 
generation dispatch are largely minimized. The density plots on the left detail the shape of each 
distribution described by the box plots on the left for 0 and 3 days overlap. Relative to the 0-day 
overlap plots, the increased occurrence of smaller differences in the 3-day overlap plots shows 
that the majority of generator dispatch differences are very small after the simulation has some 
time to spin up. 

                                                 
10 While other generator types exist in the Rocky Mountain Power Pool (RMPP) system, the system is dominated by 
three generator types (coal, gas CC, and gas CT), and storage operation is particularly difficult to model, thus figures 
for other generation types are omitted. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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The seasonal variation of errors is demonstrated in Figure 7 where the mean NRMSD of 
generation is plotted for the 2020 calendar versus the number of overlap days. The darkest tiles 
for each generator technology show that differences in generation typically persist for two 
overlap days. The figure again shows that differences are largely minimized after two days of 
overlap. Additionally, the seasonal variation shows smaller differences in late July and August. 
This result suggests that fewer unique optimal solutions exist during the periods of highest load 
than when the system has more available generation capacity (i.e., when [virtually] all generators 
are operating, the number of possible commitment decisions is reduced). 

Figure 6. (Left) Density of generation dispatch normalized root mean squared difference 
(NRMSD) for 0 and 3 days of overlap; (Right) Generation dispatch NRMSD as a function of the 

number of days since the partitioned simulation has started where the lower and upper 
whisker edges represent the 25th and 75th percentiles and the red dots represent the medians 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 8 shows similar results for the provision of the three reserve products: contingency 
reserves, and upward flexibility and upward regulation reserves for the RMPP system. Reserve 
NRMSD values again converge toward a minimum value after roughly two days. Figure 9 
demonstrates a similar, although more pronounced, seasonal dependency of upward regulation 
reserve provision NRMSD values from coal generators to the pattern demonstrated in Figure 7. 
The NRMSD tiles again show a slightly darker band during the first 2 days of overlap. The zero 
values and blank shading for gas CT Regulation in Figures 8 and 9 are because we don’t allow 
CTs to provide regulation reserves in the model. 

Figure 7. Mean generation normalized root mean squared difference values as a function of the 
number of days since the partitioned simulation has started and the date 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 8. Reserve provision NRMSD as a function of the number of days since the partitioned 
simulation has started where the lower and upper whiskers represent the 25th and 75th 

percentiles and the red dots represent the medians 

Figure 9. Seasonal reserves NRMSD heat map as a function of the number of days since the 
partitioned simulation has started and the date 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 10 shows the generation cost differences between the base case and the partitioned 
simulations. Total generation costs (Total) are broken down into startup and shutdown costs 
(Start), VOM, and fuel costs (Fuel). While, the total cost values are driven primarily by the fuel 
cost values, the total cost NRMSD values are driven by differences in startup costs. The largest 
deviations in startup cost can be attributed to the initial conditions of the simulation horizon in 
the PCM optimization. At the beginning of each partitioned simulation, all generators are 
committed by default, without an associated startup cost. Many generators must be de-committed 
during the first day of the simulation. Partitioned simulations commitment patterns converge to 
the annual simulation as the partitioned simulation inter-time generator commitment constraints 
become binding; this behavior is amplified by the startup costs of different generation 
technologies and is evident in Figure 10 and Figure 11. The relatively (and consistently) high 
NRMSD values for Gas CC and Storage generators is likely due to the high level of degeneracy 
(cost similarity) in Gas CCs and extreme sensitivity of Storage operation to even minor 
simulation perturbations. Figure 11 again shows a seasonal dependence of NRMSD values and 
again highlights the errors that occur before two days of overlap with the dark band at the bottom 
of the tile representing coal generation. However, unlike reserve provisions where we see a 
strong seasonal dependence in coal generators, the cost NRMSD seasonal dependence is not 
nearly as dramatic as the overlap period dependence. By contrast, the gas CC seasonal 
dependence is more evident than the overlap dependence. These results are consistent with the 
autocorrelation results of Figure 5. 

 

Figure 10. Generation cost NRMSD as a function of the number of days since the partitioned 
simulation has started where the lower and upper whiskers represent the 25th and 75th 

percentiles and the red dots represent the medians 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 11. Mean total generation cost NRMSD heat map as a function of the number of days 
since the partitioned simulation has started and the date 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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6 Results of Partitioned Annual Simulations 
The operating constraints of individual generators dictate that there exists some minimum 
duration where unit commitment decisions continue to affect system operation. Without knowing 
the time decay of unit commitment (UC) decision persistence, we partitioned a known annual 
simulation horizon into 52-week-long simulation horizons. All partition boundaries occur 
at midnight. 

Simulations were executed using PLEXOS version 6.208 on NREL’s Peregrine high 
performance computer running Linux. Peregrine has 1440 nodes with a total of 65,664 cores. 
Each PLEXOS simulation was executed on one of Peregrine’s 144 Intel SandyBridge processor 
nodes that have 16 cores and 32GB memory. We executed these partitioned simulations 
simultaneously. In annual PCM simulations, the vast majority of the computation time is 
typically dedicated to solving the set of optimization problems. Therefore, the following analysis 
presents computation times as the time required to compute optimal solutions neglecting serial 
computation steps such as read/write activities. 

Default initial conditions at time t0 for any simulation horizon consider every unit committed and 
all time-dependent constraints (see Eq. 4) to be non-binding at time t0. These initial condition 
assumptions have the potential to introduce operating point deviations for some unknown time 
period extending forward from the partition boundary. This effect is demonstrated in Figure 3. 
To mitigate the effects of the initial condition assumptions, a time overlap can be added to each 
partitioned horizon (see Figure 1). As a result, operations are simulated for longer durations and 
overlapping results are discarded. Each of the partitioned simulations was performed with 
overlap ranging from 0 (no overlap) to 5 days of overlap at the beginning of the horizon. The 
solution times for each partitioned simulation are shown in Figure 12. The marginal solution 
time penalty for an additional day of overlap is roughly 45 seconds on this test system. Assuming 
the availability of computer hardware is not a constraint on parallel execution of partitioned 
simulations, the time to solution is driven by the longest single partition solution (i.e., for the no-
overlap partitioned simulation, the total optimization time is roughly 4 minutes). 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 13 shows the tradeoffs between speedup and NRMSD. The reserve NRMSD values are 
averages of the NRMSD values for the three reserve products (upward flexibility, upward 
regulation, and contingency) while the cost NRMSD values reflect total production cost 
NRMSD. The left panel of Figure 13 shows the speedup (annual simulation computation time 
divided by the maximum partitioned simulation computation time) achieved with 0–4 days of 
overlap. The results show that adding 2 days of overlap at the beginning of partitioned solutions 
largely minimizes differences in generation, costs, and reserve provisions, while achieving 
completion roughly 25 times faster than the un-partitioned simulation. The diminishing returns 
of reduced NRMSD relative to increasing NRMSD values suggests that two days of overlap 
provides a reasonable tradeoff between accuracy and computation time reduction.  

Figure 12. Solution time for each weekly partitioned simulation with 0–5 overlap days 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 13. (Left) Speedup factors for annual day-ahead unit commitment simulations; (Right) 
Annual generation NRMSD values for simulations partitioned into 52 weekly partitions. 
Average values are reported for the three reserve product NRMSD values (contingency, 

upward regulation, and upward flexibility). 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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7 Conclusions 
The coupling of unit commitment time steps through inter-temporal generation constraints makes 
PCM simulations difficult to partition and parallelize. The unit commitment decision persistence 
analysis presented in Section 4 demonstrates that unit commitment decisions have a finite 
duration where they continue to affect future system behavior. This suggests that partitioning 
PCM simulations can yield accurate results if the system is given enough time to forget after 
partition boundaries. In the process of reassembling the results of partitioned simulations, we 
denote this time during which unit commitment decisions made at the beginning of a simulation 
persist as the “overlap period,” where system operation is simulated, but the results are not 
considered as part of the reassembled solution. The amount of overlap required to achieve 
accurate simulations, as described by the solution quality metrics in Section 3.1, is sensitive to 
the temporal location of the partition boundary. The partition boundary and overlap sensitivity 
analysis in Section 5 shows that differences between un-partitioned and partitioned simulation 
results are largely minimized when partitions are given at least 2 days of overlap. This result may 
differ depending on the generator mix specific to different systems, a point that will be addressed 
in ongoing research. 

The tradeoffs between overlap duration and solution quality are highlighted in Section 6 where 
simulations partitioned into 52 weeks are reassembled and compared against and un-partitioned 
annual simulation. While the marginal cost of adding a day of overlap is relatively small—
roughly 45 computation seconds—the marginal benefits, in terms of reduced NRMSD values, 
diminish beyond 2 days of overlap. The need for 2 overlap days constrains the speedup 
according to Amdahl’s since the amount of redundant computation increases. Simulations 
partitioned into 52 nine-day (7 days + 2 days overlap) simulations solve roughly 25 times faster 
than un-partitioned simulations when implemented on a cluster capable of handling all 
partitioned simulations simultaneously.  

While additional speedup is achievable through the creation of shorter partitions, the diversity in 
partition solution times (see Figure 12) becomes the limiting factor as individual solution times 
decrease. This diversity in solution time stems from the fact that the computational complexity of 
the partitioned MIPs are not simply functions of the simulation horizons but instead depend on 
the difficulty for the optimization algorithm to find a suitably optimal solution. Because the 
parallel execution of partitioned simulations is limited by the longest solution time for a single 
partition, an intelligent temporal partitioning algorithm that creates partitioned simulations with 
varying horizons but (more) equivalent solution times could further enhance simulation speedup. 
Ongoing research aims to develop more intelligent partitioning algorithms to achieve uniform 
solution times across partitions and further parallelize the PCM simulation. 

The 2 days of overlap required to largely minimize NRMSD values for partitioned simulations is 
achieved when all simulations start with “hot start” initial conditions. That is, all unit 
commitment variables are set to one at the beginning of each simulation. A more accurate 
prediction of the unit commitment patterns would reduce the initial difference between 
partitioned and un-partitioned simulations, thus reducing the overlap duration required for 
quality solutions.  

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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This paper focuses on methods for time domain partitioning for parallelizing PCM simulations. 
While significant speedup is available through these methods, additional opportunities exist in 
the spatial domain. Similar to how individual operators simulate and control a portion of a larger 
interconnect, spatial decomposition would make assumptions about the interaction between a 
focus region and the remainder of an interconnect to enable parallel simulation of operations 
within distinct zones. The accuracy of spatially decomposed simulations depends upon the 
ability of zonal boundaries to mitigate the inter-zonal effects of operation decisions. In 
combination with temporal decomposition, spatial decomposition could further reduce PCM 
computation time. 

  

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Appendix: Alternative NRMSD Formulation 
Section 3.1 defines the NRMSD metrics using Eqs. 9–11 such that differences between 
generation, reserve provisions, and costs at individual generators are abstracted to generator type. 
The purpose of this abstraction is to allow for substitutions within a generator type because 
generators of the same time often have similar if not equivalent cost curves. In the absence of 
binding transmission constraints, this redundancy can lead to multiple optimal solutions. Here, 
we perform similar analysis while preserving solution differences at the individual generator 
level (see Eq. 12). The following analysis provides some insight into the uncertainty introduced 
by partitioning versus the uncertainty inherent in optimizing a system with many redundant 
costs. 
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Figure 14. (Left) Density of generation dispatch NRMSD for 0 and 3 days of overlap; (Right) 
Generation dispatch NRMSD as a function of the number of days since the partitioned 

simulation has started where the lower and upper whisker edges represent the 25th and 75th 
percentiles and the red dots represent the medians 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

26 

 

Figure 15. Mean generation NRMSD values as a function of the number of days since the 
partitioned simulation has started and the date 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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